![]() | FELFocus: Automatisierte Justage der Fokussierungsoptiken von
Freie-Elektronen-Lasern mit Hilfe von 'machine learning'-Algorithmen (2022-2025) BMBF-Verbundprojekt 05K2022, Subproject 2 |
![]() | EXPOWER: EXPOnential analysis emPOWERing innovation (2021-2025) EU project (H2020-MSCA-RISE) |
![]() | Low-rank and sparsity-based models in Magnetic Resonance Imaging (2021-2024) DFG project (subproject B03) within the CRC 1456 (Mathematics of Experiment, first funding period) |
![]() | Discovering structure in complex data: Statistics meets Optimization and Inverse Problems (2015-2024) DFG Research Training Group 2088 (RTG 2088) |
![]() | OCT-let: Designing an Optimum Sparse Representation for Ophthalmic Optical Coherence Tomography Image Analysis (2020-2023) Georg Forster Research Fellowship for Professor Hossein Rabbani (Isfahan University of Medical Sciences) |
![]() | Lecture: Functional Analyis (English) (SS 2023) Monday and Thursday 12.15 - 14.55, MN67 (Lecture: 4 SWS + Exercises: 2 SWS / 9 ECTS) |
![]() | Research seminar: Numerical Analysis (English) (SS 2023) Tuesday 12.30 - 14.00 (2 SWS) |
![]() | From ESPRIT to ESPIRA: Estimation of Signal Parameters by Iterative Rational Approximation Nadiia Derevianko, Gerlind Plonka, Markus Petz IMA Journal of Numerical Analysis, 43(2), 789–827, 2023 (preprint available at arXiv) |
![]() | Spline Representation and Redundancies of One-Dimensional ReLU Neural Network Models Gerlind Plonka, Yannick Nicola Riebe, Yurii Kolomoitsev Analysis and Applications 21(01), 127-163, 2023 (preprint available at arXiv) |
![]() | ESPRIT versus ESPIRA for reconstruction of short cosine sums and its application Nadiia Derevianko, Gerlind Plonka, Raha Razavi Numerical Algorithms 92, 437-470, 2023 (preprint available at arXiv) |
![]() | Combining Non-Data-Adaptive Transforms for OCT Image Denoising by Iterative Basis Pursuit Raha Razavi, Hossein Rabbani, Gerlind Plonka 2022 IEEE International Conference on Image Processing (ICIP), pp. 2351-2355, 2022 (DOI: 10.1109/ICIP46576.2022.9897319) |
![]() | Detection of Retinal Abnormalities in OCT Images Using Wavelet Scattering Network Zahra Baharlouei, Hossein Rabbani, Gerlind Plonka 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3862-3865, 2022 (DOI: 10.1109/EMBC48229.2022.9871989) |
![]() | Automatic Classification of Macular Diseases from OCT Images Using CNN Guided with Edge Convolutional Layer Ebrahim Nasr Esfahani, Parisa Ghaderi Daneshmand, Hossein Rabbani, Gerlind Plonka 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3858-3861, 2022 (DOI: 10.1109/EMBC48229.2022.9871322) |
![]() | Reconstruction of Connected Digital Lines Based on Constrained Regularization Mojtaba Lashgari, Hossein Rabbani, Gerlind Plonka, Ivan Selesnick IEEE Transactions on Image Processing 31, 5613-5628, 2022 |
![]() | Retinal Optical Coherence Tomography image analysis by Restricted Boltzmann Machine Mansooreh Ezhet, Gerlind Plonka, Hossein Rabbani Biomedical Optics Express 13(9), 4539-4558, 2022 |
![]() | Exact Reconstruction of Extended Exponential Sums Using Rational Approximation of their Fourier Coefficients Nadiia Derevianko, Gerlind Plonka Analysis and Applications 20(3), 543-577, 2022 (preprint available at arXiv) |
![]() | Frame soft shrinkage operators are proximity operators Jakob Geppert, Gerlind Plonka Appl. Comput. Harmon. Anal. 57, 185–200, 2022 (preprint available at arXiv) |
![]() | Rational Functions for the Reconstruction of Exponential Sums from their Fourier Coefficients Markus Petz, Gerlind Plonka, Nadiia Derevianko PAMM · Proc. Appl. Math. Mech. 21:1 e202100078, 2021 (DOI: 10.1002/pamm.202100078) |
![]() | Statistical modeling of retinal optical coherence tomography using the Weibull mixture model Sahar Jordani, Zahra Amini, Gerlind Plonka, Hossein Rabbani Biomedical Optics Express 12(9), 5470-5488, 2021 (open access https://doi.org/10.1364/BOE.430800) |
![]() | Optimal Rank-1 Hankel Approximation of Matrices: Frobenius Norm and Spectral Norm and Cadzow's Algorithm Hanna Knirsch, Markus Petz, Gerlind Plonka Linear Algebra Appl. 629, 1-39, 2021 (preprint available at arXiv) |
![]() | Exact Reconstruction of Sparse Non-Harmonic Signals from their Fourier Coefficients Markus Petz, Gerlind Plonka, Nadiia Derevianko Sampling Theory, Signal Processing, and Data Analysis 19, 7 (open access), 2021 (preprint available at arXiv) |
![]() | Deterministic Sparse Sublinear FFT with Improved Numerical Stability Gerlind Plonka, Therese von Wulffen Results Math. 76(2), 53, 2021 (open access https://doi.org/10.1007/s00025-020-01330-0) |
![]() | Modifications of Prony's Method for the Recovery and Sparse Approximation of Generalized Exponential Sums Ingeborg Keller, Gerlind Plonka G.E. Fasshauer et al. (eds.), Approximation Theory XVI, Springer Proceedings in Mathematics & Statistics 336, 2021 (preprint as download) |
![]() | The Difference between Optimal Rank-1 Hankel Approximations in the Frobenius Norm and the Spectral Norm Hanna Knirsch, Markus Petz, Gerlind Plonka Proc. Appl. Math. Mech. Volume 20, 85-86, 2020 (DOI 10.1002/pamm.202000085) |
![]() | Iterative Sparse FFT for M-sparse Vectors: Deterministic versus Random Sampling Gerlind Plonka, Therese von Wulffen Proc. Appl. Math. Mech. Volume 20, 134-135, 2020 (DOI 10.1002/pamm.202000134) |
![]() | Parseval proximal neural networks Marzieh Hasannasab, Johannes Hertrich, Sebastian Neumayer, Gerlind Plonka, Simon Setzer, Gabriele Steidl Fourier Anal Appl 26, 59, 2020 (preprint available at arXiv) |
![]() | A tree-based dictionary learning framework Renato Budinich, Gerlind Plonka International Journal of Wavelets, Multiresolution and Information Processing 2050041, 2020 (preprint as download) |
![]() | further publications... |
![]() | Easy Path Wavelet Transform (EPWT) Wavelet shrinkage on paths for denoising of scattered data including an adaptive deterministic and an adaptive random path construction. Dennis Heinen, Gerlind Plonka, Stefanie Tenorth |
![]() | Sparse FFT (small support) A new deterministic sparse FFT algorithm for vectors with small support. Katrin Wannenwetsch, Gerlind Plonka |
![]() | Sparse FFT (real non-negative) A new deterministic sparse FFT algorithm for real non-negative vectors. Katrin Wannenwetsch, Gerlind Plonka |
![]() | Deterministic Sparse FFT Deterministic sparse FFT for M-sparse vectors, implemented in MATLAB. Gerlind Plonka, Katrin Wannenwetsch |
![]() | Sparse Fast DCT for Vectors with One-block Support Sparse fast DCT algorithm for vectors with one-block support, implemented in MATLAB and Python. Sina Bittens, Gerlind Plonka |
![]() | Sparse FFT for Vectors with Reflected Two-block Support Sparse FFT algorithm for vectors with reflected two-block support, implemented in MATLAB and Python. Sina Bittens, Gerlind Plonka |
![]() | Real Sparse DCT for Vectors with Short Support Real sparse DCT algorithm for vectors with short support, implemented in MATLAB and Python. Sina Bittens, Gerlind Plonka |
![]() | Deterministic Sparse Sublinear FFT with Improved Numerical Stability Deterministic sparse sublinear FFT for M-sparse vectors with improved numerical stability, implemented in Python. Gerlind Plonka, Therese von Wulffen |
![]() | Exact Reconstruction of Sparse Non-Harmonic Signals from Fourier Coefficients Exact Reconstruction of Sparse Non-Harmonic Signals from Fourier Coefficients, implemented in MATLAB. Markus Petz, Gerlind Plonka, Nadiia Derevianko |
![]() | Exact Reconstruction of Extended Exponential Sums using Rational Approximation of their Fourier Coefficients Exact Reconstruction of Extended Exponential Sums using Rational Approximation of their Fourier Coefficients, implemented in MATLAB. Nadiia Derevianko, Gerlind Plonka |
![]() | From ESPRIT to ESPIRA: Estimation of Signal Parameters by Iterative Rational Approximation From ESPRIT to ESPIRA: Estimation of Signal Parameters by Iterative Rational Approximation, implemented in MATLAB. Nadiia Derevianko, Gerlind Plonka, Markus Petz |