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Abstract

In this paper we study the performance of image reconstruction methods from incom-
plete samples of the 2D discrete Fourier transform. Inspired by requirements in parallel
MRI, we focus on a special sampling pattern with a small number of acquired rows of
the Fourier transformed image Â. We show the importance of the low-pass set of ac-
quired rows around zero in the Fourier space for image reconstruction. A suitable choice
of the width L of this index set depends on the image data and is crucial to achieve op-
timal reconstruction results. We show that linear reconstruction approaches cannot lead
to satisfying recovery results. We propose a new hybrid algorithm which connects the
TV minimization technique based on primal-dual optimization with a recovery algorithm
which exploits properties of the special sampling pattern for reconstruction. Our method
shows very good performance for natural images as well as for cartoon-like images for a
data reduction rate up to 8 in the complex setting and even 16 for real images.
Key words. discrete Fourier transform, interpolation methods, total variation minimiza-
tion, primal-dual algorithm, local total variation, incomplete Fourier data
AMS Subject classifications. 65T50, 42A38, 42B05, 49M27, 68U10

1 Introduction
In this paper we study the problem of how to efficiently reconstruct a two-dimensional
image A ∈ CN×M from structured undersampled 2D DFT data.

Incomplete Fourier data arise in different application fields, as for example in magnetic
resonance imaging (MRI), see e.g. [2, 8, 10, 12, 14, 16, 19, 18, 24, 27, 28], seismic imaging
[25], or computerized tomography [13, 23]. Depending on the applications, the patterns
of incomplete Fourier measurements have different structures. Discrete subsampling is
mostly performed on a two-dimensional cartesian grid or on a polar grid in frequency
domain. Several recovery algorithms focus on the polar grid, see e.g. [2, 8, 15, 18, 27] or
on (structured) random undersampling on the cartesian grid [1, 4, 17, 20, 26], where in
both cases the Fourier sampling pattern is denser for low frequencies.
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However, in most applications, a random undersampling is not possible or technically
too expensive. For example, in MRI only samples along a line or a smooth curve can
be efficiently acquired, and every new line takes additional acquisition time. Moreover,
in parallel MRI, one acquires simultaneously subsampled Fourier measurements along
lines corresponding to different coils, and the challenge is to reconstruct the complete
magnetization image from the incomplete Fourier samples of these coil images, see e.g.
[2, 10, 11, 19, 22, 24].

Recovery methods in MRI based on interpolation or approximation of non-aquired data
in the Fourier domain as [10, 19], or on subspace methods [24], are particularly based on
special sampling patterns consisting of a bounded number of horizontal (or vertical) lines.

In the discrete setting, we assume that an image A has to be recovered from a subsam-
pled set of components of its discrete Fourier transform Â = FNAFM . This reconstruc-
tion problem is ill-posed, since the Fourier basis is orthonormal, and the reconstruction
is therefore not unique. In order to still achieve suitable reconstruction results, certain a
priori assumptions on the image to be recovered are essential.

Considering the image in a vectorized form vec(A), the reconstruction problem can
also be rewritten as the problem to find a solution vector of an incomplete linear system,
where only a subset of the equations of the system (FN⊗FM )vec(A) = vec(Â) is available.
Here, one cannot assume that vec(A) is a sparse vector or has a particularly small 1-norm.
Instead, one natural a priori assumption on the image A is that it is piecewise smooth. In
most reconstruction methods, this is transferred to a constraint that A has a small total
variation and/or a sparse representation in some wavelet frame. These constraints can be
incorporated into a minimization problem to cope for the missing Fourier data. Since the
total variation constraint often produces staircasing artifacts, many papers either focus
on numerical examples with piecewise constant images (as “phantom” images) or try to
extend or to generalize the constraints on the image, for example by using generalized TV
[15], special filters [1, 26], or sparsity in wavelet frames [27].

Inspired by the special requirements for MRI reconstructions, we study in this paper
the reconstruction from subsampled 2D DFT measurements for the special sampling grid
which consists of a fixed number of horizontal lines, i.e., we assume that only a certain
number of rows of Â is available to recover A. We will investigate, how these rows should
be taken, in order to achieve very good recovery results based on a suitable reconstruction
method. In particular, we will examine, how the special structure of the considered
sampling pattern influences the reconstruction, and how the pattern can be exploited
to improve the image recovery. We will survey some currently used methods for image
reconstruction based on our sampling pattern and propose a new hybrid method, which
outperforms other approaches for natural images as well as cartoon-like images.

Problem description. For a given discrete image A = (aj1,j2)n−1,m−1
j1=−n,j2=−m ∈ CN×M

with N,M being even positive integers with N = 2n and M = 2m, the discrete two-
dimensional Fourier transform is given by

Â = FN A FM ,

where FN = 1√
N

(ωjkN )n−1
j,k=−n and FM = 1√

M
(ωjkM )m−1

j,k=−m denote the centered unitary
Fourier matrices, and ωN := e−2πi/N . The components âν1,ν2 of Â have the form

âν1,ν2 = 1√
MN

n−1∑
k1=−n

m−1∑
k2=−m

ak1,k2 ω
k1ν1
N ωk2ν2

M .
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Figure 1: Masks for acquired Fourier data for an 256 × 256 image with width L = 21 of the
low-pass set and reduction rates r = 2, 4, 6, 8, where black lines illustrate the acquired rows

The inverse two-dimensional discrete Fourier transform is given by A = FN Â FM , since
we have F−1

N = FN . Throughout the paper, we assume for simplicity that N is a multiple
of 8, such that n

2 = N
4 and n

4 = N
8 are integers.

Let ΛN,M := {−n, . . . , n − 1} × {−m, . . . ,m − 1} denote the index set corresponding
to the (N ×M)-image. We use the 2D index notation ν = (ν1, ν2) ∈ ΛN,M .

We will study the problem of how to reconstruct the image A from incomplete 2D
DFT data âν , ν ∈ Λ ⊂ ΛN,M , where the subset Λ corresponding to the acquired DFT
data has the special form

Λ := ΛL,M ∪ ΛN/r,M . (1.1)
The two index sets ΛL,M and ΛN/r,M will be fixed in the sequel. Here, r denotes the
reduction rate, i.e., bNr c (or b

N
r c − 1, if bNr c is even) is the number of acquired rows of Â

and |Λ| = MbNr c the number of all acquired DFT data.
We assume that L = 2`+ 1 with odd `, then

ΛL,M := ΛL × ΛM with ΛL := {−`, . . . , `}, ΛM := {−m, . . . ,m− 1},

denotes the low-pass set, where ` < n
r = N

2r . In parallel MRI this set is called calibration
set. In other words, we assume that the centered rows of Â with indices −`,−`+1, . . . , `−
1, ` are completely acquired. Outside this low-pass set, only a certain amount of further
rows of Â is acquired. We will particularly focus on the sampling pattern, where fur-
ther data are required along every second row (symmetrically with respect to the image
center) until the bound of bNr c is reached, since this pattern usually provides the best re-
construction results. Therefore, the second index set is determined as a symmetric subset
of odd-indexed rows

ΛN/r,M := {−2κ+ 1,−2κ+ 3, . . . , 2κ− 3, 2κ− 1} × ΛM , (1.2)

such that {−2κ+ 1,−2κ+ 3, . . . , 2κ− 3, 2κ− 1} ∪ {−`, . . . , `} contains bNr c (or b
N
r c − 1)

elements. More precisely, κ := `+1
2 + bN2r −

L
2 c, such that beside the low-pass area, also

the bN2r −
L
2 c rows with indices `+ 2, `+ 4, . . . , 2κ− 1 and the bN2r −

L
2 c rows with indices

−`−2,−`−4, . . . ,−2κ+ 1 are acquired. Figure 1 displays the masks of acquired data for
N = M = 256, L = 21 and reduction rates 2, 4, 6, 8, where beside the 21 fully acquired
rows at the center every second further row is taken such together we have 127 rows for
r = 2, 63 rows for r = 4 etc..
We denote with P(Λ) = (p(Λ)

ν )ν∈ΛN,M
the projection matrix (mask) corresponding to the

sampling set Λ in (1.1), i.e., pν = 1 if ν ∈ Λ and pν = 0 otherwise. Thus, P(Λ) contains
rows of ones and zero rows. Then we can formulate the reconstruction problem as follows:
Find an optimal reconstruction Ã of A from the incomplete 2D DFT data, i.e., with

P(Λ) ◦ ˆ̃A = P(Λ) ◦ Â = P(Λ) ◦ (FNAFM ), (1.3)
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where ◦ denotes the pointwise product. The reconstruction quality will be measured in
the Frobenius norm, i.e., for the reconstruction Ã we will consider the error ‖Ã−A‖F =

(
n−1∑
k1=−n

m−1∑
k2=−m

|ãk1,k2−ak1,k2 |2)1/2 =
∑

k∈ΛN,M

|ãk−ak|2)1/2, or the peak signal to noise ratio

PSNR= 10 log10
(

NM
‖Ã−A‖2F

)
.

Observe that for complex images A = AR + iAI = (aR,k + iaI,k)k∈ΛN,M
with AR,AI ∈

RN×M , we can reconstruct AR and AI separately, since the sampling set is taken sym-
metrically, i.e., for acquired âν = âν1,ν2 , we also have acquired â−ν = â−ν1,−ν2 . Indeed,
we have for all ν ∈ ΛN,M

1
2(âν + â−ν) = 1

2

( ∑
k∈ΛN,M

(aR,k + iaI,k)ων·kN +
∑

k∈ΛN,M

(aR,k + iaI,k)ων·kN

)
= âR,ν ,

1
2(âν − â−ν) = 1

2

( ∑
k∈ΛN,M

(aR,k − iaI,k)ων·kN +
∑

k∈ΛN,M

(aR,k − iaI,k)ων·kN

)
= âI,ν .

In other words, to reconstruct a real image A we can reduce the index set of acquired
data to

Λ =
(
{0, 1, . . . , `} ∪ {1, 3, . . . , 2κ− 1}

)
× ΛM

such that a reduction rate r considered in this paper corresponds in the real case to a
reduction rate of almost 2r.

Outline of this paper. In Section 2, we will explain in detail, why this reconstruction
problem is indeed challenging. We will show, why a suitable choice of the width L of the
low-pass set is crucial to achieve a desired reconstruction quality. Further, we discuss the
limitations of direct reconstruction approaches, such as zero refilling, linear interpolation,
and adaptive interpolation, all of which fail to produce satisfactory reconstruction results.

In Section 3, we propose an iterative reconstruction algorithm based on total variation
minimization of the resulting image. The arising functional is minimized using the primal
dual algorithm [6]. Furthermore, in Section 4, we present a new hybrid algorithm, which
connects the TV-minimization reconstruction with an adaptive reconstruction improve-
ment by exploiting the data knowledge that can be extracted from the special sampling
pattern.

In Section 5, we present several examples of image reconstruction and show the very
good performance of our hybrid algorithm for data reduction rates of up to 8 (that is, 16 in
the real case). In particular, our algorithm always essentially improves the reconstruction
that can be obtained by taking just the corresponding amount of low-pass data. We also
show numerically that other sampling schemes, where besides the low-pass area every
third or every fourth row of Â is acquired until the upper bound of bNr c is reached, do
not lead to better reconstruction results.

Further notations. For the sampling set in (1.1), we use the notation Λ = Λ1×ΛM ,
where Λ1 contains the indices of all acquired rows, i.e.,

Λ1 := ΛL ∪ Λκ = {−`, . . . , `} ∪ {−2κ+ 1,−2κ+ 3, . . . , 2κ− 3, 2κ− 1}. (1.4)

Further, vec(A) denotes the columnwise vectorization of a matrix A, and A ⊗ B is the
Kronecker product of A ∈ C2n×2m, B ∈ CN2×M2 given by

A⊗B = (ak1,k2B)n−1,m−1
k1=−n,k2=−m ∈ C2nN2×2mM2 .
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The identity matrix is always denoted by I, and its dimension follows from the context.

2 Challenges of the reconstruction problem
In this section, we first summarize some facts about the reconstruction challenges from
incomplete 2D-DFT data for the described sampling pattern. Then we will give a short
overview of simple reconstruction ideas and show their weaknesses for the reconstruction
problem at hand.

2.1 Importance of the low-pass set
As introduced in (1.1), we assume that acquired Fourier data are given with respect to
the index set Λ, which consists of the low-pass set ΛL,M containing the rows of Â with
indices −`, . . . , ` and the set ΛN/r,M containing each second (odd-indexed) row of Â until
the bound of bN/rc acquired rows is reached. Assume for a moment that L = 0 and r = 2,
such that the index set corresponding to acquired entries is given by ΛN/r,M in (1.2) with
κ = n

2 . In this case, every second row of Â is given, i.e., â2ν1+1,ν2 for ν1 = −n
2 , . . . ,

n
2 − 1,

ν2 = −m, . . . ,m. With this knowledge, we can recover the differences ak1,k2 − ak1+n,k2 of
the components in A = (ak1,k2)n−1,m−1

k1=−n,k2=−m exactly for k1 = 0, . . . , n−1, k2 = −m, . . . ,m,
since

√
MN
2 (ak1,k2 − ak1−n,k2) = 1

2
m−1∑
ν2=−m

( n−1∑
ν1=−n

âν1,ν2(ω−k1ν1
N − ω−(k1−n)ν1

N )
)
ω−k2ν2
M

= 1
2

n−1∑
ν1=−n

m−1∑
ν2=−m

âν1,ν2(ω−k1ν1
N − (−1)ν1ω−k1ν1

N )ω−k2ν2
M

=
n/2−1∑
ν1=−n/2

m−1∑
ν2=−m

â2ν1+1,ν2ω
−k1(2ν1+1)
N ω−k2ν2

M . (2.1)

Unfortunately, the remaining information needed to recover A, namely the sums (ak1,k2 +
ak1+n,k2) for k1 = 0, . . . , n − 1, k2 = −m, . . . ,m, only depend on the non-acquired even-
indexed Fourier data â2ν1,ν2 , and cannot be reconstructed.

Let W = (wν1,ν2)
n
2−1,m−1
ν1=−n

2 ,ν2=−m ∈ Cn×M be a matrix of arbitrary complex weights and

W̌ := (w̌k1,k2)
n
2−1,m−1
k1=−n

2 ,k2=−m =
√
MnF−1

n WF−1
M its 2D inverse Fourier transform multi-

plied with
√
Mn. Further, we define a periodic extension of these weights by assuming

that wν1+`1n,ν2+`2M = wν1,ν2 for all `1, `2 ∈ Z, ν1 = −n
2 , . . . ,

n
2 − 1, ν2 = −m, . . . ,m − 1.

Similarly for w̌k1,k2 is assumed to be n periodic with respect to the first index k1. We can
actually prove the following theorem for any (non-adaptive) interpolation scheme.

Theorem 2.1 Let A = (ak1,k2)n−1,m−1
k1=−n,k2=−m ∈ CN×M , Â = (âν1,ν2)n−1,m−1

ν1=−n,ν2=−m ∈ CN×M
its 2-D Fourier transform, and assume that half of the Fourier data, namely

â2ν1+1,ν2 , ν1 = −n
2 , . . . ,

n
2 − 1, ν2 = −m, . . . ,m− 1,

are acquired. Let W = (wν1,ν2)
n
2−1,m−1
ν1=−n

2 ,ν2=−m ∈ Cn×M be a matrix of arbitrary complex
weights as given above. Then, any interpolation scheme in the Fourier domain of the
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form

ˆ̃a2ν1+1,ν2 := â2ν1+1,ν2

ˆ̃a2ν1,ν2 :=
n
2−1∑

`1=−n
2

m−1∑
`2=−m

wν1−`1,ν2−`2 â2`1+1,`2 , (2.2)

for ν1 = −n
2 , . . . ,

n
2 − 1, ν2 = −m, . . . ,m − 1, leads to an image approximation Ã =

(ãk1,k2)n−1,m−1
k1=−n,k2=m, where

ãk1,k2 = 1
2(1 + w̌k1,k2 ω

k1
N )(ak1,k2 − ak1−n,k2)

for all k1 = 0, . . . , n− 1, k2 = −m, . . . ,m− 1.

Proof: Taking the interpolation scheme (2.2), it follows with (2.1) for the components of
Ã = F−1

N
ˆ̃AF−1

M that

ãk1,k2 = 1√
MN

( n
2−1∑

ν1=−n
2

m−1∑
ν2=−m

â2ν1+1,ν2ω
−k1(2ν1+1)
N ω−k2ν2

M +
n
2−1∑

ν1=−n
2

m−1∑
ν2=−m

ˆ̃a2ν1,ν2ω
−2k1ν1
N ω−k2ν2

M

)

= 1
2(ak1,k2 − ak1−n,k2) + 1√

MN

n
2−1∑

ν1=−n
2

m−1∑
ν2=−m

n
2−1∑

`1=−n
2

m−1∑
`2=−m

wν1−`1,ν2−`2 â2`1+1,`2ω
−2k1ν1
N ω−k2ν2

M

= 1
2(ak1,k2 − ak1−n,k2)

+ 1√
MN

n
2−1∑

`1=−n
2

m−1∑
`2=−m

â2`1+1,`2 ω
−2`1k1
N ω−`2k2

M

n
2−1∑

ν1=−n
2

m−1∑
ν2=−m

wν1−`1,ν2−`2ω
−2k1(ν1−`1)
N ω

−k2(ν2−`2)
M

= 1
2(ak1,k2 − ak1−n,k2) + 1√

MN

( n
2−1∑

`1=−n
2

m−1∑
`2=−m

â2`1+1,`2ω
−2`1k1
N ω−`2k2

M

)
w̌k1,k2

= 1
2(ak1,k2 − ak1−n,k2) + 1√

MN
w̌k1,k2 ω

k1
N

( n
2−1∑

`1=−n
2

m−1∑
`2=−m

â2`1+1,`2ω
−(2`1+1)k1
N ω−`2k2

M

)
= 1

2(1 + w̌k1,k2 ω
k1
N )(ak1,k2 − ak1−n,k2),

where W̌ = (w̌k1,k2)
n
2−1,m−1
k1=−n

2 ,k2=−m =
√
MnF−1

N WFM as defined above.

This observation shows that we are in fact unable to find a good reconstruction of an
image only from the data in the set ΛN/r,M , i.e., for the sampling pattern, where every
second row of the image is missing. Any non-adaptive interpolation scheme does not get
rid of the problem that we obtain just twice a (scaled) version of the difference of the
upper and the lower half of the image. In other words, the low-pass set is crucial for
the image reconstruction. Therefore, in the remaining sections, we always assume that
L = 2` + 1 > 0, i.e., we have a certain low-pass part of the image which is completely
acquired.

Remark 2.2 Obviously, a similar observation as in Theorem 2.1 can be shown if instead
of all odd-indexed rows of Â all even-indexed rows are acquired. Then, we have for
k1 = 0, . . . , n− 1, k2 = −m, . . . ,m− 1,

ak1,k2 + ak1−n,k2 = 2√
MN

n
2−1∑

ν1=−n
2

m−1∑
ν2=−m

â2ν1,ν2ω
−2k1ν1
N ω−k2ν2

M ,
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and any interpolation scheme for the unacquired Fourier values of the form

ˆ̃a2ν1+1,ν2 :=
n
2−1∑

`1=−n
2

m−1∑
`2=−m

wν1−`1,ν2−`2 â2`1,`2 , ν1 = −n
2 , . . .,

n
2 − 1, ν2 = −m, . . .,m− 1,

leads to a reconstruction Ã, where

ãk1,k2 = 1
2(1 + ω−k1

N w̌k1,k2)(ak1,k2 + ak1−n,k2)

for all k1 = 0, . . . , n− 1, k2 = −m, . . . ,m− 1. In this case, we do not get rid of the factor
(ak1,k2 + ak1−n,k2).

2.2 Zero refilling
The simplest approach to reconstruct A from the incomplete Fourier data P(Λ) ◦ Â is to
replace the missing Fourier data by zero before applying the inverse 2D Fourier transform,
i.e.,

Ã(z) := F−1
N (P(Λ) ◦ Â)F−1

M . (2.3)

For the components of the zero refilling reconstruction Ã(z) we obtain with P(Λ) =
(p(Λ)
ν )ν∈ΛN,M

ã
(z)
k = 1√

MN

∑
ν∈ΛN,M

p(Λ)
ν âν ω

−k1ν1
N ω−k1ν2

M = ak + 1√
MN

∑
ν∈ΛN,M

(p(Λ)
ν − 1) âν ω−k1ν1

N ω−k1ν2
M

and the error can be written as

‖Ã(z) −A‖2F = ‖ ˆ̃A(z) − Â‖2F = 1√
MN

∑
ν 6∈ΛN,M

|âν |2 =
∑

ν1 6∈Λ1

m−1∑
ν2=−m

|âν1,ν2 |2

with Λ1 in (1.4), i.e., the smaller the 2-norm of the vector consisting of all missing Fourier
values, the smaller the reconstruction error. Obviously, if the non-acquired Fourier values
are zero, then the error vanishes.
Let Ǎ := FNA = ÂFM , and denote with ǎk2 , k2 = −m, . . . ,m− 1, its columns. Further,
let ã(z)

k2
, k2 = −m, . . . ,m − 1, denote the columns of the reconstructed matrix Ã(z) in

(2.3). Then the reconstruction for every single column is of the form

ã(z)
k2

= F−1
N (p(Λ1) ◦ ǎk2), k2 = −m, . . . ,m− 1,

where p(Λ1) ∈ RN has components 1 for indices in Λ1 and zeros otherwise. Application of
the discrete periodic convolution yields

ã(z)
k2

= F−1
N p(Λ1) ? F−1

N ǎk2 = F−1
N p(Λ1) ? ak2 = 1√

N

( ∑
r∈Λ1

ω−rk1
N

)n−1
k1=−n ? ak2 .

This convolution can also be written as a matrix vector product with a circulant matrix

ã(z)
k2

= circ(F−1
N p(Λ1))ak2 = circ(p̌(Λ1))ak2 =

(
p̌

(Λ1)
k1−j1

)n−1
k1,j1=−n ak2 ,

7



where p̌(Λ1) = (p̌(Λ1)
k )n−1

k=−n with p̌(Λ1)
k = 1√

N

∑
r∈Λ1

ωrkN . Thus,

‖ak2 − ã(z)
k2
‖2 =

∥∥(I− (p̌(Λ1)
k1−j1

)n−1
k1,j1=−n

)
ak2

∥∥
2 ≤

∥∥(I− (p̌(Λ1)
k1−j1

)n−1
k1,j1=−n

)∥∥
2‖ak2‖2, (2.4)

i.e., using the spectral norm of matrices, the relative error for the zero refilling reconstruc-
tion for arbitrary column vectors ak can only be estimated by∥∥(IN − (p̌(Λ1)

k1−j1
)n−1
k1,j1=−n

)∥∥
2 = ‖IN − diag(p(Λ1))‖2 = 1.

Indeed, for matrices Â containing only high-pass components which are not acquired by
the scheme, a reconstruction is not at all possible. However, natural images A usually
possess some smoothness properties, which can in the discrete case be measured by local
variations of pixel values. Therefore the acquired low-pass Fourier data contain a lot
of information and the reduction rate r as well as the choice of the parameter L in the
sampling set Λ in (1.1) become relevant.

For natural images, the special choice Λ = ΛL,M with L =
⌊
N
r

⌋
(or L =

⌊
N
r

⌋
− 1 if⌊

N
r

⌋
is even), i.e., a sampling set consisting only of the centered low-pass set, is usually

favourable for the application of zero refilling, see Figure 1. In this case, p̂(Λ1) = p̂(ΛL)

has the components
∑`
j=−` ω

jk
N , k = −n, . . . , n − 1, which are samples of the Dirichlet

kernel D`(ω) =
∑`
j=−` eiωj .

The estimate (2.4) shows that a more general model, where the vector p(Λ1) (which only
has components 1 or 0) is replaced by a vector q(Λ1) with arbitrary nonzero components
for indices in Λ1, cannot reduce the 2-error for arbitrary signals. However, the aliasing
effects, which always occur for reconstruction with the Dirichlet window, can be reduced
by taking other window functions, as e.g. the Hamming window, which is defined by
p̌(Ham) = F−1

N p(Ham) with p(Ham) = (pk)n−1
k=−n, where

p
(Ham)
k :=

{
0.54 + 0.46 cos(2πk

2` ) −` ≤ k ≤ `.
0 otherwise.

While the application of the Hamming window instead of the Dirichlet window avoids
the special ringing artefacts, we observe a strong oversmoothing. Figure 2 shows zero
refilling reconstructions of the 512 × 512 pepper image for reduction rate r = 6 and
with L = 85 =

⌊512
6
⌋
− 1, i.e., Λ1 = ΛL = {−42, . . . , 42} (Dirichlet window p(Λ1)), for

r = 6 and L = 85, with the Hamming window p(Ham), and for the sampling set Λ in
(1.1) with r = 6 and L = 43. The bottom row shows the corresponding window vectors
p̌(ΛL), p̌(Ham) and p̌Λ1 , which are approximations of the ideal window (δ0,k)n−1

k=−n that we
would obtain for complete Fourier data. In Theorem 2.1 we had shown that for L = 0,
a non-adaptive scheme always leads to a reconstruction, where ãk1,k2 contains the factor
ak1,k2 − ak1−n,k2 for all k1 = 0, . . . , n − 1, k2 = −m, . . . ,m. This effect is only partially
reduced by employing a low-pass set ΛL,M with L > 0, see Figure 2 (right).

Using the flexibility of the sampling set Λ in (1.1), where we can fix the width
L ∈ {0, . . . , bNr c} of the low-pass set, we are interested in data-adaptive algorithms that
essentially improve the recovery results achieved by low-pass reconstruction using zero
refilling.

2.3 Non-adaptive reconstruction approach
Next we shortly show, why a non-data-adaptive reconstruction approach does generally
not yield recovery results which outperform the simple zero refilling procedure.
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Figure 2: Top: Reconstructions of the 512 × 512 pepper image. Left: Approximation with
Dirichlet window using L = b512/rc = 85 for r = 6 with PSNR 28.21; Middle: Approximation
with Hamming window with L = b512/rc = 85 for r = 6 with PSNR 25.57; Right: Reconstruction
by zero refilling with reduction rate r = 6 and L = 43 with PSNR 26.75. Bottom: Corresponding
representations of the windows p̌(ΛL) for r = 6, L = 85, p̌(Ham) for r = 6, L = 85 (middle), and
p̌(Λ1) for r = 6, L = 43

Recall that we want to find an optimal approximation Ã of A from P(Λ) ◦ Â. Equiv-
alently, we need to approximate the non-acquired Fourier data to get an optimal approx-
imation ˆ̃A from P(Λ) ◦ Â.

Using a model based on a linear transform, we can rewrite the problem in a vectorized
form as follows: Find a matrix Q ∈ CNM×NM to recover vec(Ã) by

vec( ˆ̃A) = Q (vec(P(Λ)) ◦ vec(Â)) = Q diag(vec(P(Λ)))vec(Â)

such that

‖vec(A)− vec(Ã)‖2 = ‖vec(Â)− vec( ˆ̃A)‖2 = ‖vec(Â)−Q diag(vec(P(Λ)))vec(Â)‖2
= ‖(I−Q diag(vec(P(Λ))))vec(Â)‖2

is minimized for arbitrary matrices Â. Note that this model includes any non-adaptive
interpolation scheme to approximate the missing components of Â. Taking the Frobenius
norm for matrices, it follows that ‖I−Q diag(vec(P(Λ)))‖F has to be minimized. Denote
the components of Q by qk,`, k, ` ∈ ΛN,M , and the diagonal elements of diag(vec(P(Λ)))
by p(Λ)

` . Separating the diagonal and the non-diagonal entries, we obtain

‖IMN −Q diag(vec(P(Λ)))‖2F =
∑

k,`∈ΛN,M

|δk,` − qk,` p
(Λ)
` |

2+

=
∑
`∈Λ
|1− q`,`|2 + (NM − |Λ|) +

∑
`∈Λ

∑
k∈ΛN,M

k 6=`

|qk,`|2, (2.5)
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where (NM − |Λ|) is the number on non-acquired Fourier components. Obviously, (2.5)
is minimized for Q = diag(vec(P(Λ))), since then the first and the last sum vanish. The
matrix Q = diag(vec(P(Λ)) is also an optimal solution if the Frobenius norm in (2.5) is re-
placed by the spectral norm. Thus, regarding these norms, there is no better nonadaptive
solution than the reconstruction by zero refilling.

2.4 Low-rank approximation
For matrix completion problems, often a low-rank constraint has been successfully em-
ployed. We shortly explain, why a low-rank constraint is unfortunately not helpful to
solve our problem of image recovery from structured incomplete Fourier data.

Let Ã denote the wanted image reconstruction, where we assume that the given con-
straint P(Λ) ◦ ˆ̃A = P(Λ) ◦ Â is satisfied. Then, we observe that the solution Ã(z) in (2.3),
obtained by zero refilling, already satisfies

rank(Ã(z)) = rank(F−1
N (P(Λ) ◦ Â)F−1

M ) = rank(P(Λ) ◦ Â) ≤ N
r

since at most N
r rows of P(Λ) ◦ Â are non-zero rows. Thus, if we request for Ã a low rank

being larger than or equal to rank(P(Λ) ◦ Â), we obtain the solution Ã(z) in (2.3), while
for requesting a smaller rank, the Fourier constraints can no longer be satisfied exactly.
Therefore the low-rank constraint seems not to be well applicable.

2.5 Locally adaptive interpolation in Fourier domain
As we have seen in Theorem 2.1, interpolation in the absence of a low-pass set is futile,
which is why many Fourier reconstruction methods (especially in the field of MRI) use a
low-pass set. The quality of the reconstruction strongly depends on the size of this set,
located at the center of the Fourier space. As before, let Â = (âν)ν∈ΛN,M

be the 2D DFT
of A and PΛ ◦ Â the acquired Fourier data with Λ in (1.1).

Some Fourier interpolation methods in MRI, like GRAPPA [10] and SPIRiT [19], use
the fully sampled low-pass area to learn interpolation weights to reconstruct the remaining
data in Fourier domain.

Remark 2.3 Note that MRI interpolation methods like GRAPPA and SPIRiT make use
of different coils that gather Fourier data (so-called k-space data in MRI) in parallel,
something that is absent from our model. Therefore, our reconstruction problem can be
regarded as a special case of GRAPPA and SPIRiT with only one coil.

The main idea of these methods is to determine suitable weights for a local interpola-
tion scheme in the first step and then to apply these weights to reconstruct the missing
Fourier data. We shortly summarize these two methods for our sampling scheme, which
are heavily used in MRI reconstructions.

We start with the idea of the GRAPPA interpolation [10]. Here the structure of the
sampling scheme for the acquired Fourier data is directly employed to find the weights
from the low-pass area, where all Fourier data are given. Let N be a small centered
index set (window), e.g. N = {−p1, . . . , p1} × {−p2, . . . , p2} with p1, p2 ∈ N and with
|N | = (2p1 + 1)(2p2 + 1) indices.
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2 3

Figure 3: Example for different patterns P for GRAPPA interpolation using local interpolation
in a 7 × 5 window. All gray- and green-valued pixel values are acquired. Green pixel values are
employed to interpolate the red pixel value

Using the sampling structure given by PΛ in (1.3) with Λ in (1.1), a local interpolation
scheme for unacquired data âν , ν ∈ ΛN,M \ Λ, is taken in the form

ˆ̃aν =
∑
j∈N

ν+j∈Λ

gj âν+j =
∑

j∈P(ν)
gj âν+j (2.6)

for all components ν in non-acquired rows of Â, where on the right-hand side only the
acquired values with indices in the window ν +N come into play. The index set P(ν) :=
{j ∈ N , j + ν ∈ Λ} depends on the location of ν. Figure 3 illustrates different index sets
P(ν) (green) around the index ν of an unacquired pixel value (red).

Depending on the location of the pixel values that one wants to recover, a certain
number of different patterns P = P(ν) of acquired neighboring pixel values occurs. Em-
ploying the given Fourier values in the low-pass area, for every occurring pattern P ⊂ N
the weights (gj)j∈P = (g(P)

j )j∈P are assumed to satisfy

âν =
∑
j∈P

g
(P)
j âν+j for allν ∈ ΛL,M with ν + P ∈ ΛL,M . (2.7)

We denote the set of indices ν with ν + P ∈ ΛL,M by Λ(P)
L,M . The weights gj = g

(P)
j

are then determined by solving the least squares problem emerging from the equations in
(2.7). We vectorize (columnwise) and obtain with

â(cal,P) := (âν)
ν∈Λ(P)

L,M

∈ C|Λ
(P)
L,M |, ÂP := (âν+j)ν∈Λ(P)

L,M , j∈P ∈ C|Λ
(P)
L,M |×|P|,

g(P) := (g(P)
j )j∈P ∈ C|P|

the least squares problem

g(P) = argmin
g̃
‖â(cal,P) − ÂP g̃‖2 (2.8)

to determine g(P). All unacquired pixel values âν with larger row index, whose N neigh-
borhood does not contain acquired values, stay to be filled with zeros, since we have no
neighbour information about these values.
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Remark 2.4 In the original paper [10], it is proposed to use several interpolation schemes
with small windows, which need not to be centered, and to apply an averaging procedure
in the end.

In [19], a different procedure is proposed. Again, it is assumed that the Fourier
data âν can be approximated by a suitable linear combination of neighboring Fourier
data with indices in a small window ν + N . This time, an interpolation scheme for all
data, regardless of being acquired or not, is derived and later taken as a constraint in a
minimization problem to recover the missing data. Using periodic boundary conditions,
the weights are supposed to satisfy the constraints

âν =
∑

j∈N\{0}
gj âν+j =

∑
j′∈ΛN,M

gj′−ν âj′ , ν ∈ ΛM,N , (2.9)

where we assume that gj = 0 for j 6∈ N \ {0} and ν + j = ν + jmodΛN,M , j′ − ν = j′ −
νmodΛN,M . In a first step, the weights gj, j ∈ N \{0}, are computed from the given data
in the low-pass area similarly as in (2.8). We use the notation Λ(N )

L,M for the set of indices
ν with ν + N ∈ ΛL,M . Then we obtain after vectorization with â(cal,N ) := (âν)

ν∈Λ(N )
L,M

and ÂN := (âν+j)
ν∈Λ(N )

L,M

, j∈N\{0} the linear least squares problem

g0 = argmin
g̃
‖â(cal,N ) − ÂN g̃‖22,

where g0 = (gj)j∈N\{0} ∈ C|N |−1. If the weights satisfy (2.9) for all ν ∈ ΛM,N , one can
conclude that

vec(Â) = G vec(Â), (2.10)

where G :=
(
gj−ν

)
ν∈ΛN,M , j∈ΛM,N

is a (sparse) block Toeplitz matrix. To find an approxi-

mation ˆ̃A of Â, one considers in [19] an optimization problem of the form

min
Ã

(
‖PΛ ◦ ( ˆ̃A− Â)‖2F + λ‖(G− IMN )vec( ˆ̃A)‖22

)
, (2.11)

where the first term takes care of the approximation of the given Fourier values and the
second ensures (2.10). The first term has the vectorized form ‖(IM ⊗diag(pΛ1))(vec( ˆ̃A)−
vec(Â))‖22. The minimization problem (2.11) can be directly solved. Calculating the
gradient with respect to vec( ˆ̃A), we obtain the large linear system(

(IM ⊗ diag(pΛ1)) + λ(G− IMN )∗(G− IMN )
)

vec( ˆ̃A) = 2(IM ⊗ diag(pΛ1))vec(Â).

This system can be iteratively solved using the fixed-point formulation

vec( ˆ̃A)n+1 = vec( ˆ̃A)n − µ
(
(IM ⊗ diag(pΛ1))(vec( ˆ̃A)n − vec(Â))

+ λ(G− IMN )∗(G− IMN )vec( ˆ̃A)n
)

which converges if µ > 0 is taken small enough.
Unfortunately, the two interpolation methods presented in the section usually do not

provide satisfying reconstruction results in our setting compared to zero refilling and
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compared to the further recovering algorithms that we will consider in the next two
sections. This is not surprising, if we look back at our results in Theorem 2.1 and Section
2.3, since adaptivity only relies here to the data in the low-pass area and the 2D DFT
data usually do not possess small total variation that would ensure a good approximation
by local interpolation.

3 Reconstruction by TV functional minimization
In this section we want to adapt a technique to our setting which is often used in image
denoising and image reconstruction, namely the application of a regularizer based on
minimizing the total variation. In contrast to other approaches based on TV regularization
using randomly sampled measurements [4] or Fourier measurements on a polar grid [2,
27, 15], our 2D-DFT measurements are acquired on the the sampling pattern Λ in (1.1).
We will adapt the primal-dual algorithm of Chambolle and Pock [6, 7] to minimize the
obtained functional, where in our case one of the fixed-point iterations is performed in
Fourier domain. We assume that the image A is real-valued, otherwise we reconstruct
here the real and imaginary part of the A separately.

We start with some notations. Let

DN :=


−1 1

−1 1
. . . . . .

−1 1
0

 ∈ RN×N (3.1)

denote the difference matrix, then the discrete gradient of A ∈ RN×M is defined as
∇ : RN×M → R2N×M ,

∇(A) :=
(

DNA
A DT

M

)
.

For A = (ak)k∈ΛN,M
∈ RN×M and B = (bk)k∈ΛN,M

∈ RN×M let

‖A‖1 :=
∑

k∈ΛN,M

|ak|, 〈A,B〉 :=
∑

k∈ΛN,M

akbk.

Further, for for X =
(

X1
X2

)
∈ R2N×M with X1 = (xk,1)k∈ΛN,M

, X2 = (xk,2)k∈ΛN,M
we

define

‖X‖∞ := max
k∈ΛN,M

√
x2

k,1 + x2
k,2. (3.2)

To find a good image reconstruction Ã from the incomplete data P(Λ)Â in (1.3) our
goal is to compute the minimizer of the functional

min
Ã∈RN×M

(
λ
2‖P

(Λ) ◦ ( ˆ̃A− Â)‖2F + ‖∇(Ã)‖1
)
. (3.3)
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The regularization term ‖∇(Ã)‖1 is called the discrete total variation of Ã. The regular-
ization parameter λ has to be taken large in order to ensure that ‖P(Λ) ◦ ( ˆ̃A − Â)‖2F is
very small.

As in [6], this problem is first transferred into a saddle-point problem. For this purpose,
we introduce the mappings G : RM×N → R and H : R2N×M → R given by

G(Ã) := λ
2‖P

(Λ) ◦ ( ˆ̃A− Â)‖2F , H(C) := ‖C‖1, Ã ∈ RN×M , C ∈ R2N×M ,

such that (3.3) can shortly be written min
Ã∈RN×M

(H(∇Ã) +G(Ã)). With H∗ : R2N×M → R

we denote the convex conjugate of the convex function H,

H∗(X) := max
C∈R2N×M

(
〈X,C〉 −H(C)

)
.

In our case we obtain

H∗(X) = max
C∈R2N×M

(
〈X,C〉 − ‖C‖1

)
=
{

0 if ‖X‖∞ ≤ 1,
+∞ otherwise, (3.4)

with ‖X‖∞ as in (3.2), see also [6]. The Fenchel-Moreau theorem, see e.g. [3], implies that
H∗∗ = H. Therefore, with C = ∇(Ã) we also have

H(C) = H(∇(Ã)) = ‖∇(Ã)‖1 = max
X∈R2N×M

(
〈∇(Ã),X〉 −H∗(X)

)
,

and (3.3) can equivalently be written as a saddle-point problem

max
X∈R2N×M

min
Ã∈RN×M

(
G(Ã) + 〈∇(Ã),X〉 −H∗(X)

)
. (3.5)

Taking the subgradients with respect to X and Ã, it follows that any solution (X, Ã) of
(3.5) necessarily satisfies 0 ∈

(
∇(Ã)− ∂H∗(X)

)
and 0 ∈

(
∇∗(X) + ∂G(Ã)

)
, i.e.,

∇(Ã) ∈ ∂H∗(X), −∇∗(X) ∈ ∂G(Ã). (3.6)

Here, ∇∗ is defined by 〈Ã,∇∗(X)〉 = 〈∇(Ã),X〉, i.e., ∇∗(X) = DNX1 + X2DT
M . The

first condition in (3.6) yields by multiplying with a constant σ > 0 and adding X at both
sides

X + σ∇(Ã) ∈ X + σ∂H∗(X) = (I + σ∂H∗)(X),

where I denotes the identity operator. Applying a similar procedure to the second condi-
tion in (3.6) with τ > 0, we arrive at the two fixed-point equations,

X = (I + σ∂H∗)−1(X + σ∇(Ã)), (3.7)
Ã = (I + τ∂G)−1(Ã−∇∗(X)). (3.8)

The primal-dual algorithm introduced in [6], which we adapt here to our setting, is based
on alternating application of the two corresponding fixed-point iterations for the primal
variable Ã and the dual variable X.
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Lets have now a closer look at the two resolvent operators (or proximity operators)
(I + σ∂H∗)−1 and (I + τ∂G)−1 occurring in (3.7)-(3.8). These are given by

(I + σ∂H∗)−1(X) := argmin
Y∈R2N×M

(
1

2σ‖X−Y‖2F +H∗(Y)
)
,

(I + τ∂G)−1(Ã) := argmin
Z∈RN×M

(
1
2τ ‖Ã− Z‖2F +G(Z)

)
.

Indeed, for Ỹ = argmin
Y∈R2N×M

(
1

2σ‖X−Y‖2F +H∗(Y)
)
it follows

0 ∈ ∂
(

1
2σ‖X− Ỹ‖2F +H∗(Ỹ)

)
= 1

σ (Ỹ−X) + ∂H∗(Ỹ),

i.e., X ∈ Ỹ + σ∂H∗(Ỹ) = (I + σ∂H∗)(Ỹ), and thus Ỹ = (I + σ∂H∗)−1(X).
In our special case, we find from the definition of H∗ in (3.4) that

(I + σ∂H∗)−1(X) = argmin
Y∈R2N×M

‖Y‖∞≤1

(
1

2σ‖X−Y‖2F
)
,

that is, (I +σ∂H∗)−1(X) is the projection of X onto the unit ball in R2N×M with respect

to the Frobenius norm, i.e., (I + σ∂H∗)−1(X) = Ỹ =
(

Ỹ1
Ỹ2

)
with components

ỹk,1 = xk,1

max{1,
√
x2

k,1+x2
k,2}

, ỹk,2 = xk,2

max{1,
√
x2

k,1+x2
k,2}

, k ∈ ΛN,M .

To compute (I+τ∂G)−1(Ã), we recall that the multiplication with an orthonormal matrix
leaves the Frobenius norm invariant, such that ‖Ã−Z‖2F = ‖FN (Ã−Z)FM‖2F = ‖ ˆ̃A−Ẑ‖2F .
Since Ã and A are both real matrices, we obtain

(I + τ∂G)−1(Ã) = argmin
Z∈RN×M

(
1
2τ ‖Ã− Z‖2F + λ

2‖P
(Λ) ◦ (Ẑ− Â)‖2F

)
where

min
Z∈RN×M

(
1
2τ ‖Ã− Z‖2F + λ

2‖P
(Λ)◦(Ẑ− Â)‖2F

)
= min

Ẑ∈CN×M

(
1
2τ ‖

ˆ̃A− Ẑ‖2F + λ
2‖P

(Λ)◦(Ẑ− Â)‖2F
)
.

The solution Ẑ of the minimization problem in Fourier domain satisfies the necessary
condition (Ẑ− ˆ̃A) + τλP(Λ) ◦ (Ẑ− Â) = 0, i.e.,

Ẑ = ( ˆ̃A + τλP(Λ) ◦ Â)/(E + τλP(Λ)), (3.9)

where / denotes the componentwise division and E is the (N ×M)-matrix of ones. Thus,
we finally obtain

(I + τ∂G)−1(Ã) = F−1
N ẐF−1

M = F−1
N (( ˆ̃A + τλP(Λ) ◦ Â)/(E + τλP(Λ)))F−1

M .

The primal-dual algorithm [6] can for our setting be summarized as follows, where here
one fixed-point equation is solved in the Fourier domain.
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Algorithm 3.1 (Reconstruction from incomplete Fourier data using TV minimization)
Input: incomplete Fourier data P(Λ) ◦ Â of A ∈ RN×M with N = 2n, M = 2m,

N multiple of 8, L = 2`+ 1 < N ,
NI number of iterations,
parameters τ > 0, σ > 0, θ ∈ [0, 1], λ� 0.

Initialization: A(0) := F−1
N (P(Λ) ◦Â)FM , X(0) =

(
X(0)

1
X(0)

2

)
:= ∇(A(0)) =

(
DNA(0)

A(0)DM

)
.

For j = 0 : NI − 1 do

1. Compute ∇(A(j)) =
(

DNA(j)

A(j)DM

)
and apply one fixed-point iteration step to solve

(3.7), i.e., compute X(j+1) ∈ C2N×M ,

X(j+1) := (X(j) + (σ∇(A(j)))/max{1, ‖X(j) + σ∇(A(j))‖∞},

where / denotes the pointwise division and ‖X(j) +∇(A(j))‖∞ is defined according
to (3.2).

2. Apply one fixed-point iteration step to solve (3.8).

Write X(j+1) =
(

X(j+1)
1

X(j+1)
2

)
with X(j+1)

1 , X(j+1)
2 ∈ CN×M and compute

ˆ̃A(j+1) := FN (A(j) −∇∗X(j+1))FM = FN (A(j) − (DNX(j+1)
1 + X(j+1)

2 DT
M ))FM .

Compute Â(j+1) := ( ˆ̃A(j+1) + τλP(Λ) ◦ Â)/(E + τλP(Λ)) with notations as in (3.9).
Compute A(j+1) := F−1

N Â(j+1)F−1
M .

3. Update A(j+1) := A(j+1) + θ(A(j+1) −A(j)).
end(for)
Output: A(TV ) = A(NI).

As we will see in Section 5, this algorithm usually provides very good reconstruction
results which essentially outperform the reconstruction by zero refilling and the interpo-
lation algorithms from Section 2 for reduction rates r > 2. Moreover, it is not restricted
to the special sampling scheme, which we focussed on in this paper. The convergence of
the iteration is ensured for parameters 8τσ < 1 as shown in [5, 6]. In our implementation
we always use θ = 1 and σ = 0.01 + 1

8τ as suggested by Gilles [9].

4 Hybrid method
While Algorithm 3.1 usually provides a very good performance, we want to improve
the reconstruction result further by incorporating our knowledge on the structure of the
given set of acquired Fourier data. Algorithm 3.1 tends to provide reconstruction results
containing staircasing artifacts and with a total variation which is much smaller than
that of the original image. For example, for the normalized ”cameraman” image, see
Figure 4 and Table 1, the total variation, i.e., the sum of all absolute values of ∇(A),
is 9.0603e + 03, while for the resulting image of Algorithm 3.1 for r = 6, L = 43 in
Figure 4 (bottom, middle) the total variation of ∇(Ã(TV )) is only 5.5973e + 03. Further,
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the reconstructions still tend to have an incorrect ”distribution” of corresponding index
values ãk1,k2 and ãk1−n,k2 at some places in the upper and the lower half of the image.
This effect is already strongly reduced compared to the zero refilling reconstruction, but
it still exists, see e.g. Figure 6. We recall that this issue is due to the sampling scheme
that we have at hand.

The hybrid algorithm that we propose here, is an iterative procedure that locally en-
larges the total variation of the image. For this purpose, we start with a smooth approx-
imation Ã(0), which is either obtained by Algorithm 3.1 with a regularization parameter
λ, which is not too large, or by applying a linear smoothing procedure to the obtained
approximation Ã(TV ) in a first step. Then this initial image Ã(0) already provides some
knowledge about important local total variations (as edges) of A, but does hardly contain
undesirable artifacts caused by badly estimated sums ak1,k2 + ak1−n,k2 in the upper and
the lower half of the image (as it it happens e.g. in Figure 4 (right) for zero-refilling).
The decision, where the total variation of the image approximation should be enlarged,
will be taken by comparing the median local total variation (MTV) for every pixel value
in the upper half of the image Ã(0) with the MTV of the corresponding pixel value in the
lower half of the image.

To improve the approximation Ã(j) in the j-th iteration step, we consider the difference
image R(j) given by

R̂(j) := P(Λ) ◦ (Â− ˆ̃A(j)).

Then, obviously, Ã(j) +R(j) satisfies P(Λ) ◦( ˆ̃A(j) +R̂(j)) = P(Λ) ◦Â. To update the image
Ã(j), we proceed as follows. If the MTV of ã(0)

k1,k2
in the upper half of Ã(0) is (significantly)

larger than the MTV of ã(0)
k1−n,k2

in the lower half, then we add the component r(j)
k1,k2

(or
even an amplification µr(j)

k1,k2
with µ > 1) of R(j) to a(j)

k1,k2
while leaving ã(j)

k1−n,k2
(almost)

untouched, otherwise we add µr(j)
k1−n,k2

to ã(j)
k1−n,k2

and (almost) do not change ã(j)
k1,k2

. If
the MTV for ã(0)

k1,k2
and ã

(0)
k1−n,k2

is almost of the same size, we add the corresponding
(weighted) components of R(j) at both positions. The rationale behind this procedure
is the following. If the local total variation in a neighborhood of a pixel value almost
vanishes, then this indicates that the image is locally smooth, i.e., the local total variation
should not be enlarged, and the corresponding pixel value is kept, whereas if the local
total variation in a neighborhood of a pixel value is large, then this indicates an important
feature and the local total variation should be enlarged.

We will show that this iteration leads to an image reconstruction Ã that satisfies the
Fourier data constraints (1.3).

To compute the MTV, we apply the following formulas. First we compute the local
total variations of Ã(0) at all pixels (k1, k2),

TV(k1, k2) :=
1∑

j2=−1
|ã(0)
k1,k2

− ã(0)
k1,k2−j2 |+

2∑
j1=−1

1∑
j2=−1

|ã(0)
k1−j1+1,k2−j2 − ã

(0)
k1−j1,k2−j2 |, (4.1)

where for boundary pixels only existing neighbor values are taken. Then we consider the
median of the local TV values in a fixed window [−γ1, γ1]× [−γ2, γ2] around (k1, k2),

MTV(k1, k2) := median((TV(k1 + j1, k2 + j2)γ1,γ2
j1=−γ1,j2=−γ2

) (4.2)

for k1 = −n . . . , n−1, k2 = −m, . . . ,m−1, where for boundary pixels only the remaining
values of the window [−γ1, γ1] × [−γ2, γ2] are involved. At each iteration step, we can
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either always take the same local TV and MTV values obtained from the initial image
Ã(0), or update these values using Ã(j). The image update Ã(j+1) is then derived by

Ã(j+1) = Ã(j) + µ(W ◦R(j))

with µ ∈ [1, 2) and a weight matrix W = (wk1,k2)n−1,m−1
k1=−n,k2=−m ∈ RN×M which is deter-

mined according to the MTV values at every pixel,

wk1,k2 :=


1− ε |MTV (k1, k2)| > 1.5|MTV (k1 ± n, k2)|,
ε |MTV (k1 ± n, k2)| > 1.5|MTV (k1, k2)|,

MTV (k1,k2)
MTV (k1,k2)+MTV (k1±n,k2) otherwise,

(4.3)

where ± means that we take + for k1 < 0 and − for k1 ≥ 0. The parameter ε > 0 is
taken to be small, in the numerical experiments we have used ε = 0.05 or ε = 0.1. This
procedure is repeated until the remainder R(j) is close to the zero matrix. The algorithm
is summarized as follows.

Algorithm 4.1 (Image reconstruction improvement from incomplete Fourier data)
Input: incomplete Fourier data P(Λ) ◦ Â of A ∈ RN×M with N = 2n, M = 2m,

Ã(TV ) reconstructed image of Algorithm 3.1.
N multiple of 8, L = 2`+ 1 < N ,
NI number of iterations for reconstruction,
Ns number of iterations for linear smoothing,
µ ∈ [1, 2) parameter for frequency reconstruction,
(γ1, γ2) local window size for local TV computation,
ε < 0 (e.g. 0.05 ≤ ε ≤ 0.1).

1. (Optional) Apply a smoothing filter to every column of Ã(TV ) = (ã(TV,0)
k1,k2

)n−1,m−1
k1=−n,k2=−m.

For s = 0 : Ns − 1
For k2 = −m : m− 1

ã
(TV,s+1)
k1,k2

:=


1
4(ã(TV,s)

k1−1,k2
+ 2ã(TV,s)

k1,k2
+ ã

(TV,s)
k1+1,k2

) −n+ 1 ≤ k1 ≤ n− 2,
1
4(3ã(TV,s)

k1,k2
+ ã

(TV,s)
k1+1,k2

) k1 = −n,
1
4(ã(TV,s)

k1−1,k2
+ 3ã(TV,s)

k1,k2
) k1 = n− 1.

Set Ã(0) := Ã(TV,Ns) = (ã(0)
k1,k2

)n−1,m−1
k1=−n,k2=−m.

2. Compute the local total variation TV(k1, k2) of Ã(0) = (ã(0)
k1,k2

)n−1,m−1
k1=−n,k2=−m according

to (4.1) for k1 = −n, . . . , n− 1, k2 = −m, . . . ,m− 1.
Compute the median local total variation MTV(k1, k2) in (4.2) for k1 = −n . . . , n−1,
k2 = −m, . . . ,m− 1.

3. Compute the matrix of weights W := (wk1,k2)n−1,m−1
k1=−n,k2=−m as given in (4.3).

4. For j = 0 : NI − 1 do

(a) Compute ˆ̃A(j) := FNÃ(j)FM and R(j) := F−1
N (P(Λ) ◦ (Â− ˆ̃A(j)))F−1

M .
(b) Compute the update

Ã(j+1) := Ã(j) + µW ◦R(j).

end(do)
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Output: Image reconstruction Ã(NI).

Instead of fixing the number of iterations NI in Step 4 of Algorithm 4.1, we can also
apply a stopping criteria based on the Frobenius norm of the remainder R(j). Next, we
show that Algorithm 4.1 always converges to an image satisfying the constraint P(Λ)◦Â =

lim
NI→∞

(P(Λ) ◦ ˆ̃A(NI)).

Theorem 4.2 For given Fourier data P(Λ) ◦ Â with Λ in (1.1), Algorithm 4.1 converges
for µ ∈ [1, 2) to an image Ã = lim

NI→∞
Ã(NI) satisfying P(Λ) ◦ Â = P(Λ) ◦ ˆ̃A.

Proof: It is sufficient to show that lim
j→∞

R(j) = 0 for R(j) = F−1
N (P(Λ) ◦ (Â− ˆ̃A(j)))F−1

M .

Step 4 of Algorithm 4.1 yields with R̂(0) = FNR(0)FM = P(Λ) ◦ (Â− ˆ̃A(0)) the recursion
formula

R̂(j+1) = P(Λ) ◦ (Â− ˆ̃A(j+1)) = P(Λ) ◦ (Â− ( ˆ̃A(j) + µFN (W ◦R(j))FM ))
= R̂(j) − µP(Λ) ◦ (FN (W ◦R(j))FM ) = P(Λ) ◦ (R̂(j) − µ(FN (W ◦R(j))FM ))
= P(Λ) ◦

(
FN (R(j) − µ(W ◦R(j)))FM

)
,

since R̂(j) has by definition vanishing components for all ν = (ν1, ν2) 6∈ Λ. Taking the
inverse Fourier transform and applying vectorization on both sides of the equation leads
to

vec(R(j+1))=(FM ⊗ FN )−1diag(vec(P(Λ)))(FM ⊗ FN )
(
IMN − µdiag(vec(W))

)
vec(R(j)),

(4.4)

where we have used that vec(FNR(j)FM ) = (FM ⊗ FN )vec(R(j)), see e.g. [21], Section
3.4. We observe that all matrix factors in (4.4) have a spectral norm smaller than or
equal to one. In particular, (FM ⊗ FN ) is orthonormal, diag(vec(P(Λ))) only contains
zeros or ones in the diagonal, and

(
IMN − µ diag(vec(W))

)
contains diagonal entries

1−µwk1,k2 ∈ (−1 + 2ε, 1− ε], since µ ∈ [1, 2), wk1,k2 ∈ [ε, 1− ε]. Thus, the spectral radius
of
(
IMN − µ diag(vec(W))

)
is at most 1− ε, and we can directly conclude that

‖vec(R(j+1))‖2 ≤ (1− ε)‖vec(R(j))‖2,

such that convergence is ensured for j →∞.

5 Numerical Results
In this section we compare the described algorithms for reconstruction from structured
incomplete Fourier data with emphasis to the sampling pattern given in (1.1). We particu-
larly consider different images of size 512×512 and compare the PSNR (peak signal to noise
ratio) for the reconstruction methods zero refilling in Section 2.2, local interpolation in Sec-
tion 2.5, TV functional minimization in Section 3, the hybrid method in Section 4, and the
low-pass reconstruction, obtained if for a reduction rate r, we simply take all middle rows
with indices −bN2rc, . . . , b

N
2rc. All used images are “Standard” test images and have been

taken from the open source platform https://www.imageprocessingplace.com/root_
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files_V3/image_databases.htm. The MATLAB software to reproduce the results in
this section can be found at https://na.math.uni-goettingen.de under software.

We will study reduction rates r = 2, 4, 6, 8, taking in the corresponding experiments
256, 128, 85 or 64 rows according to the scheme fixed in (1.1). Recall that for the
considered real images this corresponds to almost double reduction rates upt to 16, since
we have âν = â−ν . For the low-pass area we consider different sizes, in particular L = 43
(for all r), L = 63 (for r = 2, 4, 6), L = 83 (for r = 2, 4), L = 103 for r = 4, and L = 163
for r = 2. For all three reconstructed images, the blue colored PSNR values in Tables
1,2,3 indicate the best reconstruction result for the considered reduction rate.

The reconstruction results for the 512 × 512 image ”cameraman” are given in Table
1, see also Figure 4 for the special case of reduction rate r = 6, where 85 rows of the 512
rows of Â are acquired. The interpolation algorithm uses a local window of size 11×11 for
the interpolation weights. For Algorithm 3.1 (TV-minimization) we have always used the
parameters NI = 250, τ = 0.03, θ = 1.0, σ = 0.01 + 1/(8τ) and λ = 100. For the Hybrid
Algorithm 4.1 we have taken the result of Algorithm 3.1 as the initial image, NI = 10,
Ns = 3, µ = 1.6, ε = 0.05, and window size γ1 = γ3 = 3.

Figure 4: Image reconstructions for reduction rate 6. Top: Left: ”cameraman” original image
512 × 512; Middle: reconstruction by zero refilling for L = 43 with PSNR 27.6986; Right: recon-
struction by interpolation of Fourier data (GRAPPA) for L = 43 with PSNR 27.7064; Bottom:
Left: low-pass reconstruction from bN

6 c = 85 rows with PSNR 29.0115; Middle: reconstruction
by TV minimization for L = 43 with PSNR 31.1364; Right: reconstruction by hybrid method for
L = 43 with PSNR 32.1167

The reconstruction results for the 512 × 512 image ”boat” are given in Table 2. In
Figure 5 we present the obtained reconstructions for the special case of reduction rate
r = 4, where 128 rows of the 512 rows of Â are acquired, with a low-pass area containing
L = 103 centered rows. For Algorithm 3.1 (TV-minimization) we applied the parameters
NI = 250, τ = 0.03, θ = 1.0, σ = 0.01 + 1/(8τ) and λ = 100 for r = 4, 6, 8. For reduction
rate r = 2, we used λ = 100 for L = 43, 63, 83, λ = 200 for L = 103, and λ = 500 for
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Table 1: Comparison of the reconstruction performance for incomplete Fourier data for the
512× 512 ”cameraman” image (PSNR values)

reduction rate low-pass width zero refilling low pass interpolation TV-minimization hybrid
r = 2 L = 43 28.4611 42.1126 28.6108 34.2899 35.6529
r = 2 L = 63 30.4380 42.1126 30.4282 35.8917 37.5627
r = 2 L = 83 31.9667 42.1126 31.9652 36.9517 39.0341
r = 2 L = 103 33.6619 42.1126 33.6409 37.8479 40.4848
r = 2 L = 163 38.4152 42.1126 38.4017 39.5615 43.9808
r = 2 L = 183 39.7616 42.1126 39.7681 39.6578 44.5272
r = 4 L = 43 28.2920 32.5435 28.4313 33.4018 34.8641
r = 4 L = 63 30.0766 32.5435 30.0655 34.1703 35.8480
r = 4 L = 83 31.2739 32.5435 31.2704 34.1724 35.9945
r = 4 L = 103 32.2709 32.5435 32.2589 33.7976 35.5006
r = 6 L = 43 27.6986 29.0115 27.8012 31.1364 32.1167
r = 6 L = 63 28.8521 29.0115 28.8466 30.7164 31.6398
r = 8 L = 35 26.3523 27.2604 26.3809 29.2534 29.8214
r = 8 L = 43 26.8194 27.2604 26.8797 29.0807 29.6174

L = 163, 183, 223. For the Hybrid Algorithm 4.1 we took the result of Algorithm 3.1
as the initial image, NI ≤ 10, µ = 1.6, ε = 0.1, window size γ1 = γ2 = 3. Further, we
applied two smoothing steps (Ns = 2) for r = 4, 6, 8 and r = 2 with L ≤ 83 and only one
smoothing step for r = 2 and L ≥ 103. The interpolation algorithm uses a local window
of size 11× 11 to compute the interpolation weights form the low-pass area.

Table 2: Comparison of the reconstruction performance for incomplete Fourier data for the
512× 512 ”boat” image (PSNR values)

reduction rate low-pass width zero refilling low pass interpolation TV-minimization hybrid
r = 2 L = 43 27.5472 38.2040 27.5607 30.4695 30.9669
r = 2 L = 63 29.2590 38.2040 29.2600 31.7578 32.4685
r = 2 L = 83 30.6754 38.2040 30.6383 32.8004 33.7145
r = 2 L = 103 32.1627 38.2040 32.1603 34.2960 34.9480
r = 2 L = 163 35.5347 38.2040 35.5281 36.6132 37.6673
r = 2 L = 183 36.4173 38.2040 36.4159 36.9317 38.2358
r = 2 L = 223 37.8877 38.2040 37.8881 37.0482 38.8041
r = 4 L = 43 27.2689 30.6800 27.2808 29.7853 30.4302
r = 4 L = 63 28.7329 30.6800 28.7340 30.5864 31.4227
r = 4 L = 83 29.7577 30.6800 29.7333 30.8849 31.8436
r = 4 L = 103 30.5436 30.6800 30.5414 30.8942 31.9183
r = 6 L = 43 26.6263 27.7886 26.6326 28.5838 29.1021
r = 6 L = 63 27.5990 27.7886 27.6004 28.6371 29.1912
r = 8 L = 35 25.3020 26.1116 25.2796 27.0459 27.4014
r = 8 L = 43 25.8638 26.1116 25.8638 27.2016 27.5753

For the last example, the best results for different reduction rates in presented in
Figure 7.

Next, we consider the MRI “phantom” image of size 512×512, see Table 3 and Figure
6. Because of the special cartoon-like structure of this image, the Hybrid Algorithm 4.1
does not add much improvement to the results achieved by the TV minimization. In
contrast to the other images, for higher reduction rates we obtain better recovery results
when taking a low-pass area with smaller width L, since it is more important here to catch
the higher frequencies. For Algorithm 3.1 (TV-minimization) we applied the parameters
NI = 250, τ = 0.03, θ = 1.0, σ = 0.01 + 1/(8τ) and λ = 500. For the Hybrid Algorithm
4.1 we took the result of Algorithm 3.1 as the initial image, applied one smoothing step
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Figure 5: Image reconstructions for reduction rate 4. Top: Left: ”boat” original image 512×512;
Middle: reconstruction by zero refilling with L = 103 and PSNR 30.5436; Right: reconstruction
by interpolation of Fourier data (GRAPPA) with L = 103 and PSNR 30.5419; Bottom: Left:
low-pass reconstruction from bN

4 c = 128 rows with PSNR 30.8040; Middle: reconstruction by TV
minimization with L = 103 and PSNR 30.8942; Right: reconstruction by hybrid method with
L = 103 and PSNR 31.9183

Table 3: Comparison of the reconstruction performance for incomplete Fourier data for the
512× 512 “phantom” image (PSNR values)

reduction rate low-pass width zero refilling low pass interpolation TV-minimization hybrid
r = 2 L = 43 28.0710 36.5454 30.5464 41.3545 41.7740
r = 2 L = 63 29.8508 36.5454 32.6006 42.6828 43.2157
r = 2 L = 83 31.3967 36.5454 34.0137 43.1131 43.6607
r = 2 L = 103 32.9290 36.5454 35.2493 42.9847 43.5047
r = 2 L = 163 35.8249 36.5454 37.1173 41.9584 42.3462
r = 4 L = 35 26.5838 31.5192 28.8051 37.1276 37.2101
r = 4 L = 43 27.6676 31.5192 29.6379 37.2433 37.3264
r = 4 L = 63 29.1792 31.5192 31.0389 37.3916 37.4674
r = 4 L = 83 30.3271 31.5192 31.7063 37.1588 37.2312
r = 6 L = 27 25.5429 28.2569 27.4372 35.2243 35.2759
r = 6 L = 35 26.2189 28.2569 28.0077 35.1240 35.1703
r = 6 L = 43 27.1459 28.2569 28.5582 34.9036 34.9483
r = 6 L = 63 28.0999 28.2569 28.9733 33.2123 33.2621
r = 8 L = 19 24.0342 26.4199 25.2564 32.2327 32.2591
r = 8 L = 27 25.1295 26.4199 26.5647 31.9117 31.9433
r = 8 L = 35 25.6499 26.4199 26.8477 31.0930 31.2566
r = 8 L = 43 26.2553 26.4199 26.9402 30.2271 30.4698
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Figure 6: Image reconstructions for reduction rate 8 and L = 19. Top: Left: “phantom”
original image 512 × 512; Middle: reconstruction by zero refilling with PSNR 24.0342; Right:
reconstruction by interpolation of Fourier data (GRAPPA) with PSNR 25.2564 Bottom: Left:
low-pass reconstruction from bN

8 c = 64 rows with PSNR 26.4199; Middle: reconstruction by TV
minimization with PSNR 32.1632; Right: reconstruction by hybrid method with PSNR 32.1929

Ns = 1 for r = 8, L = 35, 43, and Ns = 0 otherwise, NI ≤ 15, µ = 1.6, ε = 0.1, window
size γ1 = γ3 = 3. The interpolation algorithm uses a local window of size 11 × 11 to
compute the interpolation weights form the low-pass area. For interpolation we employed
the implementation by M. Lustig in the ESPIRiT toolbox for the special case of only one
coil, which for this image provided better results than our implementation (in contrast to
the other two images).

Figure 7: Best image reconstructions using the proposed hybrid method for the “phantom” image
for different reduction rates. From left to right: first: r = 8, L = 17; second: r = 6, L = 27; third:
r = 4, L = 63; fourth: r = 2, L = 83

Finally, we compare the image reconstruction results using Algorithm 3.1 for the ”cam-
eraman” image for different sampling patterns. We compare our sampling set Λ in (1.1)
with sampling sets Λ3 and Λ4, where beside the lowpass set ΛL,M , in Λ3 every third row,
and in Λ4 each fourth row of Â is acquired until the number of bNr c is reached, see Figure
8. Algorithm 3.1 is applied here with NI = 250, τ = 0.03, θ = 1.0, σ = 0.01 + 1/(8τ)
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and λ = 500. The results of this comparison, presented in Table 4, show that these other
sampling strategies usually do not lead to better reconstruction results, compared to the
set Λ in (1.1).

Figure 8: Masks for acquired Fourier data for r = 4 and L = 27 for Λ (every second line), Λ3
(every third line) and Λ4 (every fourth line) beside the low-pass set

Table 4: Comparison of the reconstruction performance for incomplete Fourier data for the
512× 512 ”cameraman” image for different sampling sets (PSNR values)

reduction rate low-pass width sampling set Λ sampling set Λ3 sampling set Λ4
r = 4 L = 43 33.6802 27.3641 30.0970
r = 4 L = 63 34.6699 29.3119 32.0558
r = 4 L = 83 34.6659 33.4319 33.3220
r = 6 L = 35 31.0799 29.5245 28.8486
r = 6 L = 43 31.2923 26.8227 29.9065
r = 6 L = 63 30.8950 28.8150 31.1178
r = 8 L = 27 29.2082 24.6907 27.6181
r = 8 L = 35 29.3146 28.8143 28.5050
r = 8 L = 43 29.1544 26.7357 29.1909

6 Conclusion
Our study of image recovery from structured 2D DFT data and the numerical experiments
provide several interesting insights.
The reconstruction results achieved with the presented methods strongly depend on the
considered images. Clearly, images containing many small details, which correspond to
more information in high Fourier frequencies can be reconstructed only with smaller accu-
racy. Our proposed Hybrid Algorithm 4.1 always leads to essentially better reconstruction
results than a low-pass reconstruction.
Using the sampling pattern (1.1) the width L of the low-pass area plays an important role
for the reconstruction performance, where the best choice of L depends on the specific
image. Cartoon like images (such as the “phantom” image) can be better reconstructed
taking a low-pass area with smaller width L, while the further band- and high-pass infor-
mation provided by the rows of Fourier data outside the low-pass area is very important.
For the ”cameraman” image, the Hybrid Algorithm 4.1 essentially improves the PSNR
result of the TV minimization, while for the “phantom” image only slight improvements
are obtained.
Taking Algorithm 4.1, which can be also seen as a post-processing method when taking
the results of Algorithm 3.1 as input, we can achieve very good reconstruction perfor-
mance while using a rather low number of iteration steps for TV minimization.
The new insights about suitable sampling patterns achieved here will be exploited to
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improve current approaches for image recovery in parallel MRI, where a full set of under-
sampled k-space data of coil images is available to reconstruct the desired magnetization
image.
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