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Abstract. The paper considers properties of compactly supported, locally linearly

independent refinable function vectors ® = (¢4, ..., (br)T, r € IN. In the first part
of the paper, we show that the interval endpoints of the global support of ¢,,
v =1,...,r, are special rational numbers. Moreover, in contrast with the scalar
case r = 1, we show that components ¢, of a locally linearly independent refinable
function vector ® can have holes. In the second part of the paper we investigate the
problem whether any shift-invariant space generated by a refinable function vector ®
possesses a basis which is linearly independent over (0,1). We show that this is not
the case. Hence the result of Jia, that each finitely generated shift-invariant space
possesses a globally linearly independent basis, is in a certain sense the strongest
result which can be obtained.
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§1. Introduction

In this paper, we are especially interested in properties of refinable function
vectors which are locally linearly independent.

Let ® = (¢1,...,6,)T, r € N, 7 > 1, be a vector of compactly supported
integrable functions on R. A function vector @ is said to be refinable if it
satisfies a refinement equation

o(t) =Y A(k)®2t—k), teR, (1)

where {A(k)} is a finitely supported sequence of (r X r)-matrices.
We say that ® is linearly independent over a nonempty open subset G of R,
if for any sequences ¢y, ..., ¢, on 74,

Y Y elk)du(-—k)=0 on G

v=1keZ



implies that ¢, (k) = 0 for all k € I,(G), v = 1,...,r, where I,(G) contains
all k € ZZ with ¢,(- — k) Z 0 on G. Further, ® is locally linearly independent
(1. 1. i.) if it is linearly independent over any nonempty open subset G of IR.
We say that @ is globally linearly independent (g. 1. i.) if, for any sequences
Clyev.,Cpon 72,

Y ) gu(-—k)=0 on R

v=1 keZ
implies that ¢, (k) =0forall v =1,...,r and all k € ZZ.

The concept of local linear independence has been intensively studied in spline
approximation (see e.g. Dahmen & Micchelli [4], Jia [10], Schoenberg [21]).
In wavelet analysis the notions of global and local linear independence have
been used as a tool for wavelet approximation and for construction of wavelets
on the interval (see e.g. DeVore, Jawerth & Popov [5], Jia [11], Lemarié [16],
Meyer [18]).

For r = 1, the refinement equation (1) is of the form

b

dx) =Y Ak)o(2t —k),  a,beZ (2)

k=a

In this case, it was shown by Lemarié [16] that the global linear indepen-
dence is equivalent to the local linear independence on the unit interval (0, 1).
Sun [23] stated that local and global linear independence are equivalent for a
function ¢ satisfying (2).

Let the global support of an integrable function f, gsupp f, be the smallest
interval I C IR with supp f C I. Then for a 1. 1. 1. function ¢ satisfying
(2) it follows that supp ¢ = gsuppo = [a,b] if A(a), A(b) # 0, ie., ¢ has
integer support. Moreover, ¢ can not have a hole, i.e., there is no interval
of Lebesgue measure greater than zero lying inside the global support of ¢
where ¢ vanishes. Further, the integer translates of a . 1. 1. function ¢ satisfy
the minimality property, i.e., for every compactly supported i being a linear
combination of integer translates of ¢ it follows that gsupp ¢ O gsupp ¢(-—k)
for some k € 7Z, and equality holds if and only if v = c¢(- — k) for some
constant ¢ # 0 (see Collela & Heil [3], Ron [19]).

For compactly supported refinable function vectors ®, global and local linear
independence are not longer equivalent (see Goodman, Jia & Zhou [7]).

The two properties, local as well as global linear independence can be com-
pletely characterized by the matrix mask {A(k)} of ® (see Chen [1], Goodman
& Lee [6], Jia & Zhou [15], Hogan [9] and Wang [24]).

In this paper, we study the support properties of 1. L. i. function vectors. While
for a single refinable 1. 1. i. function ¢ we have the above mentioned useful
properties, little is known for the vector case. Estimates and computations of
the global support of refinable function vectors ® have been given by Heil &
Collela [8], Ruch, So & Wang [22, 20] and by Plonka [17].

We shall answer the following questions in the first part of the paper: What
does the global support of the components for 1. 1. i. function vectors look



like? Can components of a 1. L. i. refinable function vector ® have holes? Is a
g. L. 1. function vector also linearly independent over a finite interval?

In the second part of the paper, we study bases of shift-invariant spaces.
As shown by Jia [11], any finitely generated shift-invariant space possesses a
globally linearly independent basis (see Theorem B in Section 4). One can
ask the question, whether this result can be strengthened in the following
direction: Does any shift-invariant space generated by a refinable function
vector ® have a basis which is linearly independent over (0,1)? Unfortunately
this is not the case. Hence, the result of Jia is in this sense the strongest result
which can be obtained.

The paper is organized as follows. In Section 2, we briefly recall the charac-
terization of local linear independence of ® in terms of the mask. In Section
3, we study support properties of 1. 1. 1. function vectors. In particular, we
show that the global supports of the components ¢,, v =1,....r, of ® start
and end with special rational numbers. We present a compactly supported,
continuous, refinable function vector, which is 1. 1. i. but has a component
possessing a hole in its global support. We also show that, if ® satisfies (1)
with A(k) =0 for k < 0 and & > N, and if A(0) and A(N) do not contain
zero rows, then the components of @ have no holes.

Finally, in Section 4, we present an example of a refinable function vector
which is g. 1. i. but not linearly independent over (0, 1), and where the shift-
invariant space generated by ® does not possess a basis being linearly in-
dependent over (0,1). Moreover, we show that there are refinable function
vectors being g. 1. i. but linearly dependent over any finite interval.

§2. Characterization of local linear independence

Let us briefly recall the characterization of local linear independence from

Goodman, Jia & Zhou [7] and Cheung, Tang & Zhou [2].
We assume that the mask {A(k)} is supported on [0, N], i.e., for k < 0 and
kE > N the (r x r)-matrices A(k) are zero matrices. Let

B(t) = (P(t + k))kN:_Ol for te€][0,1).

Then, for each t € [0, 1), ®(¢) is a vector of length rN. With the help of the

two-slanted block matrices
Ao = (A(2k — 1) 12, Ar = (A(2k =1+ 1)8 2o
the refinement equation (1) implies

t t+1
B(1) = Ay ®(t) and @(%) _ A B(1) (3)
for t € [0, 1). It follows that for €1,...,€, € {0, 1}, we have

(L oA AL B te0, 1),



Suppose that ® € (L1(IR))” is a nontrivial compactly supported solution of
(1) (with A(k) =0 for k < 0 and k > N). Let

m;:/léwmt:</d@@+%ﬁﬁ>quﬂvN.

k=0

Then vg is a right eigenvector of £( Ao + A1) to the eigenvalue 1 ([2], Lemma
3.1). Now, let V be the minimal common invariant subspace of {Ay, A1}
generated by vg. Further, let B = (B(k,l)) be an (rN x dim V')-matrix such
that the columns of B form a basis of V. For continuous functions, instead
of vg we can also choose a right eigenvector v of Ay to the eigenvalue 1 in
order to generate the space V. In this case, V contains the vectors ®(¢) with
t € [0, 1), since for each t there is a sequence of dyadic numbers with the limit

t. We have:

Theorem A. ([7, 2]) Let ® be a compactly supported, integrable solution

vector of (1) with A(k) =0 for k < 0 and k > N. Then we have

(1) @ is linearly independent over (0, 1) if and only if the nonzero rows of B
are linearly independent.

(2) @ is locally linearly independent if and only if for all n with 0 < n < 2™V
and all €;,...,¢, € {0, 1} the nonzero rows of A, ... A, B are linearly
independent.

In [7], a procedure is presented which simplifies the application of Theorem
A in order to investigate, if @ is locally linearly independent or not.

63. Supports of locally linearly independent refinable vectors

As known, for 1. 1. i. refinable functions ¢ satisfying (2), it follows that
supp ¢ = [a, b], and in particular, ¢ has no holes (see Lemarié [16]). Now
we want to consider the support properties of 1. 1. i. function vectors in more
detail.

First, the local linear independence implies the following restrictions on the
starting point and endpoint of the global supports of the components ¢,,
v =1,...,r, of the refinable function vector ®.

Theorem 1. Let ® = (¢1,...,6,)7, r € IN,r > 1, be a refinable, locally
linearly independent vector of compactly supported functions ¢, € L'(IR).
Then the starting point and the endpoint of gsupp¢,, v = 1,....,r, is a
rational number of the form k + ¢,, where k € 7 and ¢, € J, with

La:{@TJ%Etfl:1V”¢ﬂnzowumﬂ—1m“4—1}.

In particular,

Jl :{0}7 J2:{07



4
Proof: Let ® = (¢y,...,¢,)! with gsupp ¢, = [a,, b,]. We can assume that
all starting points lie in [0, 1), this is obtained by shifting the components of
& without changing the local linear independence. Since the components of

® are compactly supported and @ is 1. 1. i. and refinable, the refinement mask
of @ is finite, i.e., there exist a,b € 7ZZ with

o(t) =Y Ak)2(2t—k), teR

with (r x r)-matrices A(k) = (A, (k))}, Further, for ¢t € R \[ay, b,] we

w,v=1-
have
r

?bu(t) =0= Z Z Au,u(k) ¢u(2t - k)

=1

and the local linear independence of ® implies that for all £ with A, , (k) # 0,

gsupp ¢y (2 —k) C gsupp gy,  pv=1,...,r.
Hence - "
a
4+ - 24+ -)C b
[2+272+2]—[aﬂ7 H]?
such that the starting points (and endpoints) satisfy k& > 2a, — a, (and

k <2b,—b,) for all k with A, , (k) # 0. Moreover, for each fixed (i, one of the
r inequalities for the starting points (and for the endpoints, respectively) must
be an equality. Hence, for each fixed p, there exists at least one v € {1,...,r}
with 2a, — a, € ZZ (and one v € {1,...,r} with 2b, — b; € 7ZZ).

We now consider the starting points more precisely. Since 0 < a, < 1 for
v=1,...,r, we have (at least) r relations of the form

2a, — ay(y) € {0, 1}, p=1 ... v(p) e{1l,...,r},
and we can find a cyele {py,...,uq}, d < r, such that
2a,; —au;,, €40, 1}, g=1,...,d—1, 2a,, —a,, €40, 1}. (4)

Considering the circulant d x d matrix

o Td—1 Td—2 Ce 1

1 o Td—1 Ce iz
cire (T, @1, ..., Xq—1) :=

Td—2 Td-3 T RS |

Td—1 Td—2 Ce 1 o



we observe that

(cire (2,0,...,0,—1))"! = cire (29711, 2, ..., 2772,

24 — 1
The equations (4) lead to a system of linear equations
circ (2,0, ...,0,—1)a =ce,

where a := (a, ,. .. ,aud)T is the vector of starting points and e is an integer
vector (81,...,64)7 with §; € {0, 1}. Hence,

1 : d— d—
a= 2d_1c11"c(2 11,2,...,29%)e.
Observe that at least one component ¢, (v = 1,...,d) must be zero since
Apy sy, €10,1). It follows that each a,, must be a rational number of the

form 7", m € {0,...,29 — 2}
Further, for each a, with ¢/ not belonging to a cycle, there exists a chain
{phs oo pg} with g =4,

261,%, —ap ., €{0,1} forj=1,...,9—1

m
2d—1

and j; belongs to a cycle, but uj_; not. Hence, ap, = < 1 for some

d < r and some m € {0,...,2¢ — 2} and

m/

Wy = T 1yarT <L

with some m’ € {0,...,(2¢ —1)2977 — 1}, where m’ depends on m and the

number of equations of the form 2a, —a = 1 in the chain.
J

M1
Observing that d+¢g — 1 <r, we find a, = W € J,.

For the endpoints of the global support of ¢,, the proof follows analogously.
|

While the support conditions in Theorem 1 are necessary consequences of the
local linear independence of ® there may not exist refinable, 1. 1. i. function
vectors with such exotic support intervals. However, for r = 2 we can show
in the following examples, that indeed, all starting points and endpoints in .J,
can occur.

Example 1. Let ® = (¢;,¢2)7 be a nonzero solution of the refinement
equation

B(t) = <4(/)5 3(/)5> @(2t>+<1g é?‘é) <I>(2t—1)—|—<_:([)/5 3(/)5> B(2t—2).



0.5 1 1A5L\[j 2
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Fig. 1. L.l i. ®(¢) with supp ¢1 = [%, 2] and supp ¢2 = [0, %]

Then @ is continuous, locally linearly independent, and supp ¢ = [1/2,2],
supp ¢2 = [0,3/2].
Proof: We have

0 0 0 0 1/2 1/4 0 0

4/5 3/5 0 0 I BVERETCINRVEINE T
—~1/5 3/5 1/2 1/4 |’ '“to o -1/5 3/5

0 0 1/3 5/6 0o 0 0 0

In order to show continuity of ¢; and @5, we apply the following result of

Jia, Riemenschneider & Zhou [14]. Let {A(k)}1_, be a finite refinement

mask satisfying that % Eszo A(k) has one simple eigenvalue 1 and all other

eigenvalues lie inside the unit circle. Then the subdivision scheme associated

with a converges uniformly if and only if

a) The mask {A(k)}i_, satisfies the sum rule of order 1, i.e., the matrices
Ao and A; both have the eigenvalue 1, and the exists a vector e; € RN
with el Ay = el A = el

b) Considering the subspace U := {u € R"™ : ¢l'u = 0} the joint spectral
radius of Ag|y and A |y satisfies

p(Aolu, Arlv) < 1.
Observe that the joint spectral radius is given by
p(Aolu, Ailu) = ilgf;(max{HAeJU Aol e € {01, 0 =1, ... ,n})l/"

Ao =

with an arbitrary matrix norm in R™.
In our example, the matrix %Ei:o A(k) has the eigenvalues 1 and —2/15.
Further, the mask satisfies the sum rule of order 1 with ¢; = (2,3,2,3)%.

Consider the subspace
U:={u= (ul,u2,u;;,U4)T € R* : 2uy + 3ug + 2us + 3uy = 0}.

We choose a basis of U as u; = (0,64/5,84/5, —24)1 uy := (21,0,0, —14)T
and uz = (—15,42, —48,0)7. Then the matrix representations of Ag|y and
Aj|y under this basis are

3/5 161/440 27/44 —7/33  —7/22 0
0 34/165 1/11 |, 4/11  6/11 0
0 238/825 7/55 244/825 T7/110 —1/5



The maximum column sum norms of these two matrices are less than 1, hence
the joint spectral radius is less than 1. Thus, the subdivision scheme associ-
ated with this mask converges uniformly and the solution @ is continuous.
Now we prove that ® is 1. 1. i.. The space V. as defined in Section 2, is
spanned by the right eigenvector vg of %(./40 + A;) to the eigenvalue 1, vy =
(3/2,9,7/2, )T, and A; vo, A2 vo, Ai Agvo, i.e., V has full dimension 4. Thus,
by Theorem A, ® is linearly independent over (0, 1) and the matrix B can be
chosen as the (4 x 4)-identity matrix.

Now, we have rank Ay = rank A; = 3 and Ap has a zero row at the top and
Ai has a zero row at the bottom. Further, Ag Ao, Ao A1, A1 Ag, A1 Ay, all
have rank 3 and AgAg, Ag.A; have one zero row at the top, and Ay Ag, A Ay
a zero row at the bottom. Using the procedure proposed in [7], it already
follows that @ is 1. 1. i.. Moreover, the structure of A(0) and A(2) implies that

supp ¢1 = [%, 2] and supp ¢2 = [0, %] [

Example 2. (cf. Goodman & Lee [6])
Consider ® = (¢y, ¢)T with

@(t):<8 é)@(%)—l—(i’?i ;?j) <I>(2t—1)—|—<(1) 8)@(%_2).

It can be simply observed that the piecewise linear splines

3t—1 te[l1/3,2/3)

o1(t) =< =3t/242 t€[2/3,4/3]
0 t¢[1/3,4/3]

3t/2—1 t€[2/3,4/3)

p2(t) =< =3t4+5 t€[4/3,5/3]

0 t¢12/3,5/3]
satisfy the above refinement equation.

1 1

Fig. 2. L. 1 i. ®(¢) with supp ¢1 = [1/3, 4/3] and supp ¢2 = [2/3, 5/3].

We show that @ is locally linearly independent.

Consider
01 0 0 3/4 1/4 0 1
oo o o | 1/4 3/4 0 0
Ao=19 3/4 1/4 A=l 0 0 0 0
1 0 1/4 3/4 0 0 1 0



Then the space V has full dimension 4. A simple computation by Maple tells
us that

rank Ag = rank Ag A; = 3 and the 2nd rows are zero,

rank A; = rank A; Ap = 3 and the 3rd rows are zero,

rank A; A% = Ag A} = 2 and the middle two rows are zero,

rank A2 = rank A3 = rank AgA; A3 = rank A2A? = 2 with the first two rows
being zero, and

rank A? = rank A? = rank A7 A2 = rank A; AgA? = 2 with the last two rows
being zero.

Hence the procedure of Goodman, Jia & Zhou [7] stops and it follows that ®
isl.Li.. W

Next we consider the problem whether a 1. 1. i. refinable function vector can
have components with holes. The answer is positive and we present the fol-
lowing example.

Example 3. Let ® = (¢1, ¢2)’ be a nonzero compactly supported solution
of the refinement equation

B(t) = (1?3 ?g) (21) + (1?2 é) B2 — 1)+ (??S 8) (2 — 2)
+ (1(/)3 8) ®(2t — 7).

Then @ is continuous and 1. 1. i.. Moreover, supp ¢; = [0, 3] and gsupp ¢ =
[0,5] and ¢, possesses a hole of length 1, namely ¢5(t) = 0 for ¢t € (5/2,7/2).

0.8 0.35
0.3
0.6
0.25
0.2
0.4
0.15
0.1
0.2
0.05
7 1 2 3 4 5 6 7

1 2 3 4 5 6

Fig. 3. Locally linearly independent ®(¢) where supp ¢2 possesses a hole.

Proof: We first prove continuity of ®. The matrix %EZ:O A(k) has the
eigenvalues 1 and —5/18. Further, the mask satisfies the sum rule of order 1,
namely, (1,1)(A(0) + A(2)) = (1,1) = (1,1)(A(1) + A(7)). Hence, the (14 x
14)-matrices A and A; both have the eigenvalue 1 with the corresponding
left row eigenvector ¢! := (1,1,...,1). Moreover, Ay and A; are column-
stochastic matrices, i.e., all entries in Ag and A; are nonnegative and the
sum of entries in each column is 1. Observe that a product of two column-
stochastic matrices is again column-stochastic. A column-stochastic matrix



is called scrambling if each pair of columns of A has positive entries in some
common row. In particular, if A is column-stochastic and has a positive row,

then A is scrambling.
Consider the subspace U of R™,

U:={ueR": elu=0}.

We apply the following result of Jia & Zhou [15] for stochastic matrices: A
column-stochastic matrix is scrambling if and only if ||A|¢|| < 1, where || - ||
denotes the maximum column sum norm of a matrix.

Hence continuity of @ is already proved if we can find a £ € IN such that for
each k-tuple (€1,...,€x), €1,...,€;x € {0, 1}, the matrix product A, ... A,
has a positive row (see [15], Theorem 1.1).

A computation by Maple tells us for the matrix products A, A, A., with
€; € {0,1}: If (e1,€2) # (1,1), then the third and fourth rows of the matrix
product are positive, while for (e;,€e2) = (1,1), even the first four rows of
the matrix product are positive. This shows that all the column-stochastic
matrices of the form A, A, Ac, are scrambling. Hence the joint spectral radius
p(Ao|v, A1|v) is less than 1. Therefore, the subdivision scheme associated
with this mask converges uniformly, and ® is continuous.

Let us now consider the space V', generated by an eigenvector of %(./40 + Ay)
to the eigenvalue 1,

vo = (6294, 50221 /15, 12195, 12850/3, 4203, 689, 0, 1049, 0,2733,0,0,0,0)".

Then V is spanned by the vectors vg, Ag vo, A3 vo, A1 Ao vo, A vo, A1 A2 vo,
Ao A1 Ao vg, A? Ag vy and has dimension 8.

Let B be a (14 x 8)-matrix, such that the columns of B form a basis of V.
Then B has 6 zero rows, namely the 7-th, 9-th, 11-th, 12-th, 13-th and 14-th
row. Hence, by Theorem A, @ is linearly independent on (0,1). Since for
continuous ®, V' contains ®(t) = (P(t + k))%_, for t € (0,1), it follows that
gsupp ¢1 = [0, 3] and gsupp ¢2 = [0, 5.

We define the restricted vector ®(t) for ¢t € [0,1) as

(i)(t) = (le(t)v¢2(t)7¢1(t+1)7¢2(t+1)7¢1(t+2)7¢2(t+2)7¢2(t+3)7¢2(t+4))T'
Then V = span {®(t) : ¢ € [0, 1)} has dimension 8.

Further, let us consider the matrices Bg, B1, which are derived from Ag, A;
by restricting to @, i.e., by deleting the 7th, 9th, 11th, 12th, 13th and 14th
rows and columns of Ag, Aq,

16 000000 39160000
13000000 30130000
6 03 9 16 0 0 00 60 3 9 6 0
10301300 00103030
Bo=1o00060096['2=[o0o0000009
000010 0 3 00 00 O0O0O0 0
00000000 30000000
00 300000 00 003000



Observe that then (3) is of the form
B(t/2) = BoB(r),  B((t+1)/2) =B (1), te 0, 1)

Now we can choose B to be the 8 x 8 identity matrix and the procedure of

Goodman, Jia & Zhou [7] (with By, By instead of Ao, A;) gives

rank By = rank Bg = rank By By = 7 and the 7th rows are zero,
rank By = rank By Bg = rank By B; = 7 and the 6th rows are zero.

Hence, ® is 1. 1. i.. Moreover, ¢2 possesses a hole of length 1, namely ¢2(t) = 0
for t € (5/2, 7/2).

Remark. A similar example of a continuous l. l. i. function vector with one

hole can be found in Plonka [17].

However, in certain cases one can show that the components of ® cannot have

holes.

Theorem 2. Let ® = (¢1,...,¢,)7 be a locally linearly independent vector
of compactly supported L'-functions satisfying

t) = i A(k) ®(2t — k)

k=0

for some N € IN. Suppose that A(0) and A(N) contain no zero row. Then all
nonzero components of ® have support [0, N|, and in particular, they have
no holes.

Proof: Deleting zero components of ®, we may assume that each component
of @ is nonzero.

We show first that gsupp¢, = [0, N], v =1,...,r.

Let gsupp ¢, = [a,, by]. We find from (3) that for each fixed p,

bu(t)2) = ZA,” +ZZA,” Vb (t — k).

k=1v=1

Since A(0) has no zero rows, at least one of the coefficients A, ,(0) is nonzero.
On the interval (—oo, 2a, ), ¢, (t/2) vanishes. By the local linear independence,
for each v with A, ,(0) # 0 it follows that ¢,(¢) = 0 on this interval. Hence
%a,,. Hence, by local linear independence, for all u €
{1...,r} there exists a v with 2a, — a, = 0.

Same arguments as in the proof of Theorem 1 imply that for all a, with p
in a cycle {p1,...,pa}, we have a,, < ta,, < -+ < spau, < giprau,. But
au, > 0. Then a,, =--- = a,, = 0. Further, for each a, with ' being not

a, > 2ay, le., a, <

in a cycle, there exists a chain to a cycle and we find again a,» = 0. Thus, for
all components ¢, of ®, gsupp ¢, starts at zero.



Analogously, using the assumption that A(N) has no zero rows, it follows that
by =Nftoralv=1...,r

Now, suppose that some components ¢, of ® have holes (i.e., intervals (a,b)
with 0 < a < b < N, where some ¢, is identically zero). Then there exist holes
with greatest length. Let us choose a hole with greatest length. Without loss
of generality we suppose that ¢ has such a hole (¢,d) with 0 < ¢ < d < N.
Refinability of ® implies that

ZZAU )b (2t — k).

v=1 k=0

On the interval (¢,d), ¢1(t) = 0. By the local linear independence, for each
(v, k) with Ay , (k) # 0 the corresponding function ¢, needs to satisfy ¢,(t) =
0 for t € (2¢ — k,2d — k). But gsupp ¢, = [0, N] and ¢, does not have a hole
with length 2(d — ¢). Hence either 2¢ —k > N or 2d — k < 0.

If ¢ < N/2, then the above discussion tells us that for each (v, k) with
Ay (k) #0,2d — k <0. It follows that

ZZAU ) (2t — k).

v=1k>2d

Then gsupp ¢ C [d, N], contradicting the above observation that gsupp ¢ =
[0, N.
In the same way, if ¢ > N/2, then d > N/2, and

Z > Aru(k)eu(2t — k).

v=1k<2c¢c—N

Then gsupp ¢y C [0, ¢|, which is again a contradiction. Therefore, ¢, cannot

have holes. M

Remark. We want to remark, that for g. L. 1. function vectors ® it has been
shown by Ruch, Wang and So [20] that U,_;supp ¢, = [0, N] if and only if
Ap and Apx are not nilpotent.

64. Bases of shift-invariant spaces

Let ® € (L'(R))" be a vector of compactly supported functions ¢,, v =
1,...,r. Denote by S(®) the linear space of all functions of the form

YD cwlk)ou(-—k) (5)

v=1 keZ

with arbitrary sequences ¢, : Z — IR. The space S(®) is a finitely gener-
ated shift-invariant space (FSI-space). The components ¢, of ® are called
generators of S(®). Further, let So(®) be the linear span of {¢,(- — 1) : v =
L,...r, l € 7L}, i.e., So(®) contains only finite linear combinations of (5).
We want to deal with the following problem: Does an FSI-space S(®) possess
a linearly independent basis over (0,1) 7

Our considerations are based on the following



Theorem B. (Jia [11]) Let ® = (¢1,...,¢,)T be a vector of compactly
supported distributions on IR. Then there exists a distribution vector ¥ =
(¥1,...,96)T with the following properties:

a) W is globally linearly independent.

b) ® C So(V), ie., all components ¢, of ® are finite linear combinations of
integer translates of ¥y, ..., ;.
c) s<r.

d) S(®) = S(¥). Furthermore, if ® € (L'(R))", then ¥ can be chosen with
T e (LYR))*.

In particular, each FSI-space S(®) possesses a globally linearly independent
basis. This assertion is true even without assuming refinability of the vector
®. Can we obtain a stronger result as formulated above? Unfortunately not,
we obtain

Theorem 3. There exists an FSI-space S(®) generated by a refinable vector
® = (¢1, ¢2)T of compactly supported, continuous functions not possessing a
linearly independent basis over (0, 1).

Proof: We present an example. Let ® = (¢y, )7 with ¢; the normalized
linear cardinal B-spline with support [0, 2] (hat function) satisfying

B1(t) = 361(20) + 12 — 1) + 561(2 — 2)

and with ¢, satisfying the refinement equation

Go(8) = 3 62(20) + 5 612 — 6) + 1 (2 — )

Then supp ¢2 C [0, 11/2]. The (12 x 12)-matrices Ay and Ay can be simply
derived from the refinement equations.

Let ®(t) := (®(t)", ®(t + 1)T,...,®(t +5)7)T € R'. Then from (3) one
obtains that the space V = Vg := {®(¢) : t € [0,1)} is spanned by

®(0) = (0,0,1,0,0,0,0,0,0,0,0,1)7,
®(1/2) =(1/2,0,1/2,0,0,1/2,0,1/2,0,0,0,0)7,
®(1/4) = (1/4,0,3/4,1/4,0,0,0,1/4,0,0,0,1/2)T,
®(3/4) = (3/4,0,1/4,1/4,0,0,0,1/4,0,1/2,0,0)7,
®(3/8) = (3/8,0,5/8,0,0,1/4,0,3/8,0,0,0,1/4)7,
®(5/8) = (5/8,1/8,3/8,1/8,0,1/4,0,3/8,0,1/4,0,0).7

The orthogonal complement W of V' is spanned by the unit vectors es, e7, eg,
e11 and further by the vectors w; = (0,0,—-1,0,0,0,0,1,0,0,0,1)T and wy =
(-1,0,0,0,0,0,0,1,0,1,0,0)T. Here, a unit vector e; is defined by ¢; =
(8;.%)32, with & the Kronecker symbol. The unit vectors in W are due to



2 4 6 8 2 4 3 8

Fig. 4. ®(t) generating no linearly independent basis over (0, 1) of S(®).

the support of ¢1 (being [0,2] only). The vectors wi, wy imply the local
dependencies

—¢1(t) + d2(t +3) + d2(t +4) =0,
—¢1(t+ 1)+ d2(t +3) + ¢2(t+5)=0

for t € (0,1), i.e., ® is linearly dependent over (0, 1).
However, it can be simply observed that ® is globally linearly independent,
since W does not contain any vector of the form

(Coa €1, Co P, C1 Py Co ,027 €1 ,02700 ,037 €1 ,03700 ,047 €1 ,04700 ,057 €1 P5)T
with constants cg, ¢1, p (cf. Jia & Micchelli [13], Theorem 3.3).
We now prove, that there exists no basis of S(®) being linearly independent
over (0, 1) by showing that the assumption that such a basis exists leads to a
contradiction.
Suppose that there exists a refinable function vector ¥ = (¢4, ¢2) with S(¥) =
S(®) and with ¥ being linearly independent over (0, 1). Then there exists a
finite linear combination

P1(t) = Z(ak¢1(t—k)+bk¢2(t—k)) ag, br € R.

keZ

Since supp @1 = [0, 2] it follows from the linear independence of ¥ over (0, 1)
that ar = 0 if supp ¥1(- — k) € [0,2] and by = 0 if supp 2(- — k) € [0, 2].
Hence, at least one of the functions ¢y, ¥ has support contained in [0, 2].
Let us suppose that supp 1 C [0, 2]. Since S(®) = S(¥), it follows that
Vo and Vg have the same dimension 6, thus the length of supp ¥ must be
greater then 2 and we have

P1(t) = Z ag P1(t — k).

keZ

Considering the Fourier transforms d = (q/b\l, Q/b\z)T and U = (;Z)\l, $2)T7 we

hence find ( N ) .
o~ - gl e tu o~
P(u) = <g3(e_i”) 94(€—iu)> P(u)



with appropriate algebraic Laurent polynomials g1, g3, g4. Since both ® and
U are globally linearly independent, it follows that the transformation matrix
is invertible for all v € C, and ¢1(z), ga(z) have no zeros in C\ {0} (see Jia
& Micchelli [13]). But this is only true if gi(z) = 27, ga(2) = 272 for some
integers 71, Ja.

Without loss of generality, we can assume that supp 1 and supp @9 start in
[0, 1). Hence ¢1(t) = agt1(t), i.e., 1 is the hat function. Further, according
to g4(2) = 272 and to the assumed linear independence of ¥, ¢, satisfies

4
Ga(t) =D cxtnlt — k) +dptalt —ja), ek, dj, €R

k=0

such that supp ¥2(-—j2) € [0,6]. Now, the structure of ¢ implies that j» = 0,
since ¢2(t), t € [0,1), can not be represented by the hat function ¢4 (¢). Hence
the dependence relation —¢q(t) + ¢2(t+3) + p2(t+4) = 0 for t € (0, 1) causes

— ao ¥1(t) + (do Y2 (t + 3) + caha(t + 1) + es U (1))
+(dotb2(t+4)+ezri(t+1)+eati(t) =0

fort € (0, 1), i.e., ¥ is not linearly independent over (0, 1) and we have found
the desired contradiction. H

Finally, let us consider the following question: Let ® be a refinable vector of
compactly supported L!-functions. If @ is globally linearly independent, is
there a finite interval (1, t2), t1, t2 € IR, such that ® is linearly independent
over (t1, t3) 7

We find the following

Theorem 4. There exists a refinable, globally linearly independent vector
® = (¢1, ¢2)T of compactly supported L*-functions being linearly dependent
over any finite interval (t1, t2), t1,t2 € R.

Proof: We again present an example. Let ® = (¢1,¢9)7 with ¢i(t) =
X[0,1)(t), where X[o 1) denotes the characteristic function on [0, 1), and with

alt) =) 2]‘1_1 (xf0.1) (27 = 2) + x[0,1)(27¢ = 3)).
j=1
Then @ is refinable with
P1(t) = &1(2t) + ¢1(2t — 1),
Pa(t) = %@(Qt) + ¢1(2t — 2) + ¢1(2t — 3).

Further, we find supp ¢; = [0,1] and supp ¢2 = [0, 2].
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Fig. 5. ®(¢) being g. l. i. but not linearly dependent on any interval (¢1, t2).

We first show that @ is globally linearly independent. Let a, b be sequences
such that

> (alk)¢i(t — k) +b(k) da(t —k)) =0  forall t€R. (6)

Suppose first that one component of b is nonzero, say b(l) # 0 for a fixed
[ € ZZ. Considering (6) for t € (I, [+ 1), we obtain (according to the support

of 1, ¢2)
a(l) 1 (t — 1)+ b(1) da(t — 1)+ b1 — 1) pa(t — 1+ 1) =0
and by definition of ¢; and ¢, hence
a(l) + b(1) ot — 1)+ b(I — 1) = 0,

since ¢1(t — 1) and ¢o(t — [ 4 1) are identically 1 for ¢t € (I, [ 4+ 1). However,
¢2(t — 1) can take all values 1/2", n =1,2,.... Hence the above equation can
only be satisfied if b(/) = 0, contradicting our assumption. Thus, b is a zero
sequence. But now, (6) simply implies that also a must be a zero sequence,
i.e., ® is globally linearly independent.

However, @ is linearly dependent over every finite interval (¢1,t3) C IR, since

we find
—qbl(t—Nl)—Fqbz(t—Nl—Fl):O for all tE(tl,tz),

where N; is the greatest integer less than t;. W
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