
A Tree-based Dictionary Learning
Framework

Renato Budinich & Gerlind Plonka

July 22, 2019

We propose a new outline for dictionary learning methods based on a hi-
erarchical clustering of the training data. Through recursive application of
a clustering method the data is organized into a binary partition tree repre-
senting a multiscale structure. The dictionary atoms are defined adaptively
based on the data clusters in the partition tree. This approach can be inter-
preted as a generalized wavelet transform. The computational bottleneck of
the procedure is then the chosen clustering method: when using K-means the
method runs much faster than K-SVD. Thanks to the multiscale properties
of the partition tree, our dictionary is structured: when using Orthogonal
Matching Pursuit to reconstruct patches from a natural image, dictionary
atoms corresponding to nodes being closer to the root node in the tree have
a tendency to be used with greater coefficients.

1 Introduction

In many applications one is interested in sparsely approximating a set of N n-dimensional
data points Yj , columns of an n ×N real matrix Y = (Y1, . . . , YN). Assuming that the
data can be efficiently represented in a transformed domain, given by applying a linear
transform D ∈ Rn×K , one is interested in solving the sparse coding problem

min
X∈RK×N

||Y −DX|| , where ||Xj ||0 ≤ S ∀ j = 1, . . . , N , (1.1)

where S ∈ R is a parameter called sparsity, Xj is the j-th column of the encoding matrix
X = (X1, . . . , XN) ∈ RK×N and ||·||0 is the so-called 0-norm which is defined as the
number of non-zero components of a vector (and is not really a norm). The jth column
of the encoding matrix X gives the coefficients used in the linear combination of columns
of D (which are termed atoms of the dictionary) to approximate the j-th column Yj of
Y. How well the data Yj can indeed by approximated by DXj with an S-sparse vector
Xj is of course dependent on Y and on the choice of D.

1

The sparse coding problem in (1.1) is NP-hard (see Natarajan (1995)) and thus one
can only hope to find an approximate minimizer X. Within the last years a multitude
of methods has been proposed to find approximated solutions to problem (1.1). Most of
these are greedy algorithms that sequentially select the S dictionary atoms to approxi-
mate the columns Yj of Y, as e.g. Orthogonal Matching Pursuit (OMP) or the Iterative
Thresholding method by Blumensath and Davies (2008). Many approaches replace the
0-norm in (1.1) by the 1-norm to obtain a convex minimization problem that can in turn
be solved efficiently, see e.g. Beck and Teboulle (2009); Chambolle and Pock (2011) and
Basis Pursuit methods, see e.g. Pati et al. (1993); Davies et al. (1997); Tropp (2004).
For specific dictionary matrices exact solvers exists, see e.g. Dragotti and Lu (2014) for
D = [I,F] with I the identity and F the Fourier matrix.
Finding a dictionary matrix D that admits the most efficient representation of the

given data set Y is even more delicate. The often considered dictionary learning problem
consists in finding both the optimal transformation D and the sparse coding matrix X,

min
D∈Rn×K ,X∈RK×N

||Y −DX|| where ||Xj ||0 ≤ S ∀ j = 1, . . . , N . (1.2)

In this problem (which is also also NP-hard, see Tillmann (2015)) one is supposing that
there exists an approximate factorization DX of the matrix Y where X is (column-wise)
sparse. The most well-known method to tackle (1.2) is the K-SVD algorithm by Aharon
et al. (2006). K-SVD decouples the problem (1.2) into a nested minimization problem
and proposes an iteration scheme which at every step updates independently first the
encoding matrix X and then the dictionary D. At every iteration step of the K-SVD
method, K SVDs of a matrix with n rows and at most N columns must be computed:
in practice this is rather expensive.

The models (1.1) and (1.2) both implicitly assume that the given training data points
Yj are vectors. However, in many applications the data already possesses a multidimen-
sional spatial structure, which is not leveraged when the data points are vectorized into
the columns of the matrix Y. In the last years there have been attempts to propose
other dictionary learning methods, which on the one hand try to take the structure of
the data into account and on the other hand impose further structure of the dictionary
matrix in order to come up with more efficient dictionary learning algorithms for special
applications, see e.g. Yankelevsky and Elad (2016); Cai et al. (2014); Liu et al. (2017,
2018).
In this paper, we want to propose a general dictionary learning approach, which is

based on organizing the training data into a binary tree corresponding to a hierarchical
clustering, thereby providing a multiscale structure that we employ to construct the
dictionary atoms of D. In particular, we completely separate the sparse coding problem
(1.1) and the problem of fixing the dictionary D.
The dictionary learning process consists of two steps; the computation of the binary

partition tree which provides a hierarchical adaptive clustering of the training data, and
the determination of the dictionary elements from the partition tree.
There is a variety of possibilities to construct the binary partition tree. In particular,

2

we can choose different similarity measures to cluster the data sets into two clusters; the
similarity measure should particularly account for the a priori structure of the data Yj .
Furthermore, we can employ certain pre-defined structure of the dictionary elements, as
e.g. tensor product structure as in Zeng et al. (2015) or rank conditions as proposed in
Liu et al. (2018). The choice of the similarity measure strongly influences the efficiency
of the partition tree computation and thus the complete dictionary learning method.
In order to determine the dictionary elements from the partition tree we propose a

procedure that can be interpreted as an adaptive generalized Haar wavelet transform.
To illustrate this analogy, we will show that the classical Haar wavelet transform can be
transferred to a binary tree construction from bottom to top, the usual “local to global”
approach. Due to its linearity and invertibility, this transform it is however equivalent to
the top to bottom construction which is the one we use in our method, thus making it
“global to local”. However, our proposed method is adaptive which means the tree is data
dependent, while in the classical Haar wavelet case the tree is completely determined by
a linear transform.

Having found the dictionary matrix D from the clusters in the binary tree, we still
need to solve the sparse coding problem (1.1). For our application we will use OMP
to sparsely code the data. We compare our method with K-SVD in various natural
image reconstruction tasks: it usually performs slightly worse in terms of quality of the
reconstruction but is faster especially for growing number of data points. This is to
be expected since, when using Lloyd’s algorithm for K-means, our algorithm has linear
complexity.
The structure of this paper is as follows. In Section 2 we extensively describe the

proposed procedure for dictionary learning. We start with the construction of the binary
partition tree in Section 2.1 and show in Section 2.2 how to extract the atoms from the
partition tree. In Section 2.3, we illustrate the connection of our dictionary construction
with an adaptive Haar wavelet transform. Section 2.4 is concerned with some algorithmic
aspects of the dictionary learning procedure. In Section 3 we present some application
results for various reconstruction tasks comparing our method to K-SVD.

2 Tree-based dictionary learning framework

Differently from other dictionary learning methods, where the dictionary matrix D and
the sparse coding matrix X are optimized simultaneously, our proposed method concerns
itself only with learning D; a sparse coding method such as OMP must be employed in
a second, separate step.
Assume that we are given set of data Y = {Y1, . . . , YN}, where all Yj have the same

known data structure. The Yj can be any type of data, as long as:

• we have a meaningful two-way clustering method for it, which should ideally sep-
arate the data according to salient features;

• we can take linear combinations of the samples.

3

We will thus ask that the samples live in a vector space V . The Yj can for example be
vectors, Yj ∈ Rn, image patches Yj ∈ Rm1×m2 , tensors, or more generally have a finite
graph structure. The dictionary learning process itself consists of two parts:

1. computation of a binary partition tree which gives a hierarchical clustering of the
training data,

2. determination of dictionary elements from the partition tree.

Within the next two subsections we will introduce notations and describe these two steps
in detail.

2.1 Construction of the partition tree

We assume that each data sample Yj can be uniquely identified by its index j ∈ {1, . . . , N}.
We want to construct a binary partition tree T whose nodes are associated to subsets
of the index set {1, . . . , N}, i.e. each node must correspond to a unique subset of the
training data. We will interchangeably identify the nodes with the subset of indexes or
of data points - this should be clear from the context and won’t be source of ambiguity.
Let the root node be

N0,0 := {1, . . . , N},

in general, N`,k is the node at level ` that has N`+1,2k and N`+1,2k+1 as children nodes.
For a binary tree with a complete level ` we have 2` nodes in this level, i.e., there will
be nodes N`,k for all k ∈ {0, . . . , 2` − 1}. If the level is not complete, there will be nodes
N`,k only for certain values of k. We call this tree the partition tree because for each
(non-leaf) node N`,k of the tree, the two children nodes satisfy the properties

N`+1,2k ∪N`+1,2k+1 = N`,k ,
N`+1,2k , N`+1,2k+1 6= ∅ and (2.1)
N`+1,2k ∩N`+1,2k+1 = ∅.

The tree T is generated by recursive application of the clustering method to partition a
given subset of the data into two subsets. The tree T obtained in this way need not to
be complete (i.e. not all leaf nodes will in general be at the same level), and the number
of elements in the subsets N`+1,2k and N`+1,2k+1 need not to be the same. Thus, we will
need some rule to decide whether a node set N`,k will be partitioned into two further
subsets or not; we will discuss this in Section 2.4.

In order to obtain a meaningful partition tree that leads to a good dictionary, we need
to choose an appropriate similarity measure that governs the clustering procedure. To
reduce the numerical effort, we may first employ a dimensionality reduction method to
the given data and then apply the clustering method according to a suitable distance
measure to the reduced data. If we know that the data (and thus also the dictionary
elements that we want to construct) should have a certain special structure, as e.g., block

4

circulant or block Toeplitz matrices, then this structure could be already employed in
the dimensionality reduction step.
In our numerical experiments in Section 3 we compare K-means, K-maxoids (see Bauck-

hage and Sifa (2015)), both with K = 2, and Spectral Clustering. K-maxoids and espe-
cially K-means are faster due to the lower computational complexity of the algorithms;
from a practical point of view, the main difference between the two is that while K-means
offers as representatives of the clusters the sample average of data points therein con-
tained, K-maxoids gives as representative a particular data point. Spectral Clustering
has the theoretical advantage that it can be applied on a data-graph built in any way
from the data: one isn’t then restricted to the Euclidean distance but can cluster the
data based on any type of similarity measure between the data points.
In the remainder of the section, we present a toy example and some further remarks

on possible strategies for construction of the partition tree.

Example 1. We are given the set of training patches

Y1 =

 1 0 0
1 2 0
0 1 3

, Y2 =

 1 0 0
1 2 0
0 1 5

, Y3 =

 1 0 0
1 1 0
1 0 0

, Y4 =

 2 0 0
5 5 0
2 7 5

,
Y5 =

 1 0 0
0 2 0
0 0 5

, Y6 =

 2 2 0
3 5 1
2 5 7

, Y7 =

 0 0 0
0 0 0
0 1 2

, Y8 =

 1 0 0
1 2 0
0 0 0

.
To construct the partition tree, we fix first the root node N0,0 := {1, 2, 3, 4, 5, 6, 7, 8}.

We create the tree using 2-means clustering and the FIFO procedure with parameters
mincard= 2 and ε = 1; see Section 2.4. This means, further branching will only be
performed if the cardinality of a node is above mincard and the clustering minimization
function is above the threshold ε. The clustering minimization function used here is
the so-called within-cluster sum of squares (WCSS) or distortion measure, see Budinich
(2018). Initially 2-means is applied to the full set of training patches corresponding
to the node N0,0, separating patches Y4 and Y6 from the rest; then it is run on node
N1,0 = {1, 2, 3, 5, 7, 8}, splitting it into N2,0 = {1, 2, 5} and N2,1 = {3, 7, 8}. The tree
obtained is displayed in Figure 1.

{1, 2, 3, 4, 5, 6, 7, 8}

{1, 2, 3, 5, 7, 8} {4, 6}

{1, 2, 5} {3, 7, 8}

Figure 1: Partition tree obtained by applying the 2-means-clustering to the data in Example 1.

For comparison, we also employ another approach to determine the partition tree to
the same training data set, where we first use a dimensionality reduction procedure before

5

employing the 2-means algorithm. For the first partition, we compute the centroidA0,0 :=
1
8

∑8
j=1 Yj and evaluate the spectral norms of the difference matrices sj := ‖A0,0 − Yj‖2

for j = 1, . . . , 8, thereby reducing the Yj to a one-dimensional feature. Let

sr1 ≤ sr2 ≤ . . . ≤ sr8

be the obtained ordered feature numbers of training data. In this special case for the set
of cardinality 8, the 2-means algorithm reduces to the minimization problem

µ̂ := argmin
1≤µ≤7

 µ∑
n=1

(
srn −

1

µ

µ∑
ν=1

srν

)2

+

8∑
n=µ+1

srn − 1

8− µ

8∑
ν=µ+1

srν

2 (2.2)

which can be solved exactly.
We obtain the partition into N1,0 = {1, 2, 4, 5, 6}, N1,0 = {3, 7, 8}. We proceed further

in the same way for partitioning these subsets and obtain the tree in Figure 2. Here we
have applied a partition of a subsets as long as we have more than two entries in this set
or the value µ̂ in (2.2) is larger than 1.

{1, 2, 3, 4, 5, 6, 7, 8}

{1, 2, 3, 5, 7, 8} {4, 6}

{1, 7} {2, 3, 5, 8}

Figure 2: Partition tree obtained by applying the 2-means-clustering to the reduced data in
Example 1.

If the norm of the different training data strongly varies, we recommend a normalization
of the data before starting the process of tree construction.

Remark 1. There is a large variety of further methods that may be applied to achieve
the partition tree.
1. For example, in Liu et al. (2018), a method has been employed to image patches,
where in the first step, all elements Yj of the training set are approximated by their rank-
1 approximations σjuj vTj of Yj using e.g. a partial SVD. Here σj denotes the maximal
singular value of Yj , and uj , vj the corresponding left and right singular vectors. As a
similarity measure for the 2-means algorithm a one-dimensional feature is defined that
compares the rank-1 approximation of the centroids of the node clusters with the rank-1
approximations of Yj . Such a procedure is particularly meaningful if the training patches
themselves are noisy.
2. Differently from the example above, one may employ rank-r approximations Y (r)

j

of the training patches Yj ∈ Rm1×m1 with r ≤ m1. The partition into subsets can be
performed using the Frobenius norm as a similarity measure ‖ Y (r)

j − Y (r)
k ‖F , which is

6

the Euclidean distance of the vectorized patches in Rm2
1 . For clustering, one may apply

the 2-means algorithm, the 2-maxoid method by Bauckhage and Sifa (2015) or a spectral
clustering method, see Shi and Malik (2000); Yan et al. (2009).
3. For image training patches we may apply a Fourier, DCT or wavelet transform to
all Yj in a first step to obtain M -term approximation of Yj , where only the M largest
coefficients in the wavelet expansion of Yj are kept. Then the clustering procedure is
applied to these approximations of the image patches to determine the partition tree.

2.2 Dictionary construction from the partition tree

In this subsection we will describe how to extract the dictionary elements from the
partition tree. We will apply a multiscale procedure which is borrowed from the classical
Haar wavelet construction but is here applied to our adaptive setting. To extract the
dictionary from the partition tree we have to make a choice for the representative of
each node: we will in general use the sample averages, and call these the centroids of
the subset. We are however not limited to this choice and depending on the application,
clustering method or structure of the data we may choose different representatives; see
below for some examples.
Once we have a set way to choose representatives for each node, we take as dictionary
atoms

1. a first “low-pass” element, which is given by the representative of the root node;

2. for each node N`,k in the partition tree which possesses two children nodes N`+1,2k

and N`+1,2k+1, the difference between the representatives of the children nodes.

We define the centroid of node (`, k) as

A`,k :=
1

|N`,k|
∑
j∈N`,k

Yj (2.3)

and then define the dictionary atoms as

A0,0 =
1

N

N∑
j=1

Yj ,

D`,k = A`+1,2k −A`+1,2k+1 .

(2.4)

Note that these centroids or differences of centroids have then to be normalized according
to some fixed norm to get the dictionary elements - we will always use the Frobenius norm.
We call the so obtained dictionary the Haar dictionary and we denote it with DH , i.e.

DH := {A0,0, D0,0, D1,0, D1,1,, . . .} . (2.5)

The choice of this name will become clear in Section 2.3, where we show the connection
to the Haar wavelet transform.

7

Remark 2. By contrast, one can also take the normalized centroids corresponding to
the leaves of the partition tree as dictionary atoms. We will call this the centroids
dictionary and denote it with DC , i.e.

DC := {Aλ1 , Aλ1 , . . .} , (2.6)

where λ1, λ2, . . . are the leaves of the partition tree. An approach similar to the centroid
dictionary construction has been also taken in Zeng et al. (2015), where however the
centroids are replaced by their (normalized) rank-d approximations. More precisely,
Zeng et al. (2015) considered a two-dimensional dictionary transform with a left and a
right dictionary matrix, where the matrices built from the d right singular vectors and
the d left singular vectors, respectively, form elements of the left resp. right dictionary.
This means that the dictionary elements are (approximations of) centroids of small sets of
image patches building a cluster of low variance according to the used similarity measure.
The atoms in the centroids dictionary DC corresponding to the lower nodes in the

tree may potentially suffer from excessively high correlation, given that they represent
clusters in close proximity of one another. It is known that high correlation between
dictionary atoms is not ideal for sparse representation (see for example Elad (2010)).
Therefore we would advise to use the Haar dictionary DH instead, especially for very
deep trees.

Example 2. We reconsider the toy example 1 in Subsection 2.1 with the partition tree
in Figure 1. By computing the sample averages of all the patches in each node we obtain
the following centroids (rounded to two digits):

A0,0 =

 1.13 0.25 0
1.5 2.38 0.13
0.63 1.88 3.38

 , A1,0=

 0.83 0 0
0.67 1.5 0
0.17 0.5 2.5

 , A1,1=

 2 1 0
4 5 0.5
2 6 6

 ,

A2,0 =

 1 0 0
0.67 2 0
0 0.67 4.3

 , A2,1 =

 0.67 0 0
0.67 1 0
0.33 0.33 0.67

 .

We thus obtain the two dictionaries as

DC :=

{
A0,0

||A0,0||F
,

A2,0

||A2,0||F
,

A2,1

||A2,1||F
,

A1,1

||A1,1||F

}
DH :=

{
A0,0

||A0,0||F
,

A1,0 −A1,1

||A1,0 −A1,1||F
,

A2,0 −A2,1

||A2,0 −A2,1||F

}
.

Note that the centroids dictionary DC has one element more than the Haar dictionary
DH - this is always the case.

As already mentioned, we are not limited to choosing the centroids as representatives
of a subset of training data: in this regard there is a large variety of possibilities, where in

8

particular special dictionary structure can be incorporated. This choice can also depend
on the chosen clustering procedure: 2-maxoids for example outputs not only the partition
but also two maxoids, which are particular data points belonging to each of these two
subsets respectively. Thus in our numerical tests, when using 2-maxoids we define A`,k
as the maxoid of node N`,k and leave (2.4) unchanged.

Example 3. We describe here the procedure that has been employed in Liu et al. (2018).
The construction of a partition tree is similar to ours, see also Remark 1. To determine
the dictionary, A0,0 and all the other centroids A`,k as in (2.3) are employed. Liu et al.
then compute the optimal rank-1 approximations of these centroids of the form

σkukv
T
k

where σk is the maximal singular value of A`,k and uk and vk are the corresponding left
and right singular vectors. These rank-1 approximations are used as representatives for
the construction of the dictionary: the low-pass dictionary element

A0 :=
u0v

T
0∣∣∣∣u0vT0
∣∣∣∣
F

and the further dictionary elements

D̃`,k := σ2ku2kv
T
2k − σ2k+1u2k+1v

T
2k+1, D`,k :=

D̃`,k∣∣∣∣∣∣D̃`,k

∣∣∣∣∣∣
F

.

This construction provides dictionary elements of rank at least 2 and is particularly
suitable for noisy training patches.

Example 4. Another possibility could be for example to useM -term wavelet expansions
of the centroids as representatives of the subsets. The atom D`,k of DH would then
be the normalized difference of the two obtained M -term approximations Â`+1,2k and
Â`+1,2k+1. The obtained dictionary atoms would thus possess at most 2M terms in the
wavelet expansion.

2.3 The Haar-dependency Tree

In this subsection we want to show the connection between the Haar wavelet dictionary
and our tree-based dictionary construction. We start by recalling some basic facts about
the one-dimensional Haar transform which is the most simple case of wavelet transform,
see for example Damelin and Miller Jr (2012) or Mallat (2008). Suppose we are given
a digital signal a ∈ RN , for simplicity let N = 2L for some L ∈ N and denote the N
components of aL := a by aL,0, . . . , aL,N−1. For j = L− 1, . . . , 0, we define the recursive

9

formulas for the so-called approximation and detail coefficients of the transform as

aj,k =
1√
2

(
aj+1,2k + aj+1,2k+1

)
,

dj,k =
1√
2

(
aj+1,2k − aj+1,2k+1

)
,

k = 0, 1, . . . , 2j − 1 . (2.7)

These formulas are known as synthesis formulas and j is known as the level of the
transform: the lower the level the coarser approximation the coefficients aj,k provide since
they are an average of more samples. By applying the synthesis formulas recursively
L times, the vector aL = (aL,0, . . . , aL,N−1)

T is linearly transformed into the vector
(a0,0, d0,0,d

T
1 ,d

T
2 , . . . ,d

T
L−1)

T , where dj := (dj,0, . . . , dj,2j−1)
T contains the detail or

wavelet coefficients of level j.
The synthesis formulas are easily inverted to obtain the reconstruction formulas

aj+1,2k =
1√
2
(aj,k + dj,k)

aj+1,2k+1 =
1√
2
(aj,k − dj,k)

(2.8)

The linear transform is hence invertible, and in fact even orthogonal.
It is possible to represent the dependency between approximation coefficients in the

synthesis formulas by means of a binary tree (similarly to what is done in Murtagh
(2007)), by associating a node to each aj,k which has two sons, aj+1,2k and aj+1,2k+1. We
start by identifying each of the original samples aL,k with a leaf node, and subsequently for
each level j = L− 1, . . . , 0 and for each k = 0, . . . , 2j − 1 we add a node (corresponding
to aj,k) which has as sons the two coefficients at the previous levels from which it is
computed, i.e. aj+1,2k and aj+1,2k+1. If we apply the full L levels of the Haar wavelet
transform we obtain a binary tree with root node a0,0; note that the concept of level of
the tree and of the Haar wavelet transform here coincide, with the root node being at
level 0 and the original samples at level L. In Figure 3 we show this tree for N = 8:
here we’re labeling each node with the respective approximation and detail coefficients.
The synthesis formulas (2.7) tell us that we can compute the labels of a node from the
approximation coefficient of its son nodes, while the reconstruction formulas (2.8) tell us
the reverse process is possible. Since the Haar wavelet transform is invertible, we can
equivalently represent the leaves of the tree (the original samples) using all the detail
coefficients dj,k in the non-leaf nodes and the approximation coefficient a0,0 related to
the root node.
This tree representation of the coefficients allows to clearly determine the dependency
among them: a coefficient is determined by all and only the samples that are leaf nodes in
the sub-tree rooted in itself. This idea has been used for example in Budinich (2017) (in
an adaptive setting) to reconstruct only a region of interest in an image while retaining
some global information.
It is possible to express this dependency explicitly: with a simple induction proof it

10

a2,0, d2,0

a3,0 a3,1

a2,1, d2,1

a3,2 a3,3

a2,2, d2,2

a3,4 a3,5

a2,3, d2,3

a3,6 a3,7

a1,0, d1,0 a1,1, d1,1

a0,0, d0,0

Figure 3: The Haar dependency tree for N = 8.

can be seen that for k = 0, 1, . . . , L, we have

aL−`,k = 2−
`
2

(k+1)2`−1∑
h=k2`

aL,h

for ` > 0 dL−`,k = 2−
`
2

(2k+1)2`−1−1∑
h=k2`

aL,h −
(k+1)2`−1∑

h=(2k+1)2`−1

aL,h

 ,

(2.9)

i.e., we can write each approximation and detail wavelet coefficient as a linear combination
of the samples aL themselves. Note that here ` is indicating the co-level, or equivalently
the depth of the subtree rooted in the node. If we define index sets

NL−`,k = {k2`, k2` + 1, . . . , (k + 1)2` − 1} ,

we can rewrite (2.9) as

aL−`,k = 2−
`
2

∑
j∈NL−`,k

aL,j

for ` > 0 dL−`,k = 2−
`
2

 ∑
j∈NL−(`−1),2k

aL,j −
∑

j∈NL−(`−1),2k+1

aL,j

 ,

(2.10)

which resemble formulas (2.4), with the exception of the normalization coefficient. This
is an important distinction, arising from the fact that the Haar wavelet transform is de-
terministic and thus we know explicitly how the index sets NL−`,k are made; in particular
their cardinality depends only on the co-level `. In the definition of D`,k in (2.4) instead
we are weighing the sums over N`,2k and N`,2k+1 with the reciprocal of their cardinalities,
which will in general be different.

11

2.4 Algorithmic aspects for hierarchical clustering based dictionaries

As represented in the preceding subsections, our method for dictionary learning consists
of two conceptual steps, computing a hierarchical clustering of the training data and its
associated partition tree and computing the dictionary atoms from this tree. To achieve
the hierarchical clustering we will use 2-means, 2-maxoids and spectral clustering with
various data-graphs, see Section 3 for more details.
To determine the dictionary elements, we employ the procedure described in Section

2.2. In the following we summarize some algorithmic aspects of the dictionary construc-
tion procedure, where we assume that N training samples are given, and we want to
learn K ≤ N dictionary elements. In Algorithm (1) an outline of our procedure for the
centroid dictionary DC and the Haar dictionary DH is given as pseudo-code. There are
two important variables to specify for each instance of this procedure: the data structure
used for storing the nodes to visit in the tree (line (2)) and the branching criteria to eval-
uate on each node (line (7)). There are two main choices for the setting of these variables
that determine a different behavior of the algorithm: in the first case the tovisit data
structure is set to a FIFO1 queue and in the second to a priority queue.
In the first case, when tovisit is a FIFO queue, the tree will be visited breadth-first

and the branching criteria will be set to check for two conditions:

1. whether the cardinality of node ν is above a threshold mincard,

2. whether the value of the clustering minimization function is above a threshold ε 2.

In this case we do not have direct control over the cardinality K of the produced dic-
tionary, we simply know that it will be a decreasing function of ε. On the other hand
we have the certainty that the final clusters will be very small: they either must have
fewer than mincard elements or, when partitioned further, give a value of the clustering
minimization function below ε. This means that the clustering procedure gives some sort
of adaptive resolution of the space: the tree branches go deeper where the data is more
spread out, and in any case they go deep enough so that in all regions of the data space
the final clusters have approximately the same size.
In the second case, when tovisit is a priority queue, we use the variance of the node

being put in tovisit as the key and we always extract the value from tovisit with
the highest key value. This means that we give priority in the tree visit to those nodes
corresponding to higher variance, or equivalently we explore first those regions of the
data space where the data is more spread out. In this case the branching criteria is set
to check for the two following conditions:

1. whether the cardinality of ν is above a threshold mincard,

2. whether the number of branchings already occurred is smaller than K − 1

1first in first out
2we could alternatively check if some measure of "spreadness" of the data corresponding to the node ν
(for example its variance) is above the set threshold

12

This means that, if the sample set is large enough, exactly K − 1 branchings will occur,
and thus the Haar-dictionary will consist of K dictionary elements. In our tests we will
always use this priority queue variant because of the convenience of setting the dictionary
cardinality K. However, depending on the application the FIFO variant might be more
appropriate.

Algorithm 1 Haar-like tree based dictionary learning procedure
Input: Training data S = {Y1, . . . , YN}, clustering procedure, mincard, dictionary car-

dinality K or parameter ε
Output: Centroids dictionary DC and Haar dictionary DH

1: Initialize DC = DH := {Ar}
2: Initialize tovisit = DataStructure()
3: tovisit.put(r)
4: while tovisit is not empty do
5: ν = tovisit.get()
6: Partition Nν into Nν0 and Nν1 (with representatives Aν0 and Aν1)
7: if BRANCH_CRITERIA(ν) is TRUE then
8: if ν 6= r then
9: Remove Aν from DC

10: end if
11: Add edges (ν, ν0) and (ν, ν1) to E
12: Add Aν to DC and Dν to DH

13: tovisit.put(ν0)
14: tovisit.put(ν1)
15: end if
16: end while

The computational complexity of our method essentially depends on the clustering
procedure used and on the number of branchings done (i.e., the number of nodes in the
tree). Denoting with Ñ the leaf nodes of the tree and supposing that we use the 2-
means clustering by computing I iterations of Lloyd’s algorithm, for each non-leaf node
ν ∈ N\Ñ we require O(|Sν |nI) elementary operations for the clustering and O(|Sν |n) for
computing the associated dictionary element. Thus in this case the total computational
cost is ∑

ν∈N\Ñ

O(|Sν |nI) ≤ O(KNnI) . (2.11)

Remark 3. Our method can be adapted to online dictionary learning (see for example
Mairal et al. (2009) and Lu et al. (2013)). In this scenario one wishes to update the
dictionary based on new incoming learning data. If we suppose that the structure of
the hierarchical clustering remains unchanged even with the addition of the new training
data, it is sufficient to assign each new data point to the cluster corresponding to one of
the leaves and then travel on the tree from these leaf nodes up to the root node. Only

13

the dictionary atoms associated to nodes so encountered (i.e. the ancestors of the leaf
nodes containing the new data points) will be affected.
If the new incoming data presents very different features than the original training data,
then it would produce substantially different clusters and the hypotheses of the tree not
changing would become unrealistic. One could identify the regions of the data space that
are changing and recompute only the corresponding subtrees.
Finally, our method can be used to produce, with no further computational costs, sub-
dictionaries adapted to only a portion of the data. This can be done by simply selecting
an appropriate subtree and the dictionary atoms associated to it. This could be used
for example to accelerate the sparse coding procedure, by first assigning a sample to one
of the leaf clusters and then selecting a subtree containing this leaf, whose associated
dictionary would be used for sparse coding. One could thus regulate with a parameter
the trade-off between speed and accuracy of the sparse coding method: a more shallow
tree would correspond to a smaller dictionary and thus faster computation times.

3 Numerical Experiments

In this section we will carry out natural image reconstruction tasks using K-SVD and
particular variants of our method. We will compare computation times and the quality of
the reconstructions using the HaarPSI index (Reisenhofer et al. (2018)). The HaarPSI of
two images is a real number in (0, 1] indicating the visual similarity of two images, where
1 means the two images are the same and a lower number indicates higher distortion. We
choose this index because we are testing reconstruction of natural images and the HaarPSI
has the best correlation with human subjective quality assessment. The implementation
of our method was done in python3 while for K-SVD we used the KSVD-box Matlab
software4. All the numerical tests were run on a MacBook Pro Mid 2012 with an Intel
Ivy Bridge i5 2.5Ghz CPU. The exact code used to produce the results in this section
can be found in the batch_tests.py file in the git repository.
Using patches extracted from the flowers_pool image (Figure 4) as training data, we

computed the dictionaries with various methods and used OMP to reconstruct patches
from the same image. While we randomly extracted patches from the set of overlapping
patches in the image, we reconstructed non-overlapping patches due to time inefficiency
of OMP when dealing with a large number of data points. We ran the test with different
values of patch number, patch size, clustering method and reconstruction sparsity. For
clustering we used the classical K-means method with K = 2, the K-maxoids method
(Bauckhage and Sifa (2015)) with K = 2 and the Spectral Clustering method (Shi and
Malik (2000)) with different data graphs. The K-maxoids is slightly slower than K-means
but offers as class representatives some particular patches in the data-set as opposed to
the cluster centroids. In our case we hypothesized this would be an advantage, since
it would give us dictionary patches that are more sharp and less blurry, which will be
summed in linear combinations anyways by OMP. Spectral Clustering relies on what

3available at https://github.com/nareto/haardict
4avaiable at http://www.cs.technion.ac.il/~ronrubin/software.html

14

https://github.com/nareto/haardict
http://www.cs.technion.ac.il/~ronrubin/software.html

we call the data similarity graph, a complete graph with vertices given by patches and
edge weights given by their similarity under some measure. For the latter we used the
Frobenius norm, the aforementioned HaarPSI and the Earth Movers’ Distance (see for
example Rubner et al. (2000)). Because of the O(N2) computations of such similarity
measure required spectral clustering is much slower and unusable for larger patch sizes
and quantity; we thus restricted the computation of this clustering to simpler cases. In
all cases we set the dictionary cardinality to be 50% bigger than the dimension of the
vectorized patches, i.e. for 8× 8 patches we computed dictionaries with 96 atoms.

Figure 4: flowers_pool image

In Figure 5 (left) the computation times to learn various dictionaries are shown, in
logarithmic scale. It can be clearly seen that spectral clustering performs much worse
than 2-means or 2-maxoids, especially when using HaarPSI or Earth Mover’s Distance as
similarity measure. The reconstruction HaarPSI values (shown in Figure 5 (right)) are
only in certain cases better than other methods. Overall we consider spectral clustering’s
computation times prohibitive for anything but very small number of data points, and
we thus excluded it from further tests.
In Figure 6 (left) we plot the computation times required for learning dictionaries trained
on different number of 8 × 8 patches. In Figure 6 (right) instead we plot the HaarPSI
values of the reconstructed images (with sparsity 4) from these dictionaries. The learning
times clearly show the better performance of our method, especially when using 2-means
clustering. K-SVD still gives better quality reconstructions though, followed by the
Haar-dictionary with 2-means clustering and the Centroids dictionary with 2-maxoids
clustering.
We observed that our Haar-dictionary captures some structure that is not present in

the K-SVD atoms: dictionary atoms associated to nodes at smaller levels in the tree (i.e.
closer to the root node) are used with larger coefficients by OMP. To see this we consider
the solution X (in the notation of (1.1)) proposed by OMP, we sum its rows in absolute
values and associate these numbers to the corresponding dictionary atoms; we define

ηk :=
N∑
j=1

|Xkj | , k = 1, . . . ,K . (3.1)

15

100 200 300 400 500 600 700 800
n.patches

100

101

102

haar-dict-spectral-emd
haar-dict-spectral-frobenius
haar-dict-spectral-haarpsi
haar-dict-twomaxoids
haar-dict-twomeans
ksvd

0 100 200 300 400 500 600 700 800
n.patches

0.75

0.76

0.77

0.78

0.79

0.80

0.81

haar-dict-spectral-emd
haar-dict-spectral-frobenius
haar-dict-spectral-haarpsi
haar-dict-twomaxoids
haar-dict-twomeans
ksvd

Figure 5: Left: Times in seconds (in logarithmic scale) required to learn the dictionaries
as a function of the number of 8× 8 patches used for training. Right: HaarPSI
values of the reconstructed images with sparsity 5 as a function of the number
of patches used for training.

1000 2000 3000 4000 5000 6000
n.patches

5

10

15

20

25
centroids-dict-twomaxoids
centroids-dict-twomeans
haar-dict-twomaxoids
haar-dict-twomeans
ksvd

500 1000 1500 2000 2500 3000 3500 4000
n.patches

0.75

0.76

0.77

0.78

0.79

0.80

0.81

centroids-dict-twomaxoids
centroids-dict-twomeans
haar-dict-twomaxoids
haar-dict-twomeans
ksvd

Figure 6: Left: Times in seconds required to learn the dictionaries as a function of the
number of 16 × 16 patches used for training. Right: HaarPSI values of the
reconstructed images with sparsity 4 as a function of the number of patches
used for training.

16

The number ηk gives us a measure of how important the dictionary atom k is, in the
sense that it is more used in the sparse linear combinations of the reconstructed patches.
In Figure 7 we represent the vectors η for the Haar-dictionary (with 2-means clustering)
and the K-SVD dictionary: it can be seen in both plots (and this is mostly the case in
all the tests we’ve conducted) that there are few atoms that are used very frequently in
the reconstruction and other atoms that are used with far less frequency. The difference
however is that the plot for the Haar-dictionary presents a decreasing trend: atoms that
are computed earlier are more used by OMP. Since in this case the FIFO tree visit
strategy was used, these atoms correspond to the first levels of the tree: this means
that the atoms that OMP uses the most in the sparse coding procedure are given by
the differences between representatives of large clusters, i.e., they distinguish between
features of the data at a very coarse level.

(a) Haar-dictionary (b) K-SVD dictionary

Figure 7: Values of ηk defined in (3.1) for the Haar-dictionary (with 2-means clustering
and FIFO tree visit) and K-SVD dictionary with 300 elements computed on the
32 × 32 patches of the flowers-pool image when used for the reconstruction
of this same image.

This property could be used to obtain a sub-dictionary with similar reconstruction power
by limiting the tree-depth; this would accelerate OMP. We remark that the atoms in this
sub-dictionary associated to nodes closer to the root node would be stable to variations
in the data-set given for example by noise, since they represent coarse-level features in
the data.
Finally in Figure 8 we show the most used (i.e. ordered by decreasing values of ηk)

dictionary patches for various dictionaries. It can be seen that when using 2-means
our dictionary produces very smoothed out patches; this is due to the Haar-dictionary
elements being difference of centroids of sibling clusters. The patches obtained instead
using the 2-maxoids clustering have, as expected, sharper edges.

17

(a) 2-means Haar-dictionary

(b) Spectral Clustering (with HaarPSI similarity measure) Haar-dictionary

(c) 2-maxoids Haar-dictionary

(d) K-SVD dictionary

Figure 8: 20 dictionary atoms with highest ηk values (when reconstructing with sparsity
5) for various dictionaries. All the dictionaries were trained on 500 16 × 16
patches extracted from the flowers_pool image.

18

Acknowledgement

The authors gratefully acknowledge support by the German Research Foundation in the
framework of the RTG 2088.

References
Aharon, M., Elad, M., and Bruckstein, A. (2006). K-svd: An algorithm for designing overcom-

plete dictionaries for sparse representation. IEEE Trans. Signal Process., 54(11):4311–4322.

Bauckhage, C. and Sifa, R. (2015). k-maxoids clustering. In LWA, pages 133–144.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Imaging Sci., 2(1):183–202.

Blumensath, T. and Davies, M. E. (2008). Iterative thresholding for sparse approximations. J.
Fourier Anal. Appl., 14(5-6):629–654.

Budinich, R. (2017). A region-based easy-path wavelet transform for sparse image representation.
Int. J. Wavelets Multiresolut. Inf. Process., 15(05):1750045.

Budinich, R. (2018). Adaptive Multiscale Methods for Sparse Image Representation and Dictio-
nary Learning. PhD thesis, University of Göttingen.

Cai, J., Ji, H., Shen, Z., and Ye, G. (2014). Data-driven tight frame construction and image
denoising. Appl. Comput. Harmon. Anal., 37(1):89–105.

Chambolle, A. and Pock, T. (2011). A first-order primal-dual algorithm for convex problems
with applications to imaging. J. Math. Imaging Vis., 40(1):120–145.

Damelin, S. B. and Miller Jr, W. (2012). The Mathematics of Signal Processing, volume 48.
Cambridge University Press.

Davies, G., Mallat, S., and Avellaneda, M. (1997). Adaptive greedy approximations. Constr.
Approx., 13(1):57–98.

Dragotti, P. L. and Lu, Y. M. (2014). On sparse representation in Fourier and local bases. IEEE
Trans. Inf. Theory, 60(12):7888–7899.

Elad, M. (2010). Sparse and Redundant Representations: From Theory to Applications in Signal
and Image Processing. Springer Publishing Company, Incorporated, 1st edition.

Liu, L., Ma, J., and Plonka, G. (2018). Sparse graph-regularized dictionary learning for sup-
pressing random seismic noise. Geophysics, 83(3):V215–V231.

Liu, L., Plonka, G., and Ma, J. (2017). Seismic data interpolation and denoising by learning a
tensor tight frame. Inverse Problems, 33(10):105011.

Lu, C., Shi, J., and Jia, J. (2013). Online robust dictionary learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 415–422.

19

Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2009). Online dictionary learning for sparse
coding. In Proceedings of the 26th annual international conference on machine learning, pages
689–696. ACM.

Mallat, S. (2008). A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press.

Murtagh, F. (2007). The Haar wavelet transform of a dendrogram. J. Classification, 24(1):3–32.

Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. SIAM J. Comput.,
24(2):227–234.

Pati, Y. C., Rezaiifar, R., and Krishnaprasad, P. S. (1993). Orthogonal matching pursuit: Recur-
sive function approximation with applications to wavelet decomposition. In Signals, Systems
and Computers, 1993. 1993 Conference Record of The Twenty-Seventh Asilomar Conference
on, pages 40–44. IEEE.

Reisenhofer, R., Bosse, S., Kutyniok, G., and Wiegand, T. (2018). A Haar wavelet-based percep-
tual similarity index for image quality assessment. Signal Process., Image Commun., 61:33–43.

Rubner, Y., Tomasi, C., and Guibas, L. J. (2000). The earth mover’s distance as a metric for
image retrieval. Int. J. Comput. Vis., 40(2):99–121.

Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell., 22(8):888–905.

Tillmann, A. M. (2015). On the computational intractability of exact and approximate dictionary
learning. IEEE Signal Process. Lett., 22(1):45–49.

Tropp, J. A. (2004). Greed is good: Algorithmic results for sparse approximation. IEEE Trans.
Inf. Theory, 50(10):2231–2242.

Yan, D., Huang, L., and Jordan, M. I. (2009). Fast approximate spectral clustering. In Pro-
ceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 907–916. ACM.

Yankelevsky, Y. and Elad, M. (2016). Dual graph regularized dictionary learning. IEEE Trans.
Signal Inf. Process. Netw., 2(4):611–624.

Zeng, X., Bian, W., Liu, W., Shen, J., and Tao, D. (2015). Dictionary pair learning on Grassmann
manifolds for image denoising. IEEE Trans. Image Process., 24(11):4556–4569.

20

	Introduction
	Tree-based dictionary learning framework
	Construction of the partition tree
	Dictionary construction from the partition tree
	The Haar-dependency Tree
	Algorithmic aspects for hierarchical clustering based dictionaries

	Numerical Experiments

