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Abstract. This paper aims at providing a self-contained introduction to
notions and results connected with the Ls-approximation power of finitely

generated shift-invariant spaces (FSI spaces) S¢ C Lo (Rd). Here, approx-
imation order refers to a scaling parameter and to the usual scaling of the

Lo-projector onto Sg, where & = {¢1,...,én} C Lo (Rd) is a given set
of functions, the so-called generators of S¢. Special attention is given to
the PSI case where the shift-invariant space is generated from the multi-
integer translates of just one generator; this case is interesting enough due
to its possible applications in wavelet methods. The general FSI case is
considered subject to a stability condition being satisfied, and the recent
results on so-called superfunctions are developed. For the case of a re-
finable system of generators the sum rules for the matrix mask and the
zero condition for the mask symbol, as well as invariance properties of the
associated subdivision and transfer operator are discussed. References to
the literature and further notes are extensively given at the end of each
section. In addition to this, the list of references is enlarged in order to
give a rather comprehensive overview on existing literature in the field.
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§1. Introduction

In this paper we give an overview on recent results concerning the Ly-approxi-
mation power of so-called shift-invariant subspaces of Lg(IRd). We are go-
ing to consider only specific shift-invariant spaces, namely principal shift-
invariant (PSI) spaces Sy, generated by the multi-integer translates of just
one single function ¢ € Lg(IRd), and more generally finitely generated shift-
invariant (FSI) spaces Sg with a finite set ® = {é1,..., ¢} C Ly(IR?) of
generators. This leads to the following notion of approximation order: Let
Py Lg(IRd) — So be the Ly-projector onto the shift invariant space, and let
Py , be its scaled version, i.e., Po 1 (f) := {Ps(fn)}(5) with fr(z) := f(h-2),
for the scale parameter 0 < h € R. Then S is said to have Ly-approximation
order 0 < m € R for the subspace W C Lg(IRd) if

|f = Pon(f)l2=0(R™) ash—0,

for any f € W. When W is the Sobolev space Wzm(IRd), this definition can

be replaced by the following condition on the unscaled operator
If = Pa(f)ll2 < const. |flmz for any f € Wy (RY),

where |f[2, , := (27)~ [ga [EP™ | FN(€)]? d€ denotes the usual Sobolev semi-
norm of order m, referring to the Fourier transform f” of f and to the Eu-
clidian norm |¢|* = & + -+ - + &5 in the frequency domain. It is this notion of
approximation order which we will be going to refer to.

One essential concern of this paper is to give a self-contained summary of
the subject, where the PSI-case and the FSI-case are developed independently.
This concept aims at simplifying the approach to the paper for readers being
only interested in the PSI case. At this time, this circle of readers is certainly
the bigger part in the community of people interested in the approximation
theoretically aspects of wavelets and other related multiresolution methods.
Further, we are able to point out the close connections and the basic ideas of
the generalization to the FSI case. The main results will be worked out in a
form which is perhaps not always most general, but hopefully highly readable,
and they can be understood without going back to the original literature.
The interested reader, however, will find remarks and extensions at the end
of each chapter, including explicit references to the original literature. The
bibliography of this survey paper is intended to be even more comprehensive;
however, we are aware of the fact of being selective, and we feel unable to
compile a list of all papers who have contributed to this field. While we are
going to deal with Ly-projectors as approximation methods in this paper only,
the reference list gives also information on a bunch of papers treating other
linear approximation processes which are quasi-optimal, i.e., having the same
approximation power as the Ly-projectors.

The paper is organized as follows. It consists of two subsequent chapters
where the first one deals with general shift-invariant spaces, and the second
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one gives more details for the case where the system of generators is refinable.
Both chapters are of course influenced by some basic material from the list of
references: Chapter 2 could not have been written this way without recourse
to the fundamental work of de Boor, DeVore and Ron, and Chapter 3 uses
Jia’s important contributions frequently. We think, though, that here and
there we could add our own point of looking at the field, and we would like
to stress that at least the results for the FSI case in Chapter 3 are new.

Concerning the details of the paper a first orientation is provided by the
headings of the subsequent sections. We refrain from repeating this. Notions
and notations will be given during the text at adequate places. We should only
point to the fact that we always refer to usual multi-index notation: A multi-
index is a d-tuple p = (p1,...,pq) with its components being nonnegative
integers. Further, |u| := py + -+ + pa, and p! := py!- -+ gl For two multi-
indices pt = (p1,...,pq) and v = (vq,...,vq), we write v < p in case v; < p;
for y = 1,...,d. In addition, Y = ’/17' for v < p, and D* is short

v vi(p —v)!
‘ ‘ lul
for the differential operator —axfl e

§2. Lo-projectors onto FSI spaces

2.1. Shift-invariant spaces.

A shift-invariant space S is a subspace of Lg(IRd) which is invariant under
multi-integer shifts,

seS = s(-—a)eSforalaecZ?.

We shall deal with specific shift-invariant spaces spanned by the multi-integer
translates of given ’basis functions’, or 'generators’. A principal shift-invariant
space (or PSI space) S is determined through a single generator ¢ € Lg(IRd)
as the closure (with respect to the topology of Lg(IRd)) of

Sg ::span<qb(-—oz);oz€Zd>.

Similarly, given a set of finitely many generators ® = {¢y,...,¢,} C Lg(IRd)
its associated finitely generated shift-invariant space (or FSI space) Sg is the

S9 = isgi .
i=1

closure of

Some preliminary notations follow. Given f,g € Lg(IRd), their scalar
product can be expressed as

(Flg) == | F(2) 9(2) de = (2m)~¢ (FAlg") = (2m) /C £ g7(6) de
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with
Mg = > (- +2ra)g(- + 27a) (2.1.1)

=/

the 2r-periodization of f¢”, now often called the bracket product of f* and

g”. Here, we have used Parseval’s identity and the Fourier transform with

:/f(:z;) e g |

and z - ¢ denotes the scalar product of the two vectors in IR?; also, unindexed
integrals are taken with respect to the full space R?, and C stands for the
d-dimensional fundamental cube,

the following normalization,

C:= [—77,—|—7T]d

It is not hard to see that [f*|g"] € Li1(C), hence its Fourier coefficients
can be expressed as

(2m)~¢ /[fAlgA](ﬁ) et de = (2m) 71 (fPeT ")
= (flg(- — o) /f g(—(a —z)) dx

:(f*g)(a)7 aezdv

with ¢*(z) := g(—z) denoting the involution of g, and f * ¢* the convolution
of f and ¢* (which is a continuous function). This shows that the bracket
product has the Fourier series

FH1g" ~ DD (Fraie) e, (2.1.2)
/A
and at the same time verifies the useful fact that f is orthogonal to the PSI
space Sy if and only if [f*g"] = 0 as an identity in L1(C). Specializing to
the case where f = ¢, F := f * f* is called the auto-correlation of f, and
M = Y1+ 2ma)P ~ Y Fla) et (2.1.3)
/A /A

The following useful characterization of FSI spaces in the Fourier trans-
form domain holds true:

Lemma 2.1.4. For a finite set of generators ® = {¢y,...,¢0,} C Lg(IRd) and
fe Lg(IRd) the following are equivalent:

(i) feSs.
(ii) There are 2m-periodic functions 11,. .., T, such that f* =>""_ 7 &".

With this characterization in hand the following is easy to see.

Lemma 2.1.5. A function f € Lg(IRd) is orthogonal to S¢, with & =
{d1,...,0n} C Lg(IRd), if and only if [f"$"] =0,i=1,....n, a.e. on C.
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2.2. Ly-projectors onto Sg.

The Lj-projector onto Se is the linear (continuous) operator P : Lg(IRd) —
S¢ characterized by

f—Ps(f) L Se foranyfe Lg(IRd). (2.2.1)

We give the representation of this projector according to Lemma 2.1.4, with
increasing generality.

2.2.2. The PSI case. We first assume that for the single generator ¢
the translates are orthonormal, ie., (¢|¢(- — a)) = (¢ * ¢*)(a) = do,o and,
equivalently,

[6"]¢"] =1 in Li(C).

In this case it is clear that

Py(f) =Y (flo(-—a)) é(- — @),

=y/Ad

whence Py(f)" = 75 ¢ with 70 = > cpa(flo(- — a)) e~tt ¢ Ly(C) the
Fourier series of [f"[¢"] € L1(C), and therefore

Py()N =75 ¢" with 7 =[f"]|¢"] (2.2.3)

Next, we deal with the case that the translates of ¢ form a Riesz basis
for S¢, i.e., for some constants 0 < A < B < oo we have

AY el < 1) cad-—alllP < B el

A=Y/ A =y/Ad =y/Ad

for any (4(Z%)-sequence ¢ = (¢4), where || f|| := (f|f)'/? denotes the usual
Lg(IRd)—norm. Letting 7(§) = > czaca e~ ¢ it follows that

IS cad(-— )l = (27)7 (r 6" 7 6" = (2m)~¢ /C ()2 [$"|0")(€) de

and 3" cyalcal? = (2m)~ 1 Jo I7(§)]? d6. Hence the Riesz basis property is
equivalent with

A < [N < B ae. inC.

By performing the orthogonalization process

(61)" = o™/ /[6M "] (2.2.4)
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we see that ¢ € Sy, hence SyL C Sg. From the preceding orthonormal case,
A =Py (f)" for f € Sy, whence Sy = Sy, and

Py(f/)N =7 ¢" with 7= % (2.2.5)

In the general PSI case we use the same formulas with the modification that
(6T)"(E) =0 =:74(8) if [¢"]¢"](€) =0. (2.2.6)

Again, ¢ € S and Sgr C Sy From
[f* = Py(F)Mé"] =0 ae inC, forany f e Ly(RY),

we conclude that Py is indeed the orthogonal projector onto 5.

In order to give an error formula, we mention that

1f = Po(HI* = 117 = I Ps(FII

by orthogonality. Therefore, using Parseval’s identity we find

I =PI = o [ {10 - |Gy

A TOATE M€}

and from this we get

Theorem 2.2.7. Let P, denote the orthogonal projector onto the PSI space
S¢. Then, for f € Lg(IRd) such that suppf” C C, we have the error formula

I =Rl = e [ 16 {1 i) e

Remark 2.2.8. As noticed before, in this theorem we have to put

ney ol JNOP

This shows that 0 < Ag"(€) < 1, and

D AN (E+2ma) = 1— xz,(6),

a4
with Zg the set of all £ € R? with [¢"[¢"](€) =0, i.e.,

Zy=1{¢ € Rd; qu(f +27a) =0 for all o € Zd}.
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In case this Z, has measure 0, we see that Ay has the fundamental interpo-
lation property
Ay(a) =0p.o for o€ 7.

2.2.9. The FSI case. Here, we deal with the stable case only where the
translates of the system ® = {¢y,...,¢,} form a Riesz basis of Sg, i.e.,

AY X 1P < 1Y Y i —a)P < BY Y )
=1 o4 =1 qcZ? =1 o4
(2.2.10)
for some constants 0 < A < B < oo. It is opportune to introduce the Gramian
Gg for the system ® as

[¢127¢12] [¢12,¢22] [¢12,¢n2]
I - (02 a:ébl ] o2 1¢2 ] (62 7:¢n ]
T R PO EPU PPN (2.2.11)
= Z D" (- + 2ma) (B (- —|—27Toz)>H ;

=y/Ad

here, we have used the vector notation
"= (01" " o o)

and the superscripts T and H denote the transpose and the conjugate-trans-
pose, respectively. This Gramian is a 27-periodic (hermitian) matrix function,

and it can be shown that the Riesz basis condition is equivalent to requiring
that the spectrum {oy(€),...,0,(£)} of GL(£) satisfies

A< min 0;(§) £ max 0;({) < B ae. onC.

1=1,...,n 1=1,...,n
Without loss of generality we may therefore assume that
B2oi(€) 2 oa(€) 2 2 0ul€) 2 A, (22.12)

and that the Gramian has the spectral decomposition

7

G () =) oi(é) wi(€) ul(¢) (2.2.13)

=1

with U := (u; uy --- u,) a unitary, 2r-periodic matrix function.
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Theorem 2.2.14. The orthogonal projector Pg : Lg(IRd) — Sg takes the
form _
Py (f)" = (®")"[f"@")
with
o1 [F 1)

@ = : | :=(GH'e" and [f®"]:= :
Pn” [F"16n"]

Proof: Assuming for the moment that Pg(f)" € Lg(IRd) it is easy to see
that f — Ps(f) is orthogonal to Sg, for any f € Lg(IRd), Viz.

[Po(£)M@"] = Y (- +27a) (8"(- + 27a))” [f*[@"]
=Y/
=Gy [f"|®"] = [f"|GE @"] = [f"]®"],

hence [f" — Pg(f)"|®"] is the zero vector a.e. on C, and the orthogonality
follows from Lemma 2.1.5.

In order to prove the made assumption, we use the equivalent represen-
tation

1A
1

Pa(f) = (@[ @] with @ = | 1 | = (ah) e
ox

(2.2.15)
This is the adequate extension of the orthogonalization process (2.2.4). Using
the spectral decomposition of the Gramian it is not too hard to see that
o € Lg(IRd), hence ¢;" € S¢ by Lemma 2.1.4, 7 = 1,...,n. But the
Gramian of ®”" is the identity matrix, whence the sum Yo, S%L 1s an

orthogonal sum of PSI subspaces of Sg. Since Pp = Y., P,., the proof is
finished. M ’

We remark that the proof yields the following corollary that by the orthogo-
nalization process (2.2.15) we have the orthogonal decomposition

So = Sor
=1

into PSI spaces. As an easy consequence of Theorem 2.2.14 we get the ana-
logue of Theorem 2.2.7 as follows:

Theorem 2.2.16. Let Ps denote the orthogonal projector onto the stable
FSI space Sg. Then, for f € Ly(IR?) such that suppf” C C, we have the

error formula

I = Po(FIF = Cm~ [ 1P {1- @47 657 () T} e
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Remark 2.2.17. We may add the useful information that the function

satisfies

1

0 < Z(®)1(O @G < A( = Z ()M O <1,

where B is the Riesz constant in (2.1.12). Further

7

Y Al +2ma) =) [(65) l(¢) ] =n .

=y/Ad =1

and we arrive at the following fundamental interpolation property that

AaP(€) = (@MT(6) G316 BE  —  Aa(a) =boe, aez

n

2.3. Approximation power.

We first consider the PSI space generated by the famous sinc-function

1, ifEedC,

0, otherwise.

ole) = [T 2200 amd 6/(¢) =xc<£>={ (2.3.1)

- Ty
1=

Here, by (2.2.3), Py(f)" = f"xc, whence

I = Put = (207" |

R4\C

6P de < (27)7 / P P62 de

for any m € Ry, with |¢| the Euclidian norm of ¢ € R?. This tells

Lemma 2.3.2. The PSI space generated by the sinc-function (2.3.1) has
approximation power m, for f € Wzm(IRd), and any positive real m.

Next we prove the important fact that the approximation power of an
FSI space is already given by a PSI subspace Sy as follows:

Theorem 2.3.3. Let ¢ denote the orthogonal projection of the sinc-function
onto the (stable) FSI space Sg, i.e., 1) = Pg(sinc). Then the approximation
power of Sy, and S are the same.

Proof: From Theorem 2.2.14 and (2.2.3) we find that Pg 0 Pine = Py 0 Prine.
Writing

F=Pp(f) = f = Po(f) + Pa(f) — Pa 0 Psinc(f) + Py © Painc(f) = Pu(f)
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we see that (since Py(f) € So)

1f = Pe(HIl < [If = Po(HI < IF = Pa(HIl + 2017 = Peinc(H)]I-

The theorem now follows from Lemma 2.3.2. W

A function ¥ € S¢ having the property that Sy has the same approxima-
tion power as the larger space Sg¢, i1s called a superfunction in the FSI space.
Finding a superfunction with specific properties is the general background
of so-called superfunction theory. One such property is ¢ being compactly
supported whenever ® is. This question will be addressed later.

Remark 2.3.4. By Theorem 2.2.14, the superfunction ¢ of Theorem 2.3.3 is
given by
" = (@) [xcl@",

hence satisfies

PN = (@M BN = A(6) for E€C .
Also, since sinc — ) is orthogonal to Sy, we have [yc — ¥ |[¢"] = 0, whence

[WMEN(E) = [xelv™](§) =¥ (€) for (e .

Theorem 2.3.5. For the (stable) FSI space S¢ the following are equivalent,
for given 0 < m € IR:

(i) S¢ has approximation power m, for f € Wzm(IRd).
(ii) The function

¢ o {1 @9 65 )

lies in Loo(C).
(iii) For ¢ := Pg(sinc) we have that |§|_2m{1 — ;/)A(f)} € Lo(C).

Proof: With f = f1 + f2, where fi = f"y¢ is the orthogonal projection of
f onto Sginc, we have

If = Po (NIl <l = Pa(FOll + [[f2 = Pe(fo)ll < [Ifs = Pe(fo)ll + [l £2]-

Moreover, for f € Wzm(IRd),
Il = [ NP d < IFE,
RI\C

The theorem now follows from Theorem 2.2.16 and Remark 2.3.4. N
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Remark 2.3.6. The second statement of this theorem is equivalent to the
order relation

1—A@&):=1—(@")7() G (&) ® (&) = O(EP™) as £€—0;

see Remark 2.2.17. Also, statement (iii) of the theorem is equivalent to the
order relation

L=o™(&) = O(¢™) as €20,

2.3.7. The (stable) compactly supported case. From now on let us
assume that S¢ is generated by compactly supported functions. In this case,
the bracket products [¢;"|;"], ¢,7 = 1,...,n, all have finitely many Fourier
coefficients (since the functions ¢; * ¢; are compactly supported as well); ie.,
we have identity in (2.1.2), and the entries of the Gramian are all trigonometric
polynomials.

In particular, if G¢(0) is regular - and this is certainly true under the
Riesz basis condition assumed here - the function A is holomorphic in a neigh-
borhood of the origin. Hence the order relations in Remark 2.3.6, at least for
2m € IN, can be checked by looking at the power series expansion of 1 — A(§)
at the origin.

2.3.8. The compactly supported PSI case. This case can be dealt with
without recourse to the assumption on stability. Here, the zero set of the
trigonometric polynomial [¢"|¢"] in C has (d-dimensional Lebesgue) measure
0, and Ay defined in Remark 2.2.8 has the fundamental interpolation property,
indeed. Let us put

oM M€+ 2ma)?
6=~ L el G99
0#£acZd
From Theorem 2.2.7 we can deduce
Theorem 2.3.10. Let ¢ € Ly(R?) be compactly supported, and 0 < m € R.
Then, S4 has approximation power m for f € Wzm(Rd) if and only if

Q) = O(EP™) as €0,

This order relation can be expressed in another equivalent way, viz. from
(2.3.9) we see that it is equivalent to requiring that

67(E+2ma)l* = O(JEP" [ (€)) as £ —0, forall0+#aeZ’
(2.3.11)

A special case of this is
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Theorem 2.3.12. Let ¢ € Lg(IRd) be compactly supported, and assume that
[0"|¢"](0) # 0. Then, for m € IN the following are equivalent:

(i) Sy has approximation power m, for f € Wzm(IRd).
(ii) ¢ satisfies the conditions

DP¢MN2ra) =0 for 0+# o € Z* and |3| < m .

2.3.13. Compactly supported superfunction. In case 2.3.7 it is inter-
esting to search after a compactly supported superfunction. With ¢ as in
Theorem 2.3.3, according to Remark 2.3.4, we see that, on the fundamental
cube C'; ¥ coincides with A as given in Remark 2.2.17. Since the components
of ®” are entire functions, and since the coefficient functions of the Gramian
G4 are trigonometric polynomials, with the determinant non-vanishing due
to the Riesz basis property, we see that A (hence ) is C*° in a neighborhood
of the origin. Also, the representation of )" € S according to Lemma 2.1.4 is
determined in Remark 2.3.4 as " = (‘iA)H " o = (@MH (G @ x(,

1e.,
n —_—
%/)A:ZTMMA with 7lc = e, i=1,...,n.
i=1

JFrom this we see that the 27-periodic functions 7; are €' as well in a
neighborhood of the origin (in fact everywhere, according to our strong as-
sumptions).

It is now the idea to mimic the behavior of ¥ at the origin by a function

=7 i (2.3.14)
=1

with trigonometric polynomials 7; in order to have ¥ as a compactly sup-
ported function. This can be done, at least for m an integer, by forcing the
trigonometric polynomials to satisfy the interpolatory conditions

DP7,(0) = D°7(0) for 0<|B|<m and i=1,...,n.

Using Remarks 2.3.6 and 2.3.4 for 1), we see that Dﬁ;/:A(O) = D% (0) = Sop

and DA (2ra) = DA (2ra) = 0 for 0 # a € Z% and |3| < m. Hence Si

has approximation power m, for f € Wzm(IRd). We obtain

Theorem 2.3.15. Given the stable FSI space S¢ with compactly supported

generators ¢1, ..., ¢, the following are equivalent for m € IN:

(i) Se has approximation power m, for f € Wy*(IR%).

(ii) There exists a unique function ) € So that has the tollowing properties:
a) " is of the form (2.3.14), where

7 € spanf{e” ¢ g e Zi . |8l < m}.
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b) $(0) =1 and D?$(0) =0 for 3 € ZZ4 \ {0}, 3| < m .
c) Sy has approximation power m, for f € Wzm(IRd).

The superfunction ¢ of this theorem is called the canonical superfunction, and
the vector v := (71,...,7y,) is sometimes referred to as the canonical ®-vector
of order m.

2.4. Notes and extensions.

2.4.1. Shift-invariant spaces have a long tradition in Signal Processing, and
in Approximation Theory. As the most important and widely used examples
we mention as specific generators the famous sinc-function (giving rise to
expansions of band-limited signals in terms of the Whittaker cardinal series,
see [96]), and - as a counterpart to this - Schoenberg’s cardinal B-splines
generating his cardinal B-spline series, [91]. More recently, shift-invariant
spaces have been studied quite thoroughly since they appear in Mallat’s setup
of multiresolution analysis, see [27, Chapter 5]. Our chapter tries to give
an up-to-date discussion of the approximation powers provided by (scaled
versions of ) such spaces. The main results are worked out in a form which is
perhaps not most general, but can be understood without essential recourse
to the original literature.

2.4.2. The chapter is very much influenced by the fundamental work of
de Boor, DeVore and Ron on Ls-approximation power of shift invariant spa-
ces, [6, 7, 8]. We did not try to include the general L,-case, where we would
like to refer to Jia’s survey [43] and the references therein. Much of the original
interest in approximation orders stems from understanding the approximation
power of box spline spaces, see the book [10, Chapter 3], and the discussion of
various notions of approximation orders (like controlled or local approximation
orders, see e.g. [11, 34, 52, 53, 71, 72]). Meanwhile, Ron and his coworkers
have shown an interesting connection of approximation orders of a PSI space
generated by a refinable function to the convergence of the corresponding
subdivision scheme [89].

2.4.3. It is probably not useful to attribute the notion of bracket product to
any author; periodization techniques have been used for a long time in Fourier
analysis, a typical result being Poisson’s summation formula which holds true
under various assumptions, and with varying interpretation of identities. How-
ever, [54] and [6] were the first to use this notion in a way leading, e.g., to
the useful characterization of orthogonality of PSI spaces, see [6, Lemma 2.8].
The same paper contains Lemma 2.1.4 for the PSI case, while the general case
is given in [7, Theorem 1.7]. A simple proof of the result is due to Jia [47,
Theorem 2.1], see also [43, Theorem 1.1].

2.4.4. The construction of the Lo-projector in the stable PSI case is straight-
forward, and the orthogonalization process 2.2.4 has been used, e.g., in the
construction of orthonormal spline wavelets (with infinite support, but ex-
ponentially decaying at infinity) by Battle and Lemarié [1, 69]. Much more
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involved is the general case where formula 2.2.5 and Theorem 2.2.7 (with the
agreement 2.2.6) is again due to [6, Theorems 2.9 and 2.20]. In the FSI case
the notion of the Gramian was first used by Goodman, Lee and Tang [31, 32];
they also were aware of the orthogonalization process 2.2.15 (see [32, Theo-
rem 3.3]). The representation of the Ly-projector in Theorem 2.2.14 and the
error formula of Theorem 2.2.16 are again due to de Boor, DeVore and Ron

[7, Theorem 3.9].

2.4.5. Section 2.3 closely follows the ideas and methods in [8], with some
slight modifications and also easier arguments due to the fact that we involve
the assumption on stability. Concerning the more general (unstable) case, we
refer to the Remark stated in that paper after the proof of Theorem 2.2.

2.4.6. The compactly supported PSI case as dealt with in Theorem 2.3.12 is
well-understood for polynomial spline functions; first results in this direction
go back to the seminal papers [91] of Schoenberg in 1946. The condition
given in statement (ii) of the Theorem (together with ¢”(0) # 0) is nowadays
called the Strang-Fix conditions, due to their contribution in [92]. Assertions
(1), (ii) of Theorem 2.3.12 are also equivalent to the statement that algebraic
polynomials of degree < m — 1 can locally be exactly reproduced in Sy [48,
Theorem 2.1].

2.4.7 In the univariate PSI case d = 1 the following assertion can be shown:
Let ¢ € Lz(IRd) be compactly supported. If S4 has approximation power
m € N, for f € Wzm(IRd), then there exists a compactly supported tempered
distribution n such that ©» = N, * n, with N,,, the cardinal B-spline of order
m. Moreover, if suppy C [a,b], then n can be chosen in such a way that
suppn C [a,b — m]; see [84, Proposition 3.6]. A generalization of this idea to
the FSI case is treated in [79].

63. Shift invariant spaces spanned by refinable functions

3.1. Dilation matrices and refinement equations.

Refinable shift-invariant spaces are defined with recourse to a dilation matrix
M, ie., aregular integer (d x d)-matrix satisfying

lim M™™ =0.

n— 00

Equivalently, all eigenvalues of M have modulus greater than 1. Given such
a matrix, a shift-invariant subspace S of Lg(IRd) is called M -refinable, if

s€ S = S(M_l')ES.

In the literature, the dilation matrix is often taken as M = 2I (with I the
identity matrix), but we allow here the general case.
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A shift-invariant space S(®) C Lg(IRd) generated by & = {¢1,...,0,} C
Lg(IRd), is M-refinable if and only if the function vector ® := (¢q,...,¢,)7

satisfies a matrix refinement equation

=) P.®M —a); (3.1.1)

/A
here the “coefficients” P, are real or complex (n x n)-matrices, with n the
number of generators of the FSI space. The matrix-valued sequence P =

(Po)aega is usually called the refinement mask. In case of a single generator,
(3.1.1) takes the scalar form

$=Y pad(M-—a)
SY/A
with the scalar-valued mask p = (pa)aeza-

For simplicity, we shall only consider compactly supported function vec-
tors ®, and we suppose that the refinement mask P is finitely supported on

7Z%. Then ® C Ll(IRd) N Lg(IRd), and in the Fourier transform domain the
refinement equation reads

" =HM THe M~ T.) (3.1.2)

with M~71 .= (.7\4T)_1 and

H(¢) = ! Y Paeit, (el (3.1.3)

the so-called refinement mask symbol. This symbol H is an (n x n)-matrix
. . . d ..

of trigonometric polynomials on R". Again, in the PSI case we get a scalar-

valued symbol which we denote by

1 .
H(f) = ——— o€ is <. 1.4
©)= 143 gzjdp T, CER (3.1.4)

The goal of this section is a characterization of the approximation power
of an M-refinable shift-invariant space S¢ in terms of the refinement mask P,
or of its symbol H, or of the associated subdivision and transfer operators.

Here, the structure of the sublattices MZZ? and MT7Z2? of 7ZZ¢ is important;
we have the partitioning

7' = J(e+Mz'y= ] (¢ + MT7") (3.1.5)
eell e'er’

where F and E’ denote any set of representatives of the equivalence classes
72 |M72 and 72 JMT72%, respectively. Both E and E' contain p = | det M|

representatives, and in a standard form we shall always take

E=M(0,1["nZ* and E =MT(0,1[")nZ*. (3.1.6)
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We also let
Eq:=E\{0} and Ej:=E"\{0}. (3.1.7)

The following fact will be used in the sequel: Any 0 # o € 72" has a
unique representation

a= M +MTB), (>0, ecE, 3eu’. (3.1.8)

This can be seen as follows. Since limg_mo(M_T)éoz = 0, there is a unique
minimal integer ¢ > 0 such that o € (MT)'Z*\ (MT)*'Z?. Using the
partitioning (3.1.5), we find the required unique representation.

3.1.9. The PSI case. Here, refinability already implies that S4 has some
approximation power.

Theorem 3.1.10. Let ¢ € Lg(IRd) be compactly supported and M -refinable
with finitely supported refinement mask, and assume that ¢"(0) # 0. Then
¢ satisfies the Strang-Fix conditions of order one, whence Sy has at least

approximation power one, for f € Wzl(IRd).
Proof: From the scalar refinement equation
¢ =H(M 1) oMM~ T (3.1.11)
we conclude that H(0) = 1, and due to the periodicity of H we have
N2 MTa) = ¢"(2ra), ocZ?.
;From this, ¢"(2ra) = limg oo ¢ (2r(MT)*a) = 0 for 0 # o € 7%, by an

application of the Riemann-Lebesgue Lemma, and the assertion follows from

Theorem 2.3.12. N

3.1.12. The FSI case. A generalization of this result refers to the refinement
equation (3.1.2) at the origin. I ®"(0) # 0, then ®”(0) is a right eigenvector
of H(0), for the eigenvalue 1. Consider a left eigenvector v, say, for the same
eigenvalue, and put ¢ := v®”. Then ¢» € S, and as in the proof before
pN2ra) = 0 for 0 # o € 7. In order to apply Theorem 2.3.12 again, we
just have to require that ¢»"(0) # 0. This gives

Theorem 3.1.13. Let ® C Lg(IRd) be compactly supported and M -refinable
with finitely supported refinement mask and corresponding mask symbol H.
Assume that ®"(0) # 0, and that vH(0) = v for a row vector v satisfying
v®"(0) # 0. Then, b € S¢ given by " := v®” satisfies the Strang-Fix con-
ditions of order one, whence Sy, and, a fortiori, S¢ have at least approximation
power one, for f € W}(IR%).

3.1.14. The spectral condition on H(0). The additional assumptions
made in this theorem will appear later in a more general form, namely when
v = (71,...,7n) is a row vector of trigonometric polynomials and

P = ve! (3.1.15)
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Then + € Sg is compactly supported (whenever @ is), and we point to 2.3.13
where we have constructed compactly supported superfunctions ¢ in this way.
We say that v satisfies the spectral condition (of order 1) on H at the origin,
if

() ¢°(0) = v(0)®"(0) £ 0 and

(ii) v(0)H(0) = v(0).

For a stronger version of this condition, see Remark 3.2.11 below.

3.2. The zero condition on the mask symbol.

The Strang-Fix conditions can be expressed as a zero condition on the mask
symbol. This condition is sufficient for the PSI space 54 having approximation
power. The condition is also necessary in the stable case, and even under a
weaker assumption than stability.

Theorem 3.2.1. Let ¢ € Lg(IRd) be compactly supported and M-refinable
with finitely supported refinement mask and the corresponding mask symbol

H, and assume that ¢"(0) # 0. For m € IN we have:

(i) The zero condition of order m on the mask symbol,
D'{H(M T )Y 2re') =0 forall ¢ € E} and |u| < m, (3.2.2)

implies that Sy has approximation power m, for f € Wzm(IRd).
(ii) Conversely, if Sy has approximation power m, then (3.2.2) holds true

subject that
[¢A|¢A](27TM_T€/) #+0 foranye € E| . (3.2.3)

Proof: First let m = 1. In (3.1.11) we substitute { = 2ra with
a=c + M3, cE, peut (¢,8)+#(0,0),
to give
o (2ra) = H2rM~Te') ¢"2nM~Te +2703) .

While, for m = 1, (i) is always satisfied due to Theorem 3.1.10, we see that
assertion (ii) follows since {¢"(2rM~Te’ + 273)} 5cpa can not be a zero se-
quence for ¢ € Ej by (3.2.3).

For m > 1 we use induction and Leibniz’ rule in (3.1.11),

0ot = Y (T)oHEOIT DT (324)

w<~

with |y] < m + 1. In case of statement (i) we see that the zero condition of
order m + 1 immediately verifies the Strang-Fix conditions D¢ (2ra) = 0
for the following situations

v <m and 0#a € Z* (via Theorem 2.3.12) ;
v|=m and a=¢+MTB, ¢ e€E), 3eZ’.



Ly-Approzimation Orders 17

Here, the first situation is the induction assumption. For |y| = m and 0 #
o € Z% as in (3.1.8) with ¢ > 0, equation (3.2.4) reduces to

DIN2r{(MT) (¢ + MT5)})
= H(M ™~ "2x(MT) (" + MT3)) D {¢N M)} 2m(MT) (¢ + MT3))
—HO0) Y eyn (D76 2R(MT )N 4 M)

[+ =]~

for some constants ¢ , and an apparent induction argument with respect to
0 shows that the full Strang-Fix conditions of order m + 1 are satisfied, hence
Sy has approximation power m + 1. In case of statement (ii), ¢ satisfies the
Strang-Fix conditions of order m + 1, and due to the induction hypothesis,
the symbol satisfies the zero conditions of order m. Hence (3.2.4) yields, for
Iy| = m, ¢’ € B}, and any 3 € Z°,

0=D7"¢"(2r(c' + MT3)) = DY{H(M~T)}2re') o™2r M~ T +270) .

Due to our assumption (3.2.3), this yields an additional order in the zero
condition for the mask symbol. W

Remark 3.2.5. The zero condition on the mask symbol, (3.2.2), is actually
equivalent to

{D*HY2rM Ty =0 foralle € E) and |u] <m . (3.2.6)
In the univariate case, d = 1, the refinement equation is of the form
6= padlk:—a)
a€Z
for some integer k > 2. Here, this condition simplifies to

o
D“H(%)ZO, j=1,...k—1,4=0,...,m—1.

Since H is a trigonometric polynomial, the zeros can be factored out as
1 1—emthe\™
HY) =+ ———+ G
- (3= 6
with another trigonometric polynomial G satisfying G(0) = 1.

3.2.7. Condition (Z,,) and the FSI case. The above Theorem 3.2.1 is a
special case of the theorem to follow. Let us say that the matrix symbol H
satisfies condition (Z,, ), if there exists a row vector

V:(%l,...,%n)

of trigonometric polynomials such that
(a) v satisfies the spectral condition 3.1.14 on H at the origin and
(b) DF{VH(M~T)}(2me') = 0 for |u] < m and ¢’ € E},.
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Theorem 3.2.8. Let & C Lg(IRd) be compactly supported and M -refinable
with finitely supported refinement mask and the corresponding mask symbol

H. Assume that ®"(0) # 0. Then for m € IN we have:

(i) If H satisfies condition (Z,,), then S¢ has approximation power m, for
fewmmy).

(ii) Conversely, if S¢ has approximation power m, and if the Gramian Gg is
regular at £ = 2rM~T¢! for any ¢’ € E’, then H satisfies condition (Z,, ).

It should be noted that the condition on the regularity of the Gramian is
equivalent to the fact that the sequences

{qu(Zﬂ'M_Te' +218) Y pema » J=1,....n,
are linearly independent.

Proof: We can follow the proof of Theorem 3.2.1 with the same notations
and the notions according to 3.1.14; in particular, let ¢/" := v ®”. Due to the
refinement equation we have

P (2ra) = v(0) H2rM~Te) @ 2rM~Te' +273) (3.2.9)

for any a = ¢ + MT3 € 7Z%, and the induction procedure will use Leibniz’
rule in the form

D= (Z) DM {vH(M ™1} D7 {@ (M~ T} . (3.2.10)

w<~

For (i), the induction is based on Theorem 3.1.13 (case m = 1), and the
induction step of the above proof extends almost literally.

For (ii), let us consider the stronger assumption that the Gramian is
regular everywhere. Then according to Theorem 2.3.15 we can find v =
(71,...,7n) such that " = v®" satisfies the Strang-Fix condition of order
m. In particular, the Strang-Fix conditions of order 1 already show that
Y™(0) #£ 0 and

v(0)H(0) ®" (27a) = v(0) ®" (27 a)

for all o € ZZ (by putting ¢/ = 0 in (3.2.9)), hence v satisfies the spectral
condition on H at the origin, due to the regularity of Gg(0). The induction
step is now analogous as before.

In order to see (ii) with the weaker assumptions, it should be empha-
sized that Remark 2.3.4 holds true in a neighborhood of the origin as long
as the Gramian is regular there. In this way, also the construction of the
superfunction in 2.3.13 can be performed in this neighborhood. W

Remark 3.2.11. In the statement of Theorem 3.2.8, the row vector v can be
chosen such that its components are linear combinations of the exponentials

et with o€ Zi and |o|<m,
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and moreover, such that (besides the zero condition (Z,,)) the spectral con-
dition of order m,

D*{vH(M~T)}(0) = D*{v(M~T)}(0) (3.2.12)

is satisfied for |u| < m.

Remark 3.2.13. Condition (Z,,) can be simplified in the univariate case
d = 1, and it implies a matrix factorization of the refinement mask symbol
H. Here, equation (3.1.1) reads

®=> P,®(k-—a)

o

for some integer k£ > 2. It can be shown that there exists a trigonometric
polynomial matrix A such that

H(E) = k7™ A(KE) G(§ A(E) 7,

where G is another trigonometric polynomial matrix. Moreover, the factor-
ization matrix A necessarily satisfies the following two conditions:

a) {D#(det A)}(0) = 0 for |p| < m.

b) If ¢ defined by " := v @" is a superfunction (i.e., Sy has approximation
power m) then {D*(vA)}0) = 0 for |u| < m.

Further, considering W (£) := (1£)™ A(£)™! ®" (&) we obtain
THE) = G T (ET'E)

with G the trigonometric polynomial matrix occurring in the above factoriza-
tion of H, i.e., ¥ is a compactly supported refinable distribution vector with
refinement mask symbol G.

3.3. The sum rules.

The zero condition on the mask symbol can be given in an equivalent form.
Here, the group structure of E := Zd/MZd enters the discussion. It is well-

known that the dual group is given by E* = 2x(M~T7/7Z%), hence for the
Fourier matrix

o —2mie-(M~Te")
FM T <€ >e€E,e’€E’

we have

1
|det M|

Fy FH, =1, (3.3.1)

i.e., the matrix is unitary up to the given factor. A simple corollary of this is
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Lemma 3.3.2. For a trigonometric polynomial h(§) = > .y be e~'¢¢ the
following are equivalent:

(i) h(2rM~Te') = 0 for all ¢’ € E.
(ii) be = by for all e € E.
Proof: Condition (i) is equivalent to the fact that the vector (be)ccp is

orthogonal to all columns of the Fourier matrix except the first one, and this
property is equivalent to the vector being a multiple of the first column. W

In the PSI case this can be applied to the scalar-valued mask symbol H
in the following way: Given any algebraic polynomial ¢ and the corresponding
differential operator ¢(i¢D), then

i) BYO) = gy 3 po gle) e
/A

Rearranging the sum in terms of o = e + M~ and inserting the dual lattice

gives a - 2rM~Te' = ¢-2rM~Te' (modulo 27), whence
{q(iD) H}(2rM~T¢')
1 —ie2n M~ Te! .J.
= T n 2 (2 perary ale M) ) et (353

GEE 'YEZd

Combining this with the above lemma and with (3.2.2) yields the following
sum rules of order m:

Theorem 3.3.4. In the PSI case, the zero condition (3.2.2) of order m on
the mask symbol H is equivalent to the fact that the mask p satisfies

> permy ale +My)= > puyq(My), e€E, (3.3.5)
VEZL! vEZL!

for any algebraic polynomial q of degree less than m.

In particular, we observe that for ¢ satisfying ¢"(0) # 0 the sum rule of order

one
Zpe—l—M'y:ZpM'yv GEE,

yEZA yeZA

Y

is sufficient for S¢ having approximation power 1. The converse holds true
subject to the additional condition in Theorem 3.2.1 (ii).

Turning to the FSI case, we recognize that Theorem 3.3.4 is a special
case of the following statement (when dealing with the scalar case and putting

Vo = 0g):
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Theorem 3.3.6. In the stable FSI case, the zero condition (Z,,) on the row
vector VHH(M =) (with v(£) = 3 cpaVa€ "¢ arow vector of trigonometric
polynomials) is equivalent to the fact that the mask P satisfies the sum rules

Z Z Voo Peyno qle + M)

LY/ ANRT=Y/A

= Z Z VV—UPMU(](M’Y) , €€ E7

ocCXd ~eX?

(3.3.7)

for any algebraic polynomial q of degree less than m.

Proof: We have

V(e HM™6) = |dtM| POEDIRZE LA

oc€X aeld

hence with o = e + M~, ¢’ € E’ and ¢ any algebraic polynomial as before,
Q(iD){V H(M™T)}(2re)
-1 —ge2aM T
|det M)| Z < Z Z Vo Peprry (M €—|-’7—|—U)>e

ecl ockd ekl

Applying Lemma 3.3.2, the zero condition on the vector vH(M~T.), i.e.,
(Zm)(b) in 3.2.7, is now equivalent to the fact that the expression within the
outer brackets does not depend on e, for any polynomial of degree less than
m. Substituting ¢(M 1) by ¢ we arrive at the required sum rules. W

In particular, the sum rules of order 1 are satisfied if there exists a row vector
Vg € RY such that

Vo Z Pe—l—Ma' = Vo Z PMa' for all e € E .
laV/A i/

3.4. The subdivision operator and the transfer operator.

In this subsection we consider two linear operators which come with the re-
finement mask P in (3.1.1). These operators have been shown to be excellent
tools for the characterization of refinable function vectors.

For a given (complex) mask P = (Py)yecpe of (n x n)-matrices, the
subdivision operator Sp is the linear operator on the sequence space X =

(U(ZZ"))" defined by

(Spe)ai= Y PH \ics, acz?; (3.4.1)
pen?
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here, ¢ = (cq)peme € (K(Zd»n, ie., ¢ is a vector of (complex-valued) se-
quences indexed by 729, Restricting the subdivision operator to the case of
sequences which are square summable, i.e., ||c|* := Eaezdcgca < o0, or

c € (lo(ZZ4))" for short, we have the vector-valued Fourier series

ME = Y e e

=/

and (3.4.1) leads to
(Sp €)M (€) = | det M| H(E) e (MT¢) (3.4.2)

with the mask symbol H in (3.1.3).

The transter operator Tp (sometimes also called transition operator) as-
sociated with the mask P is the linear operator operating on (KO(Zan C

(K(Zd»n, the subspace of compactly supported vector-valued sequences, de-
fined by

(Tpd)a := Y Pura—pdg. (3.4.3)
BeEZL?

The definition naturally extends to (KQ(Zan, due to the compact support of
the matrix mask, and the Fourier series of the image vector sequence is given

by
(Tpd)" (&) = Z H(M™T (¢ +2re')) AN M™T(€ + 2re")). (3.4.4)
e'€ k!
In case of a scalar-valued mask p = (pa)acza, the linear operators simply
read as
(Spc)a= Y Pa—niges. c€UZY),
pex?

(Tyd)a =Y pra—pds . d€lo(Z"),
se?

and for ¢, d € Kg(Zd) we observe that
(Spe)™ (&) = |det M| H(E) N(MTE)  and

(T,d)N&) = > HM™T(£+2re) d" (M7 (¢ + 2re)).
e'€ k!
It is this version of the transfer operator d" + (T,d)" in the Fourier transform

domain and operating on <L2(C>> " which frequently appears in the literature.

There is a close connection between the two operators. When operating
on (Kg(Zan considered as a Hilbert space with scalar product

<cld>= > clda, (3.4.5)
=y/Ad
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it is easy to see that the adjoint operator S} defined by < Spec | d >=
< ¢ | Spd > is given by
Spd=(Tp(d™)) (3.4.6)

with d 7, := d_, denoting the reflection of a sequence. From this it is clear
that, considered as operators on X = (KQ(Zan, the spectra ox(Sp) and
ox(Tp) are connected to each other through complex conjugation, i.e.,

ox(Tp)=0x(Sp) .

The situation is a little more involved if we look at eigenvalues of the
operators. Here it is opportune to consider (3.4.5) as a sesquilinear form on
the dual pairing

X x X' = (0zh)" < (bo(zZh)" (3.4.7)

(the canonical bilinear form being (3.4.5) with the superscript ‘H’ replaced by
‘T”). Then formally, (3.4.6) extends to hold true, and the following theorem
can be shown along the lines of Theorem 5.1 in [48].

Theorem 3.4.8. Considered as an operator on (KO(Zan, Tp has only
finitely many nonzero eigenvalues. In particular, o is an eigenvalue of Tp

if and only if o is an eigenvalue of Sp, the latter being considered as an
operator on (K(Zd»n.

It is possible to give a characterization of approximation power of S(®) in
terms of properties of invariance of the subdivision and the transfer operator.
A linear subspace Y C (KO(Zan is called Tp-invariant, if

deY = TpdeY,

and Sp-invariant subspaces Z C (K(Zd»n are defined analogously.
3.4.9. The PSI case. For given m € IN, we put

Vi :={d € lo(Z") ; D*d™(0) = 0 for all u € Z% with |u| < m}. (3.4.10)

Since d” is a trigonometric polynomial, the derivatives at the origin are well
defined. These zero conditions at the origin are moment conditions for the
sequence d, indeed; since d"(£) = Eaezddae’af, we have

(—iD)*dMN0) =0 <= Y doa*=0,
=/

whence

Lemma 3.4.11. The following are equivalent, for m € IN and d € (o(ZZ%):
(i) deVn .
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(ii) Z do q(a) = 0 for any algebraic polynomial ¢ of degree less than m.
/A

We are now ready to present the announced invariance properties which
imply an approximation order result, in view of Theorem 3.2.1. Here, (with
a slight misuse of notation) we identify the polynomial space P,_1 (i.e.,
polynomials of degree less than m) with the sequence space of polynomial
sequences of order m,

{(Q(O‘))aezd ; g € Pm—l}> C K(Zd)

Theorem 3.4.12. Let p € lo(Zd) be a finitely supported mask with corre-
sponding mask symbol H. Then the following assertions are equivalent for
m € IN:

(i) Vi C KO(Zd) is invariant under the transfer operator T),.
(ii) Pp—1 is invariant under the subdivision operator S,.
(iii) H satisfies the zero condition (3.2.2) of order m.

(iv) p satisfies the sum rules (3.3.5) of order m.

Here, the equivalence of (i) and (iii) is obvious from the Fourier transform
expression of the transfer operator,

(T,d)(&) = Y HM (£ + 2re")) dN(MTT(E + 27e))

and the equivalence of (iii) and (iv) was established in Theorem 3.3.4. The
implications (i) = (ii) = (iv) can be taken from [48, Theorem 5.2].

3.4.13. The FSI case. Theorem 3.4.12 is a special case of the statements
to follow. For a given row vector

V(€)= ) vae it (3.4.14)

=/

of trigonometric polynomials we extend the notion in (3.4.10) to

Vin(v) = {d € (to(Z"))"; D*{vd"}(0) =0 for all u € Z% with |u| < m}.

(3.4.15)
As before in the PSI case, the zero conditions for v d” at the origin are moment
conditions for the ‘convolved’ series v« d™ € KO(Zd) given by

(V*d~)a = Z Va_gd~5: Z Va+5dg, OzEZd;
BexL? BexL?

note that d*(§) = >, cpe d,eTi € is a column vector of trigonometric poly-
nomials. Therefore, Lemma 3.4.11 gives
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Lemma 3.4.16. Given the row vector v in (3.4.14), the following are equiv-
alent, for m € IN and d € (KO(Zan:

(i) d € Vip(v).
(ii) v+d €V,
(ii) Z < Z A\ dg) q(v) = 0 for any algebraic polynomial q of degree

yext pent
less than m.

Theorem 3.4.17. Let P be a finitely supported (n x n)-matrix mask with
mask symbol H, and let v be a row vector (3.4.14) of trigonometric polyno-
mials such that the spectral conditions (3.2.12) of order m € IN are satisfied.
Then the following assertions are equivalent:

(i) Vi (v) is invariant under the transfer operator Tp.

(ii) H satisfies the condition (Z,,) with v, given in 3.2.7.

Proof: For d € V,,(v) we have, using (3.2.12),

> (1) tv LT 0) D T 0)

v<pu
=3 (1) D Or T D@ ()0
v<pu
= DAV AN =0, <
On the other hand, by (3.4.4), for any d € (KO(Zan,
D"{v(Tpd)"}(0) =

50 3 (1) DUVHOLIT (20 )HO) DI O+ 2))0)

e'el v<pu

Therefore, since Tpd is finitely supported whenever d is, statement (i) is
equivalent to the fact that

Z Z( )D {VH(M™"(- +2m¢'))}(0) D" {d" (M~ (- + 27€"))}(0)

= 0 for any d € Vi, (v) and |p] < m .

It is not too hard to see that this is equivalent to condition (Z,,). W

As a corollary of this theorem we have
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Theorem 3.4.18. In the stable FSI case, any of the statements in Theo-
rem 3.4.17 can be replaced by the sum rules of Theorem 3.3.6. Here, the
adequate form of the spectral conditions (3.2.12) is

[det M| Y > vy o Puoa(My) = Y vagla) (3.4.19)

LAY/ AR/ v/
for any polynomial of degree less than m, with v(§) = Eaezdvae_mf.

In order to relate the conditions in Theorem 3.4.17 to an invariance prop-
erty of the subdivision operator we let

m(z% c oz

denote the space of all sequences which increase at most polynomially at
infinity. In addition, we put

Wa(v) :={c e (I(Z")"; <c|d>=0foralld € Vi,(v)}.  (3.4.20)

Theorem 3.4.21. In the stable FSI case, any of the statements in Theo-
rem 3.4.17 can be replaced by any of the following conditions:

(i) Wi (V) is invariant under the subdivision operator Sp.

(ii) P satisfies the sum rules (3.3.7) with v.

Proof: (ii) = (i): Using Theorem 3.3.6 and Theorem 3.4.17, we see that
(ii) implies the invariance property of Tp. Therefore, V,,(v) is also invariant
under the operator S%, by (3.4.6). Also, due to the finite support of the mask
P we have

ce ((z")" = Spce ((zh)".
Therefore, given ¢ € Wy, (v) we find
<Spc|ld>=<c|Spd>= 0,
for any d € Vi, (v), whence Spc € Wi, (v).
(ii) <= (i): As we have seen in Lemma 3.4.16, d € V,,,(v) if and only if

Z Z vsq(0 —a)dy =0

=y /AR Y=V/A

for all algebraic polynomials ¢ of degree less than m. Putting here

q(6 —a) = Z ru(6)(—a)*  with r, := %D“q

[ <m
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the spectral conditions (3.4.19) yield

0= > | D vsruld)] (—a)da

lp|<m o€Z? \6€Z?

=ldet M| Y [ > > vasPusra(My)| Y (o) da.
lul<m \peZd yeZ /A
(3.4.22)
Now, let ¢ be any algebraic polynomial of degree less than m. Then the
vector sequence ¢ = ¢(q) given by

Ca = Z V§+ﬁ qg(MB), ac /A
BexL?

is an element of (H(Zd)>n (since (Va)aege is compactly supported), and
hence is contained in W,,(v), since for all d € V,,,(v), using Lemma 3.4.16

again,
H

<eld>= Y [ 3 VI, q005)| d.

aEXd \pe

= > qMB) D Varsda=0.

Bed ac#d

;From our assumption (i) we conclude that Spec € Wy, (v) as well, i.e., for
any d € Vi, (v):

0 =< SPC | d >= Z (Spc)g da
a4
H

= Z Z Pg—MﬁCﬁ da

aEX? \pes

= Z Z P s Z Vi 4(M7) do

aEX? \pes ~ e

— Y (2 X v Pacwsai) | do

aEX? \pei vci?

Equivalently, putting

oM7) = My +0—a)= 3 T (DFg)(M7 +a) (~a)"

[ <m
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we have

0= > | D > vi-sParms(D'q)(a+My)| (—a)'da

|u|<m acZd \Bek yce

for all d € V,,,(v). Comparing this with (3.4.22) shows that the expression
within the brackets must be independent of «, for any polynomial ¢ of degree

less than m. Whence the sum rules (3.3.7) of order m hold true, as we wanted
to show. M

3.5. Notes and extensions.

3.5.1. A stable, compactly supported M-refinable function or function vector
generates a multiresolution analysis for Lg(IRd), hence allows for a (now)
standard construction of a wavelet basis.

The dilation matrix M in the matrix refinement equation (3.1.1) is often
chosen as M = 21, with I the d x d unit matrix. For this special case, refinable
functions can be gained from tensor products of refinable univariate functions

Pi, SAY, a8
d

o(t) = [[eit), t=(t1,....ta)" R,
=1
and all results on univariate refinable functions can be simply transferred
to the multivariate situation. The corresponding wavelet basis then requires
24 _ 1 different generating wavelets.

In general, dilation matrices M with smallest possible determinant are of
special interest, since here the construction of a corresponding wavelet basis
refers to |det M| —1 wavelets (or multiwavelets). If M is not a diagonal matrix,
these wavelets are called non-separable, see [23]. An important instant of this
is the bivariate construction based on

11 1 -1
M_<1 —1) o M_<1 1)

For example, the so-called Zwart-Powell element is refinable with respect to
the first matrix; see [10, Chapter VII] for more information on approximation
power and subdivision of so-called box splines.

3.5.2. Considering the refinement equation (3.1.2) in the Fourier transform
domain, it follows that

(1) @"(0) is either a right eigenvector of H(0) to the eigenvalue 1 or

(i1) @”(0) is the zero vector.

The latter case is not really of interest since then @ can be considered as
a derivative of an M-refinable function vector ® with ®” = 0. Thus, the
assertion that H(0) has an eigenvalue 1 is the fundamental condition, and the
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spectral condition on H(0) in Section 3.1.14 just ensures that v(0) and ®(0)
are non-orthogonal left and right eigenvectors of H(0) to this eigenvalue. The
condition of these eigenvectors being non-orthogonal is clearly vacuous if 1 is
a simple eigenvalue.

Moreover, if ® C Lg(IRd) generates a stable, M-refinable FSI-space, then
the spectral radius of H(0) necessarily equals 1, with 1 being a simple eigen-
value and the only eigenvalue of absolute value 1, see e.g. [26].

3.5.3. For a given refinement mask the refinement equation (3.1.1) can be
interpreted as a functional equation for ®. In the Fourier transform domain,
the solution vector can be formally written as

®7(¢) = lim [[H(7) O,

L—oco 4
J=1

where r is a right eigenvector of H(0) to the eigenvalue 1. In particular, it
follows that ®(0) = r.

The convergence of the infinite product (in the sense of uniform conver-
gence on compact sets) is ensured if the spectral radius of H(0) is 1, and if
there are no further eigenvalues of H(0) on the unit circle. In this case a
non-degenerate eigenvalue 1 defines a solution vector ®”. If the eigenvalue 1
is simple (see Remark 3.5.2.), then this solution vector ® is unique.

3.5.4. This Section 3 often refers to work of Jia on approximation properties
of multivariate wavelets. In his paper [48] the PSI-case was completely settled,
for general dilation matrices; see also the following remarks. The proof of
Theorem 3.1.10 is a trivial extension of the proof of [54, Theorem 2.4].

3.5.5. In the univariate FSI case, d = 1, the zero condition (Z,,) and their
consequences for the approximation power of S¢ have been considered by [36]
and [76, 77] in the Fourier transformed domain, while [70] has given conditions
in time domain.

In particular, in [77] it is shown that approximation power induces a ma-
trix factorization of the symbol H; see Remark 3.2.12. Later on Micchelli and
Sauer [74] observed an analogous factorization property for the representing
matrix of the subdivision operator. Unfortunately, for d > 1 the zero condi-
tions on the mask symbols (3.2.2) and (3.2.6) do not lead to a factorization
of the symbols a priori.

The multivariate FSI case with arbitrary dilation matrices is e.g. treated
in [15]; the observed conditions relate to the sum rules of Theorem 3.3.6.

3.5.6. The generalized discrete Fourier transform matrix Fy; and its property
in (3.3.1) of being unitary are well-known, see e.g. [21]. These properties have
been used by Jia [48] again to derive the sum rules as in Theorem 3.3.4.

3.5.7. While the notion of subdivision operator Sp (for general dilation
matrices) has been coined by Cavaretta, Dahmen and Micchelli [16], the set-
up for the transfer or transition operator is often changed in the literature. We
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prefer here to say that Tp is (essentially, i.e., modulo reflection) the adjoint
of Sp. In this way, Theorem 3.4.12 dealing with the PSI case is identical with
[48, Theorem 5.2]. As far as the FSI case is considered, however, our results
are new.

It should be noted that for the PSI case and M = 21, the invariance of
P,,—1 under the subdivision operator 5, is equivalent to the property that
polynomials of order less than m can be reproduced from multi-integer trans-
lates of ¢. A result along these lines is already contained in [16].

3.5.8. The symmetrized form of the transfer operator (in the Fourier trans-
form domain) is given by Tp” operating on (nxn)-matrices C of trigonometric
polynomials as follows,

(Tp"C)(¢) =

> HM (¢ +2me)) C(MT (€ +2re!)) H(M T (€ + 2me’)) 7.

For M = 21, Shen [94, Theorem 3.8] has shown that the stability of S¢ is
equivalent to the following condition: The operator T has spectral radius
1, with 1 being a simple eigenvalue and all other eigenvalues lying strictly
inside the unit circle; moreover, the eigenmatrix of Tp" corresponding to the
eigenvalue 1 is nonsingular on the d-dimensional torus. We conjecture that
this equivalence is also true for arbitrary dilation matrices.

3.5.9. Considering the dilation matrix M = 21, the connection between prop-
erties of the subdivision operator Sp and approximation power m provided
by the FSI-space S¢ can be simply given as follows: The stable FSI space S¢
has approximation power m, for f € Wzm(IRd), if and only if there exists a
nontrivial vector q of polynomial sequences qy,...,¢q, € Pn—1 such that

Spq = o~ (m=1) q-

In particular, Sp necessarily has the eigenvalues 2% for k =0,...,m — 1.
This result can even be generalized to distribution vectors ® which do
not satisfy any conditions of linear independence ([55, Theorem 3.1]).
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