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1. INTRODUCTION

A two-scale difference equation is a functional equation of the form

n

p(1/2) = evp(t —v), (1.1)

v=0

where ¢, are given real or complex constants with ¢oc¢, # 0 and n > 1. A function
¢ satisfying (1.1) for all real ¢ is called refinable. Functional equations of type (1.1)
arise especially in the construction of wavelets as well as in interpolating subdivision
schemes. They are considered in a lot of papers (see e.g. [15, 6,7, 3, 4, 11, 13, 2]).



If ¢ € L*(R) is assumed, then ¢ has necessarily a compact support contained in
[0,n] (see [6]). In [2], we have restricted us to this case.

In the present paper, we continue our considerations in [2] on two-scale difference
equations, mainly with respect to nonzero continuous solutions ¢ of (1.1).
Functional equations of similar types as in (1.1) occur in physics and can be inves-
tigated with related methods. For example, the equation

y(qt) = j—qw T ylt-1) 42y, (0<q<1),1€eR,

associated with the appearance of spatially chaotic structures in amorphous (glassy)
materials, was intensively studied (see e.g. [1, 16, 9, 8]). Systems of such functional
equations are useful for applications in probability theory [17] and in the theory of
fractal objects (see e.g. [10]).

Usually, the Fourier transform is the main tool for solving this type of equations.
By Fourier transform ¢(u) = [~ o(t) e dt of (1.1), we obtain

P(2u) = P(e™) (u) (1.2)
with the two—scale symbol (or refinement mask)

n

P(z):= 5 ch 2v. (1.3)

v=0

In [6], it is proved for real coefficients ¢, that:

(i) if |P(1)] < 1 or P(1) = —1, then (1.1) has no L!'-solution;

(ii) if P(1) = 1, then it has at most one linearly independent L'-solution;

(iii) if [P(1)] > 1, and if a nonzero L'-solution ¢ exists, then P(1) = 2™ for
some nonnegative integer m. If in the last case, the coefficients ¢, (v = 0,...,n)
are replaced by 27™¢, in (1.1) then the new two-scale difference equation possesses
a nonzero integrable solution g such that ¢ is the m-th derivative of ¢:

o(x) = ddxmg(:zj) a.e..

Hence, looking for compactly supported solutions, we can essentially restrict us to
the case P(1) = 1. Then, repeated application of (1.2) yields

sy = TP, (14

where we assume that $(0) = ["p(z) do =1 (see e.g. [6]).

Later on, we also shall consider continuous solutions of (1.1), which vanish only for
t < 0, but are polynomials for ¢ > n. In this case, P(1) = 2™ also for negative
integers m is possible.

In the following, if we speak about a solution of (1.1), then we usually mean a
continuous one, but not the always existing identically vanishing solution. Some

2



considerations will be transfered to the case of piecewise contionuous functions and
to step functions (see Section 3).

Let us first assume that ¢ is a continuous and compactly supported solution of (1.1).
Introducing the (n + 1)-dimensional vector

O(t) = (), p(t+ 1), 0t +n))" (1.5)

and the (n+ 1) x (n + 1)-matrix A := (¢2-;), 4,7 =0,...,n, where ¢, =0 for 1 < 0
and ¢ > n, respectively,

co 0 0 0

Co (8] Co 0
A= (eij)ijmo=| ¢+ 0 o 0|

0 Cp Cp—1 Cp—2

0 0 0 Cn

(1.1) can be written in vector form

P(1/2) = Ad(1) (1.6)

for —1 <t < 1. Note that A is a 1 x 2 block Toeplitz matrix (see e.g. [19]), and that
(t) has at most n nonvanishing entries; for ¢ < 0 the first and for ¢ > 0 the last

component vanishes. If the coefficients ¢, are symmetric, ¢, = ¢,—, (v =0,...,n),
then it easily follows that ¢(t) = ¢(n — ). Equation (1.6) implies
P27 1) = AR (1) (1.7)
and for t =0
$(0) = A6(0). (1.3)

According to 1(0) # 0 for a nonzero continuous solution (cf. [7], Proposition 2.1),
(0) is necessarily a right eigenvector of A corresponding to the eigenvalue 1.
By means of the shifting matrices

0o 1 0 ... 0 0O 0 0 ... 0

0 0 1 0 10 0 0
V: 5 VT = ”

0 0 0 1 0 1 0

0 0 0 0 0 0 1 0

we have for —1 <¢ <1

O+ =Vet), ot —1)= V(). (1.9)
(

In view of V VT = diag (1,...,1,0) and VT V = diag (0,1,...,1), we obtain () =
VVI(t) for t >0 and ¥(t) = VI Vp(t) for t < 0. Replacing ¢ by ¢t — 1 in (1.6), it
follows that

1.

Ne)

t—1

s (T) = AWt — 1) = AVT (1)
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for 0 <t <1, and hence, by (1.9),

¢G§SZV¢G%Q=VAWww<%wSM

Recursive computation of p(¢). For the calculation of a solution ¢ of (1.1) at
dyadic rationals, it is convenient to introduce the following (n x n)-submatrices of
A

Ap = (C2i—j—1)1§i,j§n7 Ay = (CZi—j)lgi,jgna
and the n-dimensional vector ;/N)(t) = (1), p(t +1),..., 0t +n — T (cf. eg.
[4, 15, 7, 13]). Then starting with a suitable eigenvector ¥(0) of Ay (or with an
eigenvector 1(1) of A1) belonging to the eigenvalue 1, we have to apply consecutively

the relations
~ 1 ~t+1

%/’(5) = Ao %/N)(t)v @/)( 2 ) = A @/N)(t) (1-10)

In Section 2, we shall discuss the problem, how to choose ;/N)(O) among the eigenvec-
tors of Ap, if 1 is an eigenvalue of Ay with multiplicity greater than 1.

After having calculated the values ¢(277) (I, 7 € N) by means of (1.10), we can
interpolate them by continuous spline functions

27 n

pilt) =Yo7 R2t—1)  (j=0,1,2,...), (1.11)

where h(t) is the hat function

= <,
h(t) '—{ 0 |t

As shown in [6, 15], if there exists a nonzero continuous solution ¢ of (1.1) then
lim;_,., ¢; = . Note that this dyadic interpolation method is different from the
subdivision scheme considered e.g. in [3] and [5], pp. 207. In particular, this method
also applies if the integer translates of ¢ are linearly dependent, while the subdivision
algorithm does not work in this case (see e.g. [3]).

At this point, we want to mention, that ;/N)(t) can also be computed at certain
nondyadic values in a similar way. From (1.10), it follows that

@(Q;):%Aww,ﬁ(ﬁﬁ):&Amw,

(@) nni (). $()=nni()

TNhis means tNhat Ag Ay and A; Ag must also have the eigenvalue 1, and the vectors
¥(1/3) and ¢(2/3) can be computed as eigenvectors. Generally, we find

¢<2k_1> _AykAyk_l...Aylg/;(Qk_l)
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for i = 1,...,2% — 2, where the indices v; € {0, 1} are defined by the dyadic
representation 1 = 2521
the corresponding eigenvectors are determined only up to a normalization factor.
In order to find the correct factor, we can use Theorem 2.1 in [2], which gives
E;’;_OO o(t +j) = ¢(0) = 1, which is possible in the case P(1) = 1 (see Formula

(1.4)). Equivalently, the sum of all components of ;/N)(z/(Zk — 1)) is equal to 1.

v; 2271 If we restrict ourselves to simple eigenvalues,

Necessary and sufficient conditions for the existence of a nonzero continuous solution
of (1.1) are already presented in [15] and [4], involving infinite products of matrices
Ap and A;. Further, if (1.1) is assumed to have a nonzero, compactly supported,
integrable solution, some necessary conditions for the refinement mask P(z) can be
given. In particular, P(z) necessarily contains a polynomial factor p(z), where all
zeros of p(z) are roots of —1 of order 2" (r € N) (see [2]). This polynomial factor
p(z) can be seen as the refinement mask of a certain step function.

In Section 2, we investigate the structure of the (n + 1) x (n + 1)-matrix A by
means of Jordan’s normal form. The goal is to derive simple necessary conditions
for the existence of nonzero continuous solutions of (1.1). In Section 3, we present
a procedure for the construction of an arbitrary refinement mask of a refinable step
function. Polynomial solutions of (1.1) are considered in Section 4. In particular,
we show how an integral equation can be solved approximately. In Section 5, we
introduce a new algorithm which is based on a factorization of the refinement mask
P(z) into a simpler part P(z), being the refinement mask of a known function (e.g. a
step function) and a remainder part Q(z),

P(z) = P(2) Q(2).

Assuming that a (piecewise) differentiable solution g of (1.1) corresponding to P(z)
is given explicitly, we get the desired solution of (1.2) with the original mask P(z)
in the form

p(u) = go(u) [ Qe™™*).

Then @(u) can be recursively approximated taking

Gulu) = Q™) gy (u),

and the corresponding original functions ,, converge to a continuous (or even differ-
entiable) solution ¢ of (1.1), if Q(z) behaves well. In particular, this new algorithm
also works if the integer translates of ¢ are linearly dependent. Finally, in Section
6, we consider the case of continuous solutions of (1.1) with support [0, co) which
are polynomials for t > n.



2. JORDAN’S NORMAL FORM

Now, we want to consider the matrix A in detail. Assuming the existence of a
nonzero continuous solution ¢ of (1.1), we shall derive a set of simple necessary
criterions on A.

Let A = W=1JW be the decomposition of A into Jordan’s normal form, where

Jo Wl
J wr _
J = ! 7, . W= W;T . W= (U Uy Uy Us).
Js3 wrl
Here, .J; contains the Jordan blocks with eigenvalues
A=0fore=0,
A=1for:=1,

|A| <1 and A # 0 for ¢ = 2 as well as

|A| > 1 and A # 1 for ¢ = 3.
If such blocks do not appear, we consider the corresponding matrices as empty.
Further, W1 are matrices consisting of the rows of W, and U; are the matrices
consisting of the columns of U = W~ corresponding to .J;. In particular, we have

3 3
N uigwl=4, > Uuwl=1
=0 =0

as well as

Who, =1

and

wlhu; =0

fori # j(i,7 =0,1,2,3), where [ and 0 denote identity matrices and zero matrices of
suitable size, respectively. As shown in [2], Theorem 5.1, if (1.1) possesses a nonzero,
continuous L'-solution, then the Jordan block J; in the Jordan decomposition of A
(belonging to the eigenvalue 1) is a nonempty identity matrix, i.e. J; = I. With
the notations above, (1.7) can be written in the form

D(27F) = U JEW (1), (2.1)
Furthermore, for i = 0, 1, 2, 3 it follows that
Wl ) =Jfwlhe()  (keN) (2.2)
for =1 <t <1.

Theorem 2.1 If ) is a nonzero, continuous L'-solution of (1.6), then we have for
-1 <t <1,

Wi () =0, Wiy(t)=0, W, ¥(0)=0, (2.3)
as well as

Wi w(t) = Wi w(0). (2.4)



Proof: The convergence of the left-hand side of (2.2) for & — oo and the divergence
of J¥ in all elements of the main diagonal implies the relation W ¥(¢) = 0.

If A has root vectors of height at least m corresponding to the eigenvector 0, then
JI is a zero matrix, and (2.2) implies that W (¢) = 0 for —27™ < ¢ < 27™,
For m = 1, we obtain our assertion. In the case m > 1, we use the following
argument: Considering the infinite matrix A = (¢2-;)ij>0, it can be shown, that
each root vector of A to the eigenvalue 0 can be extendend to a root vector of A
corresponding to 0. The assertion WI(¢) = 0 then follows for all ¢ € [—1,1] from

E]ﬁther, since Ji = I, we get from (2.2) for j = 1
W (0) = W (1),
Finally, for j = 2, k — oo in Formula (2.2) yields W} 4(0) = 0. n
Corollary 2.2 If ¢ is a nonzero, piecewise continuous L'-solution of (1.6), then
for —1 <t <1 we have (2.3) and (instead of (2.4)),
WEw(t) = W (+0) for ¢ >0, WE(t) = Whp(=0) for t <0,  (2.5)

where both (40) and (—0) are right eigenvectors of A corresponding to the eigen-
value 1.

This assertion can be shown in the same manner as Theorem 2.1.

Example 2.3 Consider (1.1) with ¢ = ¢; = 1. Then, for arbitrary « € R,

a t=0,

1 te(0,1),
('Q(t) - l—a t= (1 )

0 otherwise

is a piecewise continuous solution of (1.1). The eigenvectors of A = [ mentioned in

Corollary 2.2 are ¥(4+0) = (1,0)T and ¢(—0) = (0,1)7.

Applying Theorem 2.1, we have (for continuous solutions) from (1.6)

B0 = A = S UE W p(t) = U (0) 4 Db WE (), (26)
and in particular for ¢t = 0,
$(0) = U, W2 (). 1)
Hence, .
¥(5) = (0) + U LWy o (). (2.8)



A lot of papers dealing with two—scale difference equations (cf. e.g. [7, 12]), are es-
pecially interested in nonzero continuous solutions of (1.1) with linearly independent
integer translates o(t+1) (I € Z). Here, we say that ¢(t+1) are linearly independent,
if, for all finite linear combinations, >, a;¢(t + {) = 0 implies that ¢; = 0 for all /.
The linear independence (or at least L*-stability (see e.g. [11])) of p(t + 1) (I € Z)
is crucial for applications of ¢ as a scaling function in wavelet theory as well as for
the convergence of the corresponding subdivision scheme (cf. [11]). In this case we
have:

Lemma 2.4 Let (1.1) possess a nonzero continuous L'-solution ¢ with linearly in-
dependent integer translates. Then both, Js and Jy, are empty.

Proof: If ¢ satisfies the assumptions of the lemma, then the vectors () (¢ €
[—1,1]) span the whole R"*! i.e., we have

span{¢(t) : ¢ € [-1,1]} = R™.
If WI and W would not be empty, this would be a contradiction to (2.3). [

We recall that the condition of linear independence for ¢ is equivalent to the condi-
tion that the Casorati determinant

e(th) o(t2) e e(tn)
et et +1) elta+1) .. eltatl)
Sltitn—1) oltatn—1) ... oty +n—1)

does not vanish for any t; € [0,1] (k= 1,...,n) with t; # t; for k # j (cf. [18]).
This is satisfied if and only if e.g. the two conditions

(a) P(z) has no symmetric zeros in C\ {0} (i.e., if zo # 0 is a zero, then —zq is no
zero);

b) For any odd integer m > 1 and any primitive mth root w of unity, there exists
y g yp Y,
an integer d > 0 such that P(—w?") % 0;

are satisfied (cf. [11, 12]).

Computation of ¢(0). For application of the vector cascade algorithm (see in the
Introduction), we first need to compute ¢(0). If the eigenvalue 1 of A is simple (as
e.g. assumed in [7]), then u := U] is a vector (of length n+1) and ¢(0) is necessarily

determined by u up to normalization. But, how to choose the initial vector ¢(0), if
dim J; > 17 Introducing the vector

x = Wl (0), (2.9)

we find from (2.7) that ¢(0) = U; z. Using (2.4), it follows that x = W[ +(¢), and
by ¥(1) = V(0) and 1(—1) = VT ¢(0), we obtain

c=WIVTUz=WVU (2.10)
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A similar consideration can be done with respect to (2.3) yielding
WEV Uz =WIVIU 2=0 (2.11)
for : = 0 and ¢ = 3. Hence we have

Proposition 2.5 If (2.10)—(2.11) has only the trivial solution x, then (1.1) pos-
sesses only the trivial solution ¢(t) = 0 as continuous solution. If (1.1) possesses a
nonzero continuous solution then x in (2.9) satisfies (2.10) and (2.11).

The importance of the vector x lies in the fact, that the initial vector ¢(0) = U; x
needed for the numerical computation of ¢(¢) is known, if we know z. Computational
observations lead us to the following

Conjecture. [f a nonzero, continuous solution of (1.1) exists, then x is already
uniquely determined by the first equation in (2.10).

Examples 2.6 (i) Let (1.1) be given with the coefficients ¢ = ¢ = 1/2, ¢5 =
1, ¢4 = ¢ = ¢3 = ¢4 = 0. Then the corresponding coefficient matrix A possesses the
double eigenvalue 1 with

pr_ (111111 U_10120210T
L7\ 1 001001)° '76\0 -1 =2 6 =2 -1 0/ -
Using (2.10), we obtain that

/10

T2 12 )t

and hence = = (3,1)T up to normalization. By Proposition 2.5, only this choice of
x can lead to a continuous solution of (1.1). The starting vector ¢(0) is now given
by (0) = (0, 1/3,2/3,1,2/3,1/3, 0) up to normalization. The corresponding

solution is

t/3 0<t<3,
o(t) = (6—-1)/3 3<t<6,
0 otherwise.

(ii) Consider the two—scale difference equation corresponding to the refinement mask
P(z) = %(:1;3 + 1)2(:1;5 + 1)2 = 21 4 2213 4 201 4 210 4 448 + 25 + 225 4+ 223 + 1.
Then the matrix A possesses the eigenvalue 1 with multiplicity 3, and we find

WlT:
20 14 17 8 -1 8 -4 -7 8 -7 -4 & -1 & 17 14 20
— [ 30 30 -60 30 30 —60 30 30 —60 30 30 -60 30 30 —60 30 30 |,
180\ o o 45 —90 45 0 0 45 -90 45 0 O 45 -90 45 0 O
001 2 3 2 1 -2 -4 -6 -4 -2 1 2 3 2 1 0
vIT=[0o 00100 0 0 -2 0 0 00100 0].
000001 0 0 -2 0 0 10000 0



The matrix W contains a 3-periodic vector in the second and a 5-periodic vector
in the third line, whereas the first line is a linear combination of the other two and
the eigenvector with the quadratic entries 3(j —8)* — 17 for j = 0,...,16. Equation
(2.10) leads to

L (60 5 3
r=— —30 x,
O\ o o —15

and we find z = (1,0,0)T. The starting vector (0) is then given by (0) =
(0,1,2,3,2,1, -2, -4, —6,—4,—2.1,2.3,2,1,0)T up to normalization. As a solution,
we obtain

0 1 <0,
t t €[0,3],
) e—t te)
PM=916_3 tel5]
10—2t tel68],

P16 —1) 1> 8,

3. REFINABLE STEP FUNCTIONS

In this section, we want to deal with the case of refinable step functions. The
results obtained here can be simply transmitted to piecewise polynomial solutions
by integration and to integrable solutions by convolution. Observe that the case of
refinable spline functions was also studied in [14]. However, this section has another
intention. We show that for each compactly supported integrable solution ¢ of
(1.1) the corresponding refinement mask P(z) contains a polynomial factor, which
itself can be seen as the refinement mask of a step function. In the second part
of this section we give a general method for the construction of refinement masks
corresponding to step functions.

First let us recall the following result (see [2], Theorems 3.3 and 3.4):

Theorem 3.1 ([2]) Assume that (1.1) with P(1) =1, and ¢o # 1, ¢, # 1 possesses
a nonzero, Lebesque—integrable, compactly supported solution ©. Then P(z) has a
polynomial factor p(z) of the form

p(z) = : (3.1)

Here q(z) is a polynomial of the same degree as p(z) and possesses a set S of zeros
with the following property: S contains roots of unity with powers of 2 as root ex-
ponent, and it is closed regarding to the operation z — 2% (i.e., for = € S it follows
that z* € S). Moreover, denoting the zero set of p(z) by R and introducing the set
S of all square roots of elements of S,

S:={z: €8},
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we have the relations:

R = S§\5,
S = {¥:5€N,z¢€R}.

We want to show that the factor p(z) in (3.1) can be considered as a refinement
mask of a special compactly supported step function. Observe that for nonzero step
functions, ¢g = ¢, = 1 is satisfied, since for ¢t — 40, (1.1) yields ¢(+0) = co(+0),
for t = n—0 we find p(n —0) = ¢,o(n —0), and (+0) # 0, p(n —0) # 0 must be
satisfied. The values of ¢(¢) at integers ¢ can be different from the one-sided limits
e(t+0) and p(t — 0) (see Example 2.3). Let

k

p(1)=> bx(t—v) (tER) (3.2)

v=0
with boby # 0 be a step function, where x(#) is the characteristic function of the

: . [ 1 telo,l),
interval [0, 1), i.e., x(¢) = { 0 t[0.1).
Theorem 3.2 [f ¢ of the form (3.2) is refinable, then the corresponding refinement
mask P(2) is of the form 2P(z) = q(z*)/q(z), where q(z) := (2 — 1)(2520 b,z") with
the coefficients b, as in (3.2). Moreover, the zero set {z € C: q(z) = 0} is closed
regarding lo the operation z — 22,

. Then we have:

Proof: Observe that Y(u) = (1 — ¢=**)/iu. Hence,

e = (FE)

i.e., x is refinable with the mask (1 + z)/2. Let

q(z) = Z b, 2",

such that ¢(z) = (z — 1) ¢(2). By Fourier transform of (3.2), we obtain

(1—e™)
T '

Blu) = (™)

Since ¢ is refinable, there is a corresponding refinement mask P(z) with ¢(2u) =

P(e=)¢(u). Hence

~o —2qu (1 B €_2iu) _ —uN N —1U (1 B e_iu)
Putting z := ¢~® and remembering that ¢(z) := ¢(2) (z — 1), we find
L q(z?)
P(z)=- . 3.3
0 =5 33)
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Now, let ¢(z) = Hfzo(z — a, ), where ag = 1 since ¢(1) = 0. Then,

2 pley = [ E e + V)

v=0 (z—ay)

Hence, for all v = 0,...,k, there are 3, € {0, 1}, v, € {0,...,k} such that o, =
(—1)% /o, that means: o = a,,. It follows that the set {ag,...,a;} must be
closed regarding to the operation z — 22, i.e.,

{ag,...,apy ={o? 1 jeNy, v =0,...,k}. [

Remarks: 1. For piecewise polynomial refinable functions ¢, similar relations for
the corresponding refinement mask P(z) as in Theorem 3.2 can be observed (see

[14]).
2. The zeroset {a, : v =0,...,k} of ¢(z) in Theorem 3.2 has the following property:
For each v, there exist integers m, k, > 0 and [ > 1 such that ay, = oz?,m = oz?,m“,

ie., ag, = ozzly. So, ay, is a (2! — 1)st root of unity and a, a (27(2' — 1))th root of
unity. In view of Euler’s Theorem we have 2900 = 1mod p for every odd p, where
here ¢(u) denotes the well-known Euler function (cf. e.g. [21]). Since every integer
can be represented as 2" with odd g, it follows that roots of unity of arbitrary
order 2"y can appear with [ at most equal to p(p).

3. Since only the quotient ¢(z?)/q(z) is needed in Theorem 3.2, we can assume
without loss of generality that ¢(1) =1 as far as ¢(1) # 0. If indeed ¢(1) = 0, then
we can find a factorization ¢(z) = (z — 1)'#(2) with some [ € N and with #(1) # 0
(and without loss of generality 7(1) = 1). In this case, it follows for the refinement

mask P(z) = q(2?)/(2q(z)) that P(1) = 2"

How to construct a polynomial ¢(z) such that 2P(z) = q(z*)/q(z) is a polynomial?
The zeros of such a ¢(z) can be obtained by the following procedure:

We choose an arbitrary finite set [ of positive rationals p,/q, containing 1 and
consider

CI — {627ripu/qu . py/qy c [}
Then we form the closure C; of C} such that

Cr={*:2¢€0C;,jeN} =04,

where [ contains all rationals Py /q, with e2mwv/9v ¢ (. Note that C] is finite as
well since {62J+1”p”/q”}jeN0 is a sequence with at most ¢, different entries. The
polynomial with the zero set C7 is the desired ¢(z), and by (3.3), we can compute
the refinement mask P(z).

Example 3.3 Choose [ :={1,1/4, 1/14} such that
CI — {627ri7 627ri/47 627ri/14}‘
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Forming the closure (7, we find

7 11 . 1 12
- 47 27 2 147 77 77 2
so that the corresponding polynomial ¢(z) has the degree 7. Hence, the zeros of
the corresponding refinement mask P(z) = q(z?)/(2¢(z)) are given by the set of

rationals
i 153 1 15 9 11
(=< = = = = — — — 5.
878747287287 147 14

TS

These rationals are the numbers below the rationals of I in the directed graphs in
Figure 1, which present the squares in direction of the arrows.

4. POLYNOMIAL SOLUTIONS

We assume now that (1.1) has a compactly supported m-times continuously dif-
ferentiable solution, i.e., o € O™ for an m > 1. Then A has the eigenvalues 27
(v = 0,...,m) (cf. [7, 15]). Let w!, u, be corresponding left and right eigen-
vectors of A, respectively (in the case of simple eigenvalues). By (1.6), we find

PM(t)2) = 2 ApW(t) (v = 0,...,m). Applying the second equality of (2.3) to
»U(1) (instead of (1)) it follows for 0 < v < y < m that
wlypWiy=0  (te[-1,1]). (4.1)
Further, (2.4) yields
wy V(1) = wy w(0) (1€ [~1, 1)), (4.2)
Since, as before (see Theorem 2.1), w? ¢ (0) = 0 for all row vectors of W with

w # w,, we obtain Y(0) = u, wf #)(0), analogously as in (2.7). Moreover, by
integration of (4.2), it follows that

wz ¢(u—u)(t) — ! wz ¢(u)(0)
for v =0,...,u < m. In particular,
T o
w, P(t) = ﬁ w, (0). (4.3)

If A also possesses the eigenvalue 27~ and if ©"+1)(1) is piecewise continuous,
then we also have

tm—l—l

w77;+177b(t) = ! wz;—l—l ¢(m+1)(‘|‘0) (4.4)

(m+ 1)
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for t > 0. The equations (4.3) and (4.4) can be used for a further simplification of
(2.8). If we have n linearly independent relations of this kind, then ¢(¢) is uniquely
determined by them, and (%) is a polynomial spline.

Remarks: 1. In the case that 27 is a multiple eigenvalue, it is possible that
wf »(0) = 0 for a certain g. This is a new explanation for the fact that also
eigenvectors w of A to eigenvalues A # 0 with |A| < 1 can satisfy wl(t) = 0 (see
the first remarks in Section 2 in [2]).

2. According to Theorem 2.1, equations of the form (4.1) are also valid for left
eigenvectors w’ corresponding to all eigenvalues A # 27# with [A| > 27# and u < m.
By integration, we obtain w’ () = 0, since, by (2.3), w?! is orthogonal to all
eigenvectors ¢ (0) with 0 < x < p.

Example 4.1 For the refinement mask P(z) = é(l + 2)2(22 +1) = é(z4 + 22°% 4+
2z? + 2z + 1), we obtain

100 00 10 0 0 0
22100 01/2 0 0 0
A:Z 12221 |=Ul0 0 1/4 0 0o |WT
001 2 2 0 0 0 1/4 0
00 0 01 0 0 0 0 0
with
11 1 1 1 0o 0 4 0 0
1 1/2 0 —1/2 —1 e e
wri=11 0 0 0 1|, U=212 0 —4 —4 2
0 0 0 0 1 1 -4 4 -4 -1
-1 1 =1 1 0O 0 0 4 0
Let W = (w1, wa, w3, wa, ws) and U = (vy, vq, v3, 04, vs), Where w! is the left

eigenvector, and v, the right eigenvector of A corresponding to the eigenvalue A,
(v=1,...,5) with Ay =1, Ay = 1/2, A3 = Ay = 1/4, A5 = 0. Assume that (1.1) has
a nonzero, compactly supported, continuous solution with a piecewise continuous
second derivative ¢"(t). Let (1) be the vector (1.5), so that (%) = A (t) for t €
[—1, 1]. Consider ¢"(t) satisfying "(%) = 4 A" (t) for t € [0,1] almost everywhere.
Then, ¢0”(40) is a right eigenvector of A corresponding to the eigenvalue 1/4. Hence,
P"(+0) = Covs = Co (1, =1, —1, 1,0)T with some constant C, since ¢"(4+0) = 0,
so that the other right eigenvector v, of A to the eigenvalue 1/4 falls out. Formulas
(4.1) and (2.5) imply that wl "(t) = wl " () = 0 and w! " (t) = wl " (+0) = Cy
as well as wl ¥"(t) = wl'y”(4+0) = 0. Finally, the first equality in (2.3) yields
wi"(t) = 0. Hence, we have

WL y"(t) = Cy (0,0, 1, 0, 0)7

leading to ¥"(t) = Co U (0, 0, 1, 0, 0)T = Cy (1, —1, —1, 1, 0)T. Further, 1'(0) and
1(0) are right eigenvectors of A corresponding to Ay = 1/2, and Ay = 1, respectively,
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ie., ¥/(0) = Crvy = C1(0,1,0, —1,0)7 and (0) = 4Cov; = Cy(0, 1, 2, 1, 0)T
with some constants C, Cy. Thus, integration of ¢"(t) leads to ¢'(t) = (Cot, Cy —
Cot, —Cot, —Cl —|— Cot, O)T and

W(t) = (Cot?/2,Cy + Cyt — Cot?[2, 20y — Cot? /2, Cy — Cyt + Cot?/2, 0)T.

Finally, the continuity of ¢ implies that Cy = €'y = 2C3, such that (¢) = Cy(¢?, 1+
20— 22 — 121 — 2t + 12, 0)T. Tt can easily be checked that 1(¢) really satisfies
(1.6). Of course, there are simpler methods to calculate .

Polynomial solutions on the whole line R are considered in Section 6.

Interval of constancy. There exist refinable functions, which are polynomials in
a certain interval, but not in other intervals. We shall show this for the case of
constant polynomials:

Let ¢ be a nonzero, Lebesgue—integrable and compactly supported refinable function
with the refinement mask P(z) = Q(z) (2 + 1), Q(1) = 1/2 which is normalized by
¢(0) = 1. Further, let ¢ be the refinable function with the mask ]5(2) =Q(z) (=" +
1), m > 2, so that

M

o(t —v)

=0
according to Theorem 3.9 from [2] with [ = 1.
Obviously, Q(z) is a polynomial of degree n — 1, suppy = [0, n], and we have
S elt—) ="t —v) = $(0) =1 for n — 1 <t < n (see Theorem 2.1
in [2]). Hence, if n < m, then it follows that >." " p(t —v) =1 for n — 1 <t < m,
le,op(t)=1forn—1<t<m.
For example, let Q(z) := (22 + 1)/6 and m = 2, and consider the compactly
supported solutions ¢(t) and @(t) corresponding to the refinement masks P(z) =
£(2241) (241) and P(Z) (22—|—1)(22—|—1) Then, supp ¢ = [0, 2], supp ¢(t) = [0, 3]
and, in particular, ¢(t) = r 1 <t <2 (see Figure 2).

An integral equation. Two-scale difference equations also appear as approxima-
tions of certain integral equations. Let us consider the following problem

S s 1
f(§) = 2/ f(t) dt, / f(t)ydt=1, supp f C[0,1] (4.5)
s—1 0
which was studied in [20] in differentiated form. A solution of (4.5) obviously satisfies

f e C=(R). A simple consequence of (4.5) is f(3) = 2. Applying the trapezoidal
rule to the first integral, we find

5= (f<s> P E2Y S §>) -

Putting s = t/n and ¢(t) = f(t/n), we obtain

ol3) == (w) bl +2Y el - u>) . (1.6)
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Figure 2: Solution ¢(¢) of (1.1) with ¢cg = 3 =1/3, ¢; = ¢35 =2/3

This is a two-scale difference equation of type (1.1) with the coefficients ¢y = ¢, =

I/n and ¢, =2/n for v =1,...,n — 1. The corresponding refinement mask reads
n—1
1 1 (I4+2)(1—2")
P (1 — v
(2) = 2n += +ny:12 2n( 1—2) ’

and we have P(1) = 1. The symmetry property, ¢, = ¢,—,, implies that ¢(t) =
@(n — 1) (cf. the Introduction).

Observe that, for n = 4, this refinement mask coincides with that of Example 4.1.
In the special case n = 2*, we obtain

1 (1+2)(1=22)

P(s) = Bilz) o= o LEAL
_ 2k1+1 (L4 2 (L4 23 (L4 =Y o (14 2270,

Let ¢r(?) (K > 1) be a compactly supported solution of (1.1) with the refinement
mask P(z). Then supp ), = [0,2%]. The Fourier transform %, can be given explic-

o 1+ e—mzl/zk 1— e—mzl
- | ==—— (leN
11 ( > S~ (€M)

k=1

itly, since from

it follows that

X ( ) 1 — e—iu 2 1 — €—2iu 1 — €—2k_1iu
Pk o 20U 2k=1lqy

In time domain, ¢k () can be interpreted as a convolution of characteristic functions,
namely

Pr(t) = (X[o.1] % X[o.1] % X[o.2 % - - % X[o,25-1) ()

17



Using the notion of cardinal B-spline Ny, of order k + 1, defined by

. 1 — e\ "t
Nk+1<u>=( . ) |

mw

and the identity
(1—2)2(1=24... (1=
- <(1+Z)(1—|—Z+22+23)...(1—|—Z—|—...—|—sz_1_1)> (1—Z)k+1
_ ((1 R (1 2R (1 (1 22’“‘2)> (1 — z)k+!

it follows that o
Pr(u) = Qr(e™™) Ny (u)
with

_ _ _ —2 k_k—1
142 k-t 1+ 22 k=2 14 24 k=3 1—|—22k 2 Eon
Qk(Z)Z( 2 > ( 2 2 — = D

n=

Hence, with the just defined coefficients a*, we have in time domain

2F—k—1
al)= 3 @k Nepalt —n). (4.7
n=0
In particular, o, € C*"}(R). The functions fi(s) = 27%¢(2*s) can be shown to
converge to a solution of (4.5). Let us mention that (4.7) can also be considered as
an example for Theorem 3.6 in [2].

5. A NEW ALGORITHM

As known, the subdivision algorithm works well only for solutions of (1.1) with
linear independent integer translates (cf. [11, 3]). Now, we want to propose a new
algorithm, which is based on the fact, that we can find a factorization of P(z) into
polynomials )

P(z) = P(2) Q(2) (5.1)
with P(1) = Q(1) = 1, where the solutions of (1.1) corresponding to P(z) can be
explicitly computed as e.g. in Theorem 3.1. Remember that, if (1.1) yields a solution
with linear independent (or stable) integer translates, then P(z) contains a factor
of the form (1 + Z)l with [ > 1.

Assume now, that P(z) factorizes as given in (5.1), and the solution g of (1.1) with

the refinement mask P(z) is explicitely known. Further, let Q(z) be of the form
Q(z) = Ei:o d,z" (k > 1). We define for m > 1

olt) i= Zd Pnmalt = 22, (52)
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or in Fourier domain
~ —tu /2™ 4 —qu/2!
Br(w) 1= Q™" ) pra( u) [T@em%) (5.3)
=1

Then we have:

Theorem 5.1 Let the refinement mask P(z) with P(1) = 1 be of the form (5.1),
and let oo € C"(R) (r > 1) be a nonzero compactly supported solution of (1.1)
with corresponding refinement mask P( ). Assume that Q(z) = E o dy 2" with

D := Ei:o |d,| satisfying
Pl D <P (5.4)

for some integer p and 0 < p < r. Then @, defined in (5.2) converges uniformly to
a solution ¢ € C*(R) of (1.1) with corresponding P(z), i.e.,

Jim [|gm —@lle = 0.
Proof: Since ¢y € C"(R), it follows by (5.2) that ¢, € C"(R) for m = 1,2,....

Observe that supp o = [0, — k] since P(z) has the degree n — k. Then there are
constants M; (I = 0,...r) such that

eS|l = sup (W) < My (1=0,...,7).
teR

By (5.2) and (5.4), we easily estimate Hc,o%)HOO <D "997(7[1)—1"007 hence
W]l < D™ M, (5.5)

for all m > 0. Further, by Q(1) = Ei:o d, =1,

P() = ol Zd (—S )+ et = 50))

such that for [ < r

O — L0 < o Y
o (1) = pma ()] = D max N (R (]
k
< Do lent ) (Enmri)| (5.6)
for some &,,_1 141 € [t — zim, t]. Hence, we get for [ < r

P < e |+ZI% — ol ()]

IA

MH‘ZD 11 (Eumrir)l
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By incomplete induction, we show that for [ =r, r—1,...,p+ 2 there are constants
(7 not depending on m, such that

D m
Il < () (5.7)

is satisfied: For [ = r the assumption (5.7) follows by (5.5), where C, = M,. Now,
supposing that (5.7) is satisfied for [ + 1 (instead of ) with a constant Cj;; and
p+2 <[ <r—1, there exists a constant (; with

()] = Mz+ZD—H e
n=1
Tk D \*'
MZ+ZD2701+1 (W)
n=1
E<~/ D\"! D\"
= M1+DCH—1§ Z (27,_[) S Cl <2r—l> 9

pn=1

IA

since 291 > 2T - > eri : > 1 in view of (5.4), and (5.7) is proved. Analogously,

we can show that (5.7) is also valid for [ = p+ 1, if D > 277?='. We conclude in

these cases that 99535) is a Cauchy sequence, since by (5.6) and (5.7)

k D \"' kD D \"!
|S‘Q££)( ) S‘Qm 1( )| < D_Cp+1 (W) = 70274‘1 (27’—]))

such that, by (5.4), limy, e Hc,ogﬁ)—cpgs)_l”m = 0. Incaseof D = 27" and [ = p+1,
we have

k
|‘P (p+1) ( )| < Mpyr + DCp+2§m

and hence

kD k
e®(1) — o2 (1) < D QmH )l < o (Mp+1 + D Cpyag(m — 1)) :

(»)

Thus, in any case, o, uniformly converges to a function ¢®, and therefore ,,
uniformly converges to . From (1.4) and (5.3), we see that the Fourier transform
of ¢ has the representation ¢(u) = Go(u) qAb(u), where ¢(t) is the solution of (1.1)
with the refinement mask @(z) normed by qAb(O) = 1. Hence by (5.1), ¢(t) is the
convolution (¢ * ¢)(t) and therefore a solution of the original two-scale difference
equation (1.1) with the refinement mask P(z). [

Remark: In view of Q(1) = 1, we always have D > 1, and for D = 1, we have

p=r—12>0. The assumption ¢g € C” in Theorem 5.1 can be relaxed. It suffices to
assume that c,og)(t) is a piecewise continuous function. Assume that oo € C"71, and
c,og) is continuous up to a set of finite points 0 <¢; < ... <ty < n—k, in which c,og)

can have jumps. Then, we can find an M, with |<,oér)(t)| < M, fort € [0, n—Fk], t #1;
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(7=1,...,d). Assume that m satisfies k27" < ming<;<q |t; — ¢;—1|. Thus, if ¢ is in
the neighborhood of ¢;, say { — 55 < t; <, we have

R ]
< ST = en VW + I () — T - 50
< (0=t bl (Gl + (4 5 = D L (),
such that
A0 — D~ ol < oM,

as needed in (5.6) of the proof of Theorem 5.1.

6. SOLUTIONS WITH NONCOMPACT SUPPORT

Up to now, we only have considered solutions of (1.1) with compact support, where
2P(1) = >"_,c, = 2% (k € N). Now, we want to deal with the case of solutions
with noncompact support and arbitrary integers £ < 0. We obtain:

Theorem 6.1 If2P(1) = 27% with k € N, k > 0, then equation (1.1) possesses a
unique polynomial solution of the form

k

()= et (6.1)

u=0

for all t € R with ¢ = 1.

Proof: Let ¢ be of the form (6.1). This function is a solution of the refinement
equation (1.1), if

k n k k—p L
ZQi—k o L ch Z z, Z ( - M)(_V)k—u—j 1
=0 v=0 1=0 7=0 J

Comparing the coefficients of ¢/ with j = k — ¢, this equation is satisfied if

27 gy = zn:Cu i: (Z:f) (=) ™",
v=0 #=0

For 7 = 0, this is an identity in view of P(1) = 27¥~!. The remaining system can be
written in the form

i—1 n

(2 -2t e =Y (’Z:’;‘) v Y ()M, (6.2)

M:O v=1
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In view of xg = 1, it can be solved recursively for ¢ = 1,2,...,k so that the theorem
is proved. m

For i = 1, it follows that #; = —k2% >-"_ v¢,. In the case n = 1, we can determine
the dependence of the coeflicients x,, from k:

Lemma 6.2 [fn =1 and 2P(1) =co+c; = 27F with k € N, k > 0, then equation
(1.1) has a unique solution of the form (6.1) with xo =1 and with

n= e (B) ety e, (6.3

H v=0

where the coefficients ¢y, are determined recursively by cog = 1, cyo = 0 for p > 0

and
1 e 7
Gt = ; (k) o o
forp>w.

Proof: Replacing (6.3) into (6.2), we obtain

(20— 1) (f) i (2%c) ¢y = 2 cli (i:’;‘) (i) s (21} e

v=0 u=0 =0

G2)6)=0)G)

we find by comparison of the coefficients from (2¥¢;)"*! that c,0 = 0 for g > 0 and

In view of

1—1

: ?
(2" = Vi1 = Y (M) Cuuvy

Hw=v
i.e. (6.4). The assertion cpo = 1 follows from (6.3) and x¢ = 1. n

As special cases of (6.4) we obtain

pn—1
oo | oo | 0\ 1
s 2 — 17 s 20 —1 k) 2k -1’

and the recursion formula

o
Il
—

v+1

Cotl4+1 = mcw-

Moreover, being interested in solutions of (1.1) which vanish for ¢ < 0 and which
are polynomials for t > n, we find:
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Theorem 6.3 Let 2P(1)=>"_ ¢, =27% with k € N, k > 0, and let

1/0

A=) el <1 (6.5)
v=0

be satisfied. Then (1.1) has a unique continuous solution, which vanishes for t <0
identically, and coincides with the polynomial solution in (6.1) fort > n.

Proof: Let us introduce the operator L, defined by

e, (2t —v) for 0 <
Lo(t):=<¢ ml

w3
INA
INA
3
=
INA
|3

v ‘

N
gt

ap2t—v)+ Y ce2t—v) for § <

0 v=m-—n+1

N
Il
w3
AN
o~
AN
‘3
SIE
AN
3

where p(t) is the polynomial solution of (1.1) constructed in Theorem 6.1. First, we
show the following: If ¢ is a solution of (1.1) with ¢(¢) = 0 for t < 0 and () = p(t)
for t > n, then we have p(t) = Lo(t).

For0 <% <t< mT'H < % it follows that ¢(2¢ — v) = 0 for v > m, implying

n

o(t) = ch,c,o (2t — v) :icl,cp 2t —v).

v=0 v=0
For § <% <t < m— < n, we observe that (2t—v) = p(2t—v) forv =0,...,m—n,
such that
o(t) = (2t —v) = e, p(2t —v) + Z e, (2t — v).
v=0 v=0 v=m-—-n+1

Hence, ¢(t) = Lp(t) in both cases.

Second, we see that the operator L maps C([0,n]) — C([0,n]), where C([0,n])
denotes the set of continuous functions ¢(¢) (0 < ¢ < n) with ¢(0) =0 and ¢(n) =
p(n). Taking the maximum norm, we have || Ly — Lyo|| < Al —@ol| with A in (6.5)
for arbitrary functions ¢ and ¢ in C([0,n]), so that L is contractive. Hence, the
assertion of the theorem follows from Banach’s fixed point theorem. [

If we consider the function

0 for 0
1) = { Yoy eyp(2t —v) for &

and the linear operator Lg, defined by Lop(t) = Lo(t) — f(1), we can write (1.1) in
the form ¢(t) = Lp(t) = Low(t) + f(t). The unique solution of this equation can be
represented by Neumann’s series:

=S 1 )

m=0
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though f(¢) & C'([0,n]). If the condition (6.5) is not satisfied, then we can attain it by
integration of (1.1). Afterwards, the original solution can be found by differentiation
of the integrated solution, but then it may be a distribution. Obviously, by k£ + 1
further differentiations, one obtains a compactly supported (distributional) solution
of an equation (1.1) with the usual condition P(1) = 1.

Example 6.4 Let us consider the case n = 1 with ¢y = ¢; = 27571, Then (1.1) has

a solution
0 for t <0,

() = ¢ tH! for0<t<1,
thH — (¢t — DM for 1 < ¢,

which is normalized by ¢(1) = 1. The monic polynomial solution p(t¢) reads
k k
) = —— -1 = —— T,
=y () =2 () 15

Comparing this result with (6.3), we obtain
> e =
Cpp = ——.
v=0 ' H + 1

Numerical computation. Under the assumptions of Theorem 6.3, the continu-
ous solution of (1.1) can be constructed numerically by an extension of the dyadic
interpolation method (see e.g. [4]). For this purpose, we introduce the vectors

D) = (p(t), ot +n—=1)", qt)=(p(t+n),...,p(t+2n —1))
and the matrices
Ay = (CQi—j)Ogi,jgn—la A= (C2i—j)1§i,j§n7
which have already been used in the Introduction, and

BO = | €C2;—;) 0<i<n—1 Bl = | C2;—5 1<i<n
( ! ])n§]§_2n—17 ( ! ])n+1_3]_s2n

Then, generalizing (1.6), equation (1.1) with 0 <¢ <1 can be written in the form

t ~t4+1

(5) = Aob(t) + Bog(t), (=

According to (6.5), the matrix Ay cannot have the eigenvalue 1. Hence, we can solve

the first equation in (6.6) for ¢ = 0 with respect to ¢(0), and obtain
$(0) = (I = Ao)™" Boq(0).

This vector can be used as a start vector for our algorithm. Applying (6.6) suc-

) = A1(t) + Big(t). (6.6)

cessively, 1(t) can be constructed at all dyadic rationals. The corresponding linear
interpolatory splines converge in view of (6.5).
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