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Abstract In this work we present two sparse deconvolution methods for nondestruc-
tive testing. The first method is a special matching pursuit (MP) algorithm in order to
deconvolve the mixed data (signal and noise), and thus to remove the unwanted noise.
The second method is based on the approximate Prony method (APM). Both methods
employ the sparsity assumption about the measured ultrasonic signal as prior knowl-
edge. The MP algorithm is used to derive a sparse representation of the measured data
by a deconvolution and subtraction scheme. An orthogonal variant of the algorithm
(OMP) is presented as well. The APM technique also relies on the assumption that
the desired signals are sparse linear combinations of (reflections of) the transmitted
pulse. For blind deconvolution, where the transducer impulse response is unknown,
we offer a general Gaussian echo model whose parameters can be iteratively adjusted
to the real measurements. Several test results show that the methods work well even
for high noise levels. Further, an outlook for possible applications of these deconvo-
lution methods is given.

Keywords time of flight diffraction · matching pursuit · orthogonal matching
pursuit · approximate Prony method · sparse blind deconvolution · parameter
estimation · sparse representation

1 Introduction

Many ultrasonic testing applications are based on the estimation of the time of arrival
(TOA), time of flight diffraction (TOFD) or the time difference of arrival (TDOA) of
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ultrasonic echoes. In order to analyze the received signals, one can usually suppose
that the diffracted and backscattered echo from an isolated defect is a time-shifted,
frequency-dissipated replica of the transmitted pulse with attenuated energy and in-
verted phase. In case of various flaw defects, the backscattered ultrasonic signal is
a convolution of the modified pulse echo with the signal representing the reflection
centers. Generally, we are faced with noisy measurements, where the noise is caused
by reflections on microstructures of the tested material and electronic disturbances. It
is therefore desirable to remove these effects from the recorded signal, i.e. to perform
a deconvolution.

Most deconvolution techniques have been constructed for a time-invariant linear
convolution model of the form

s(n) = x(n)∗ f (n)+ν(n)

with a (sparse) time series x(n) containing the relevant information on reflectivity, the
transducer impulse response represented by the system f (n), and a noise vector ν(n).
Blind deconvolution methods are of special interest, where one has to estimate both,
the reflectivity and the pulse from the same data, see [1,2]. Adaptive deconvolution
methods are e.g. based on minimum entropy evaluation [3,4], on order statistics [5,
6], or on wavelet based regularization [7,8]. Similar methods can also be applied to
B-scan images [9,10], where models with varying point spread functions have been
considered.

However, the reflectivity will be sparse, and this is a powerful constraint that
needs to be exploited for decorrelation. It can be directly integrated into the deconvo-
lution model by considering

s(t) =
M

∑
m=1

x(m) f (t− τm)+ν(t), (1)

where we assume that the number M of non-zero coefficients is unknown but small,
see e.g. [1,11]. In [1], a parametric model for the backscattered echo f = fθ (t) is
applied, where the parameter vectors θ = θm are estimated using an expectation max-
imization (EM) algorithm or the space alternating generalized EM (SAGE) algorithm
[12]. Unfortunately, there is no guaranty that these iterative algorithms converge to
the wanted optimum. Therefore a good first guess for the parameters is crucial for
the performance. Further, the EM algorithm converges very slowly [13]. The SAGE
algorithm converges faster than EM under certain conditions but becomes unstable
for low SNR [14]. Another drawback of the approach in [1] is that the number M of
non-zero coefficients needs to be known beforehand.

In this paper, we want to apply a Gaussian echo function fθ as introduced in
[1] for simulating the modified transmitted pulse. Compared to [1], we simplify the
model in (1) by assuming that the parameter vector θ determining the echo function
fθ does not depend on m. Hence, beside M, we have to determine the translations
τm, the amplitudes x(m) for m = 1, . . . ,M but only one parameter vector θ from the
given data. Our tests with real data sets show that this simplified model is suitable for
flaw detection in steel. Applying the model (1), we consider a general optimization
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problem for blind deconvolution. The proposed numerical methods for solving this
problem are very efficient.

For the deconvolution step we provide two methods; the first method is based on
a (modified) matching pursuit (MP) algorithm [15,16], the second uses the approx-
imate Prony method (APM) [17]. In particular, we are able to compute the suitable
number M of significant echoes in (1). For the iterative improvement of the model
parameter vector θ , we employ an iterative Newton approach. The obtained deconvo-
lution results are sparse vectors that contain only the most significant information of
the original A-scans. In this way, a simple detection of flaw positions is possible, e.g.
by employing a suitable classification method. Moreover, the proposed techniques
allow for efficient storing of A-scans as well as for denoising. In the latter case, we
just convolve the obtained sparse vectors with the ultrasonic pulse echo.

Recently, modified MP methods have already been applied for non-destructive
testing [18–20], but not in relation with blind deconvolution. The interest in the MP
method is due to its simple implementation and its numerical efficiency. The approx-
imate Prony method has not been applied for sparse deconvolution before.

Experimental data discussed in this publication is obtained using standard ultra-
sonic non-destructive testing devices. Particularly, we consider the TOFD method for
inspection of weld defects and the TOA method for measuring back wall deforma-
tions. For our special applications for inspection of weld defects using the TOFD
method, the proposed methods can be further improved by comparison of neighbor-
ing A-scans in order to achieve higher robustness and precision.

Although we have restricted the numerical experiments to ultrasonic NDT of
steel, the proposed deconvolution methods are also applicable to A-scans from other
application fields as e.g. aluminum (cement) or biological measurements.

2 The model for signal representation

For representation of a received signal s(t), we suppose that it can be obtained as a lin-
ear combination of time-shifted, energy-attenuated versions of the transmitted pulse
function with inverted phase, where each shift is caused by an isolated flaw scatter-
ing the transmitted pulse. Usually, we have only a certain estimate of the transmitted
pulse function. Using the approach in [1], we model the pulse echo by a real-valued
Gabor function of the form

fθ (t) = Kθ e−αt2
cos(ωt +φ), (2)

with the parameters θ = (α,ω,φ). Here, α describes the bandwidth factor, ω is the
center frequency, and φ the phase of the pulse echo. Because of its Gaussian shape
envelope, this model is called Gaussian echo model. These parameters have intuitive
meanings for the reflected pulse; the bandwidth factor α determines the bandwidth
of the echo and hence the time duration of the echo in time domain. The frequency ω

is governed by the transducer center frequency.
The normalization factor Kθ is taken such that ‖ fθ‖2 = 1. More precisely, we

obtain

K−2
θ

= ‖e−αt2
cos(ωt +φ)‖2

2 =
∫

∞

−∞

e−2αt2
cos2(ωt +φ)dt
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=

√
π

2
√

2α
(1+ cos(2φ)e−ω2/8α), (3)

where we have used that
∫

∞

−∞
e−2αt2

sin(2ωt)dt = 0 since the integrand is an odd
function. In [1], the feasibility of this model has been demonstrated by a setup for a
planar surface reflector using a steel sample, where the experimental echo is fitted by
the Gaussian echo.

Our own experimental results also show that (2) is well suited for pulse echo ap-
proximation, see Figure 1. For given B-scans obtained by TOFD or by measuring
back wall deformations, we use the following procedure to extract the pulse echo.
In a first step, we compute the mean value of each row of the B-scan separately.
In the obtained mean value vector (mean A-scan), we separate the back wall echo,
normalize its maximal amplitude to 1 (see Figure 1, second column), and take this
result as an approximation of the pulse echo for one scatterer. This procedure gives
a good estimate for an A-scan that is obtained by a back wall echo only, since the
material flaws are rare and yield signals with a small amplitude. The obtained pulse
echoes can be well approximated by the Gaussian echo model in (2), see Figure 1,
third column. The B-scans of TOFD data used in the first and second row in Fig-
ure 1 originate from two samples of a large-diameter pipe (outer diameter 1066 mm,
wall thickness 23.3 mm). The corresponding complete TOFD B-scans are presented
in Figures 10(a) and 11(a). In the third row, the B-scan of a back wall is used that
originates from a sample of a steel pipe of outer diameter 244.5 mm and wall thick-
ness 13.8 mm (see also Figure 12(a)). For a detailed technical description of the three
B-scans we refer to Section 6.2. The approximation with the Gaussian echo model
uses θ = (6.8486,14.685,−2,0836) in the first row, θ = (30.0,28.039,3.0867) in
the second row, and θ = (45.0,35.448,1.5708) in the third row, where α and ω are
given in (MHz)2 and in MHz, respectively.

Observe that the approximated back wall echo already includes the change of
pulse shape caused by frequency dependent attenuation in the material. Particularly,
due to the angle of incidence of the transducer, the back wall echo is in fact a sum of
pulse echoes with almost equal arrival times that cannot be separated into its original
parts but is taken as one echo function.

We usually expect that there exists only a small number M of relevant scatterers
corresponding to serious flaws in the material while microstructures in the material
cause noise. Therefore, the backscattered signal can be approximated by a superpo-
sition of time-shifted pulse echoes

s(t) =
M

∑
m=1

ã(m) fθ (t− τm)+ν(t), (4)

where the time shifts τm are related to the location of the relevant flaws, ã(m) are the
amplitudes, and ν(t) denotes additive white Gaussian noise due to the measurement
device. In Figure 2, we illustrate an example for a superposition of type (4) with
M = 5 amplitudes.

In practice, the number M of relevant pulse reflections in (4) is unknown, but
we may easily determine an upper bound depending on the application. Observe that



Sparse Deconvolution Methods for Ultrasonic NDT 5

Fig. 1 Left: vector of mean values from real data (TOFD and back wall detection), middle: separated back
wall echo, right: approximation by a Gabor function (2), for better comparison the separated back wall
echo is presented by a dashed line; time in microseconds.

this model (4) is different from that in [1], since we assume here that all relevant
reflections in the sum have the same parameter set θ , while only the amplitudes ã(m)
and the time shifts τm change with m. This simplified model represents echoes from
flaws or smooth surfaces with reasonable accuracy and provides good solutions for
the practical problems at hand in this paper. Particularly, this simplification enables us
to obtain fast algorithms for the estimation of all model parameters and to evaluate the
number M of significant reflections during the computations. The changes in pulse
echo shape due to the frequency dependent attenuation of the material are already
(at least partially) covered by using the back wall echo approximation to determine
a first guess for θ , see Figure 1. However, in case that one may switch to the more
complex model of [1], which is needed for more complex shape echoes obtained e.g.
for composite materials, the parameters obtained for the simplified model may serve
as a very suitable first guess in the EM or the SAGE algorithm.



6 Florian Boßmann et al.

Fig. 2 Example for a pulse echo fθ (t) (left), 5 amplitudes ã(m) (middle), and the superposition s(t) =
∑

5
m=1 ã(m) fθ (t− τm).

We are now faced with the inverse problem of finding the relevant time-shifts
τm and the corresponding amplitudes ãm as well as a suitable parameter vector θ

from the given signal s(t). Assuming that we have a first estimate of the parameter
vector θ (0) = (α(0),ω(0),φ (0)), we would like to compute ã = (ã(1), . . . , ã(M))T ∈
RM and τ= (τ1, . . . ,τM)T ∈RM , and improve the pulse echoes simultaneously. Let s
be the measured backscattered signal, and let F be a nonlinear operator that maps the
parameter set (ã,τ,θ) to the function ∑

M
m=1 ã(m) fθ (· − τm). Then, we aim to solve

the optimization problem

arg min
ã,τ,θ
‖F(ã,τ,θ)− s‖2 (5)

under the restriction that the number M of terms in F(ã,τ,θ) is as small as possible.
Some remarks about the noise are in order. In fact, we have to consider two dif-

ferent types of noise. On the one hand, there are unwanted reflections of the pulse
echo in the A-scan caused by inhomogeneities in the material. On the other hand, we
are faced with noise due to the measurement device. For the second type (called ν(t)
in the model (4)) we can assume white Gaussian noise with expectation zero. There-
fore it needs not to be considered in (5). The first type of noise, called microstructure
noise, is more relevant and may be strong. It is contained in the sum (4) and enlarges
the number M of components in the sum, and it will be suppressed in (5) by the
restriction condition that the number M of terms in (4) is small. In fact, we need to
assume here that microstructure echoes are smaller in amplitude than the flaw echoes,
otherwise the deconvolution methods in Section 3 will not be able to separate them
and noise may be wrongly taken as a significant flaw echo, see Section 6.

The optimization problem in (5) is very difficult to solve since the considered op-
erator is nonlinear and not convex with respect to the parameters. The problem is
even more delicate if the number of significant echoes M is not known. A usual ap-
proach to tackle such a complex problem is to separate it into subproblems that can
be solved easier. If M is known beforehand and small, the EM algorithm (or a gener-
alized version of it) can be employed to compute the maximum likelihood estimation
(MLE), [1,13,14]. For that purpose, the function s(t) = ∑

M
m=1 ã(m) fθ (t− τm)+ν(t)

is separated into the (unknown) summands

xm = ã(m) fθm(t− τm)+νm(t) m = 1, . . .M
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with ∑
M
m=1 νm(t) = ν(t). Supposed, that there are given the parameters ãk(m), τk

m, θ k
m

from the kth iteration, one tries to improve the current expectation of xm in the expec-
tation step (E-step) by

x̂k
m = ãk(m) f

θ k
m
(·− τ

k
m)+

1
M

(
s−

M

∑
m=1

ãk(m) f
θ k

m
(·− τ

k
m)

)
for m = 1, . . . ,M and solves the minimization problem in the M-step separately for
each m,

(ãk+1(m),τk+1
m ,θ k+1

m ) = arg min
ã(m),τm,θm

‖x̂k
m− ã(m) fθm(·− τm)‖2.

Observe that the M subproblems considered in the EM algorithm are only coupled
by the condition s ≈ ∑

M
m=1 ãk(m) f

θ k
m
(·− τk

m) in the expectation step, and this yields
the very slow convergence of the EM algorithm. However, while the conditions that
imply convergence to the global minimum of (5) can not be verified (see [13]), the
method gives good parameter estimates, supposed that one starts with a suitable first
guess.

Here we want to propose another separation method for the simplified model that
enables us to compute also the unknown M.

Suppose that we have an initial guess θ (0) for the choice of the pulse function that
may be obtained experimentally from the data as above. In order to find a suitable
solution of (5) we propose the following iterative method that consists of two steps
in each iteration.

1. Solve the problem

(ã(k),τ(k)) := argmin
ã,τ
‖F(ã,τ,θ (k−1))− s‖2 (6)

under the restriction that the number M of terms in F(ã,τ,θ (k−1)) is as small
as possible. For that purpose, we propose the matching pursuit (MP) method in
Section 3 or the approximate Prony method (APM) in Section 4.

2. Solve the minimization problem

θ
(k) := argmin

θ
‖F(ã(k),τ(k),θ)− s‖2 (7)

using an iterative Newton-method represented in Section 5.

Regarding the applications, we are especially interested in ultrasonic testing of
steel. Here, we use two different arrangements. In the first arrangement (TOFD in-
spection of weld seams) we use two probes, one transmitter and one receiver, see
Figure 3. The transmitter produces a relatively wide beam spread to maximize the
extent of the scan. The two probes are aligned geometrically on each side of the
weld, and an A-scan is taken at sequential positions along the length of the seam. A
typical A-scan usually detects

– the lateral signal which travels along the surface of the component and has short-
est arrival time;
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transmitter receiver

defect

weld

lateral wave
diffraction/reflection
back wall echo

Fig. 3 TOFD probes arrangement for weld inspection.
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Fig. 4 Example of TOFD A-scans. Top: A-scan without a flaw; bottom: A-scan with a flaw. These A-scans
are taken from the TOFD data in Figure 11.

– the back wall echo, which has longest transit time, see Figure 4.

In the second arrangement (inspection of back wall deformations), transmitter and
receiver coincide and the beam is focussed to the back wall. In case of defects, also
the corresponding signal reflection can be observed in the A-scan.

Observe that the proposed iteration method that separates the optimization of
the arrival times and amplitudes from the optimization of bandwidth factor, center
frequency and phase also gives no guaranty for global convergence. However, using
the initial parameter vector θ (0) obtained from approximating the back wall echo as
given above, we usually obtain reasonable results for the parameters already by using
just the first step of the proposed iteration (and keeping the θ = θ (0) just from the
approximation).
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3 Deconvolution based on greedy algorithms

We are especially interested in fast algorithms for detection of arrival times in the
proposed models. Therefore, we propose first a matching pursuit approach that has
been introduced in [15], see also [16] and references therein. It has been considered
earlier in ultrasonic nondestructive testing; we refer to [18] as well as to modified
versions as high resolution pursuit [19] and support matching pursuit [20]. In opposite
to [18–20], we apply this idea firstly in connection with parameter estimation for the
pulse model for blind deconvolution.

Generally, the matching pursuit algorithm works as follows. Let us assume that
a given function s in a Hilbert space H can be well approximated by a linear com-
bination of given functions b j from a dictionary D = {b1, . . . ,bD}. In the first step,
one iteratively seeks for the dictionary function b j that correlates best with s. Then
the same procedure is applied to the residuum r1 = s−〈s,b j〉b j and so forth. In order
to apply this idea to our model, we first need a suitable discretization. We suppose
in this section that the parameter vector θ describing the pulse functions fθ is given,
such that we have to solve (6) for unknown τ and ã and under the restriction that M is
small. A procedure for iterative adjusting of the parameter vector θ will be presented
in Section 5.

3.1 Discretization of the model

In practice, the received signal (A-scan) s is given as a vector of sampled signal values
s = (s(n∆t))

N
n=0, where ∆t denotes the sampling distance and N +1 is the number of

data.
Further, we can discretize the pulse echo fθ with the same sampling distance ∆t ,

i.e. let fθ = ( fθ (`∆t))
L
`=−L with 2L� N, where we use only a finite number of func-

tion values, since fθ decays rapidly. We assume that all relevant shifts of the impulse
function fθ (t) are completely recorded by the sampled data. Then a discretization of
the received signal s can be modeled by

s(n∆t) =
N−L

∑
k=L

ã(k) fθ ((n− k)∆t)+ν(n∆t), n = 0, . . . ,N, (8)

where ã = (ã(k))N−L
k=L denotes the vector of K+1 (unknown) amplitudes, where K :=

N−2L. A comparison of this representation of s with the sparse representation in (4)
yields that we can suppose that only a small number M�K+1 of coefficients in ã =
(ã(k))N−L

k=L has a modulus being significantly different from zero, and the significant
components are assumed to have the indices km ∈ Z with L≤ k1 < .. . < kM ≤ N−L.
Hence, the relevant time-shifts τm in (4) are given by τm = km∆t .

We denote the coefficient matrix of the linear system in (8) by Fθ = Fθ ,∆t =

( fθ ((n− k)∆t))
N,N−L
n=0,k=L and can shortly write

Fθ ,∆t ã+ν= s, (9)
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where ν = (ν(0),ν(∆t), . . . ,ν(N∆t))
T is the Gaussian noise vector modeling the

measurement errors while the structural errors occur as small components in ã. The
matrix-vector representation reads

fθ (−L∆t) 0 . . . 0

fθ ((−L+1)∆t) fθ (−L∆t)
...

fθ ((−L+2)∆t) fθ ((−L+1)∆t)
...

...
. . . fθ (−L∆t)

fθ (L∆t) fθ ((−L+1)∆t)
0 fθ (L∆t)
...

. . . . . .
...

0 . . . 0 fθ (L∆t)


ã+ν= s. (10)

This linear system is overdetermined and needs to be solved approximately under
the restriction that the coefficient vector ã is sparse, i.e., contains only M � K + 1
elements. Using this discretization, we now look for a solution of the optimization
problem

min
ã
‖Fθ ã− s‖2

under the restriction that the subnorm M = ‖ã‖0, i.e. the number of nonzero compo-
nents in ã, is small. Here again, the relevant noise is suppressed by this additional
restriction on the size of M and the white noise vector ν with expectation zero needs
not to be considered in the minimization problem.

3.2 Matching Pursuit

Considering the linear system Fθ ã+ ν = s, we denote the columns of the matrix
Fθ by f0, . . . , fK , where K = N− 2L. Here, {f0, . . . , fK} is the dictionary for our MP
method (in the Hilbert space RN+1). The system (9) can also be rewritten in the form

s =
K

∑
k=0

a(k) fk +ν,

(where a(k) := ã(k+L)) i.e., s can be approximated by a linear combination of the
columns fk. In a first step, we determine the index k1 ∈ {0, . . . ,K} such that the col-
umn fk1 correlates most strongly with s, i.e.

k1 = arg max
k=0,...,K

|〈s, fk〉|,

where 〈s, fk〉= sT fk is the standard scalar product of the two vectors s and fk.
In the next step, we determine the coefficient a(k1) such that the Euklidean norm
‖s− a(k1) · fk1‖2 is minimal, i.e. a(k1) = 〈s, fk1〉/‖fk1‖2

2, where ‖fk1‖2 denotes the
Euklidean norm of fk1 .

Now we consider the residuum r1 = s−a(k1)fk1 and proceed again with the first
step, where s is replaced by r1.
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Starting with r0 = s and with a = 0, the summarized algorithm works in the j-th
iteration as follows:

1. Determine an optimal index k j such that fk j correlates most strongly with the
residuum r j−1, i.e.

k j = arg max
k=0,...,K

|〈r j−1, fk〉|.

2. Update the coefficient a(k j) to a(k j)+〈r j−1, fk j〉/‖fk j‖2
2, where 〈r j−1, fk j〉/‖fk j‖2

2
solves the problem min

x
‖r j−1− x fk j‖2.

Put r j = r j−1−a(k j) fk j .

As a stopping criterion, we shall apply the following procedure. We determine a
priory an upper bound M̃ for the number of coefficients in (4) and a suitable error
bound ε > 0. Then the MP iteration is stopped after j < M̃iterations if

max
k=0,...,K

|〈r j−1, fk〉|/‖fk‖2
2 < ε,

and at latest after M̃ iterations. Using a sufficiently large upper bound M̃ for the
number of scatterers, the MP iteration will be stopped by the error bound criterion,
and in this way we can compute the number M of relevant pulse echoes.

Let us shortly consider the numerical complexity of the MP method. For the
first step of the algorithm we need to compute K + 1 = N − 2L + 1 scalar prod-
ucts, where the vectors fk have at most 2L+1 nonzero components. Hence we need
(2L+1)(N−2L+1) multiplications, 2L(N−2L+1) additions as well as the compar-
isons to find a maximum of N−2L+1 numbers. Here we assume that L�N. For the
second step we only need one division and one addition to compute a(k j), where we
suppose that ‖fk‖2

2 = ∑
L
`=−L fθ (`∆t)

2 is preliminarily computed with 2L+1 multipli-
cations and 2L additions. Finally, r j is obtained with 2L+1 multiplications and 2L+1
additions. Hence the complete MP method with M iterations can be performed with
(4L+ 1)NM−M(4L2− 2L− 5)+ 4L+ 2 arithmetical operations, i.e., it is a O(N)
algorithm and is therefore suitable for real time computations.

3.3 Orthogonal Matching Pursuit

The orthogonal matching pursuit algorithm works slightly different, see e.g. [16].
While the first step in each iteration stage is the same as before, the OMP replaces
the update of only one coefficient a(k j) by a least square minimization in the second
step, i.e. we use here

2. Update the coefficients a(k1), . . . ,a(k j) such that ‖s−∑
j
i=1 a(ki) fki‖2 is minimal

and put r j = s−∑
j
i=1 a(ki)fki .

The least squares minimization problem mina(k1),...,a(k j) ‖s−∑
j
i=1 a(ki) fki‖2 leads to

the linear system
(〈fki , fki′

〉) j
i,i′=1(a(ki))

j
i=1 = (〈s, fki〉)

j
i=1. (11)



12 Florian Boßmann et al.

In case of an orthonormal basis {fk : k = 0, . . . ,K}, the coefficient matrix is the iden-
tity. But in our case, the shifts of the pulse function are not orthogonal. However, the
number of considered vectors fi is smaller than M and the linear system (11) is of
small dimension.

The OMP algorithm is more stable than the simple MP algorithm, since the update
of all amplitudes in each iteration step ensures a better approximation of the signal
s. Please note that this minimization does not effect the vectors fki themselves that
are determined by the columns of Fθ ,∆t . However, since we are usually interested in a
very small number of significant amplitudes, the MP algorithm already provides good
results while being less time-consuming. Figure 5 in Section 6.1 shows the behavior
of OMP for a single A-scan. Finally, we remark that the MP and the OMP algorithm
of course also work for overlapping echoes, see Section 6.1. In this case the OMP is
more robust.

4 Deconvolution based on the approximate Prony method

Now, we propose the approximate Prony method (APM), where we can obtain the
number M of relevant scatterers during the algorithm. Furthermore, while the MP
algorithm is restricted to a grid for finding the time-shifts τm = km∆t , the APM can
detect arbitrarily distributed time-shifts. Let us consider again our sparsity model (4)

s(t) =
M

∑
m=1

ã(m) fθ (t− τm)+ν(t),

where we want to optimize over the time shifts τ= (τ1, . . . ,τM), the amplitudes ã =
(ã(1), . . . , ã(M)) and the pulse parameters θ , where M is unknown but small. We
assume here that we have a suitable bound M̃ > M for the true number of relevant
coefficients and can replace M by M̃ in the above model. As in the last section, we
first assume to have a good estimate for the parameter vector θ such that we can
concentrate on the computation of τ and ã from the samples of s. For that purpose,
we now adapt the approximate Prony method considered in [17] as follows.

Let the Fourier transform of a function f ∈ L1(R) be given by

f̂ (ξ ) :=
1√
2π

∫
∞

−∞

f (t)e−iξ t dt.

Applying the Fourier transform to (4) (with M replaced by the bound M̃ > M), we
find

ŝ(ξ ) =

(
M̃

∑
m=1

ã(m)e−iξ τm

)
f̂θ (ξ )+ ν̂(ξ ).

In our case, the real-valued Gabor function fθ (t) = Kθ e−αt2
cos(ωt +φ) is the real

part of gθ (t) = Kθ e−αt2
ei(ωt+φ) = Kθ eiφ e−αt2

eiωt . Hence

f̂θ (ξ ) =
1
2
(
ĝθ (ξ )+ ĝθ (ξ )

)
=

Kθ

2
√

2α

(
eiφ e−(ω−ξ )2/4α + e−iφ e−(ω+ξ )2/4α

)
. (12)
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Particularly, the function f̂θ (ξ ) possesses only a zero at ξ = 0 if φ = (2π+1)π
2 while

f̂ (ξ ) 6= 0 for all ξ 6= 0. Avoiding the case ξ = 0, we can hence write

ĥ(ξ ) :=
ŝ(ξ )
f̂θ (ξ )

=
M̃

∑
m=1

ã(m)e−iξ τm + ε̂(ξ ),

where the noise term ε̂(ξ ) := ν̂(ξ )/ f̂θ (ξ ) is assumed to be small.
For given samples ĥ(k∆ξ ), (where ∆ξ is a fixed sampling distance) we now aim

to compute the frequencies τm ∈ R+ and the corresponding amplitudes ã(m), for
m = 1, . . . ,M̃ separately using the following method. We consider the polynomial

Λ(z) =
M̃

∏
m=1

(z− e−i∆ξ τm) = λM̃zM̃ +λM̃−1zM̃−1 + . . .+λ0

with λM̃ = 1 that possesses the exponentials e−i∆ξ τm with the unknown time-shifts τm
as zeros.

In a first step, we will determine the coefficients λk of the polynomial Λ(z). We
observe that for given sample values ĥ((k+ `)∆ξ ), k = 0,1, . . ., and ` = 1,2, . . ., we
have

M̃

∑
k=0

λk ĥ((k+ `)∆ξ ) =
M̃

∑
k=0

λk

M̃

∑
m=1

ã(m)e−iτm∆ξ (k+`)+
M̃

∑
k=0

λk ε̂((k+ `)∆ξ )

≈
M̃

∑
m=1

ã(m)e−iτm∆ξ `
M̃

∑
k=0

λk(e
−iτm∆ξ )k

= Λ(e−iτm∆ξ )
M̃

∑
m=1

ã(m)e−iτm∆ξ ` = 0,

where we have assumed that the noise term ∑
M̃
k=0 λk ε̂((k+ `)∆ξ ) is negligibly small.

Using the above relation for ` = 1,2, . . . ,M̃ + 1, the unknown coefficients
λ0, . . . ,λM̃−1 of Λ(z) can be computed by finding an approximate zero eigenvector of
the Hankel matrix

H =


ĥ(∆ξ ) ĥ(2∆ξ ) . . . ĥ((M̃+1)∆ξ )

ĥ(2∆ξ ) ĥ(3∆ξ ) ĥ((M̃+2)∆ξ )
...

...
ĥ((M̃+1)∆ξ ) ĥ((M̃+2)∆ξ ) . . . ĥ((2M̃+1)∆ξ )

 .

We can now obtain the true number M < M̃ of suitable terms in the model (4)
by a rank estimation of H, since the rank of the matrix H in the noiseless case coin-
cides with the number M of suitable terms, see [17]. We apply the above eigenvalue
problem to a Hankel matrix H of size (M̃ + 1)× (M̃ + 1), i.e., we compute an ap-
proximate zero eigenvector of H. This eigenvector contains the coefficients λk that
are used to form the polynomial Λ(z). We evaluate the corresponding zeros of the
polynomial Λ(z). The zeros of Λ that are relevant to us, are of the form e−iτm∆ξ and
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lie (approximately) on the unit circle, such that we are able to determine the time
shifts τm, m = 1, . . . ,M. As shown in [17], each zero eigenvector of H will yield the
same relevant zeros e−iτm∆ξ .

In the second part of the procedure, we can compute the amplitudes ãm as least
square solution of the overdetermined linear system

M

∑
m=1

ãm fθ (`∆t − τm) = s(`∆t), `= 0, . . . ,N,

thereby neglecting the noise function ν(t).
For application of the first step of above procedure, we need to evaluate the

Fourier transform ĥ = ŝ/ f̂θ at suitable values k∆ξ . For this purpose we employ the
fast Fourier transform as follows. Assume that we have given the sampled values of
the backscattered signal s = (s(`∆t))

N
`=0. Using linear splines, s can be approximated

by the sum

s̃(t) =
N

∑
`=0

s(`∆t)N2(t− `∆t),

where the B-spline N2 has the support [−(∆t)
−1,(∆t)

−1] and is given by N2(t) =
(1−∆t |t|) for t ∈ [−(∆t)

−1,(∆t)
−1]. Then Fourier transform yields

ˆ̃s(ξ ) =

(
N

∑
`=0

s(`∆t)e−iξ ∆t`

)
N̂2(ξ ).

With N̂2(ξ ) =
1√
2π

1
∆t

sinc( ξ

2∆t
)2 and with the function f̂θ (ξ ) that is explicitly given

in (12), we obtain the approximate values

ĥ( 2πk
∆t

) = ĥ(k∆ξ ) =
ˆ̃s(k∆ξ )

f̂ (k∆ξ )
,

where ∆ξ := 2π

∆t
, k = 0, . . . ,N, and where

N

∑
`=0

s(`∆t)e−iξk∆t`, k = 0, . . . ,N

is computed for ξk =
2πk
∆t

by the fast Fourier transform.

Remarks.
1. Compared with the MP method, the APM has the advantage that we are able to

compute the time shifts τm exactly independently from the sampling grid with sam-
pling size ∆t . However, due to the needed Fourier transform, APM is computationally
more expensive than the MP method. Although, APM has been established for noisy
data measurements in [17], it is more sensitive to noise than the MP method.

2. The APM method is able to find relevant time-shifts τm with a small separation
distance, i.e. it works also for overlapping pulse echoes, see Section 6.1. The sepa-
ration distance influences the numerical stability of the algorithm. It can be chosen
smaller if the number of data N is large (see [17]).
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3. The MP (OMP) method and the APM method are fundamentally different with
respect to their underlying ideas as well as to their numerical effort. The MP method
is a greedy method, i.e. it will find the most significant amplitudes just by comparison
of correlations of the shifted pulse echo with the measured data. While this method
is very simple and efficient, it can fail for all further iterations if once a wrong shift is
taken (possibly caused by strong noise). The number M of relevant scatters is found
by using an initial bound for M̃ and by observing the size of the remainder if the
found significant pulse echoes are subtracted from the data. The AMP method is
much smarter. It separates the search of arrival times from the determination of the
corresponding amplitudes by transferring the model to the frequency domain. Unfor-
tunately, the Fourier transform can enforce the error such that this method is more
sensitive to low SNR values.

5 Optimization of the parameters

In the preceding sections we have assumed that a reliable estimate of the parameter
vector θ determining the pulse echo is given. In Section 2, we have proposed an
alternating minimization procedure for the stepwise improvement of the pulse echo
parameters during the computation process.

Having solved the optimization problem (6) for small M using either the matching
pursuit algoritm or the approximate Prony method, we shall now consider the second
minimization problem (7) for adjusting the parameter vector θ . For that purpose we
want to employ the iterative Newton method. Consider now the minimization prob-
lem

θ
(k) := argmin

θ
‖F(ã(k),τ(k),θ)− s‖2.

A linearization of the operator around an initial guess θ (k−1) yields

F(ã(k),τ(k),θ (k−1)+dθ)≈ Dθ F(ã(k),τ(k),θ (k−1))dθ +F(ã(k),τ(k),θ (k−1)).

Here, Dθ F(ã(k),τ(k),θ (k−1)) denotes the Jacobian of F at θ (k−1), i.e.,

Dθ F(ã(k),τ(k),θ (k−1)) =
(

∂F(ã(k),τ(k),θ (k−1))
∂α

, ∂F(ã(k),τ(k),θ (k−1))
∂ω

, ∂F(ã(k),τ(k),θ (k−1))
∂φ

)
.

Hence, the update vector dθ = (dα,dω,dφ)T is obtained from the equation

Dθ F(ã(k),τ(k),θ (k−1))dθ +F(ã(k),τ(k),θ (k−1)) = s

and can be evaluated at the known samples k∆t . This leads to a least squares problem
which can be directly solved since the corresponding coefficient matrix has only three
dimensions. In this way, we obtain the new update θ

(k−1)
1 := θ (k−1)+ dθ . One may

proceed with the Newton iteration to obtain the updates θ
(k−1)
2 ,θ

(k−1)
3 , . . .. After r

Newton steps, where r that can be just fixed or can depend on some suitable error
criterion, one obtains the new estimate θ (k) = θ

(k−1)
r .
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Unfortunately, because of the complicated normalization factor Kθ in (3), the
vector Dθ F(ã(k),τ(k),θ (k−1)) can not be easily computed analytically. Therefore, we
consider an analytical representation of

Dθ

(
1

Kθ

F(ã,τ,θ)
)
= Dθ

(
M

∑
m=1

ã(m)e−α(t−τm)
2

cos(ω(t− τm)+φ)

)

and obtain for θ = (α, ω, φ)T ,

Dθ

(
1

Kθ

F(ã,τ,θ)
)

=


−

M
∑

m=1
ã(m)(t− τm)

2e−α(t−τm)
2

cos(ω(t− τm)+φ)

−
M
∑

m=1
ã(m)(t− τm)e−α(t−τm)

2
sin(ω(t− τm)+φ)

−
M
∑

m=1
ã(m)e−α(t−τm)

2
sin(ω(t− τm)+φ)



T

.

However, a change of the parameter vector θ implies a possibly considerable change
of the norm K−1

θ
of the pulse function fθ . A disregard of the normalization factor Kθ

thus leads to a highly unstable method since the amplitudes in ã are optimized with
respect to the Euklidean norm of fθ . In order to counter this problem we are updating
not only θ in each Newton step but also the amplitudes ã. In this way the amplitudes
in ã are adjusted to the changing wave norm. Therefore, we employ

Dθ ,ã

(
1

Kθ

F(ã,τ,θ)
)

=



−
M
∑

m=1
ã(m)(t− τm)

2e−α(t−τm)
2

cos(ω(t− τm)+φ)

−
M
∑

m=1
ã(m)(t− τm)e−α(t−τm)

2
sin(ω(t− τm)+φ)

−
M
∑

m=1
ã(m)e−α(t−τm)

2
sin(ω(t− τm)+φ)

e−α(t−τ1)
2

cos(ω(t− τ1)+φ)
...

e−α(t−τM)2
cos(ω(t− τM)+φ)



T

in the iterative Newton method and update not only the parameter vector θ but also
the coefficient vector ã in our model (4). Our numerical results in Section 6.3 show
the fast convergence of the iterative Newton method after only a few iteration steps.

For the numerical application of this procedure for parameter optimization we
refer to Section 6.3.

6 Test results

We have tested the proposed procedures using simulated data as well as real data,
particularly TOFD data of weld defects and TOA data of back wall deformations.
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6.1 Simulated Data

In a first test, we want to show the performance of the OMP-method and the APM
method to recover arrival times and amplitudes of a sum of four interfering echoes
with different SNR. For that purpose, we consider two different scenarios. In the
first scenario we have four interfering echoes being obtained by four shifts of the
Gabor function fθ with parameters α = 50(MHz)2, ω = 25.1327MHz and φ = 0.52
microseconds. The resolution is 10ns. Particularly, we study the behavior of the two
deconvolution methods if one arrival time comes close to another in case of almost
no noise (SNR of about 45.00). The four overlapping echoes considered in Table 1
are illustrated in Figure 5, top. In particular, one can observe that for approaching
arrival times x and 7.20 with 7.15 ≤ x < 7.20 it is really difficult to recognize x
and 7.20 as two different arrival times. For APM, the computed arrival times are
rounded corresponding to the resolution. The obtained results, summarized in Table
1, show that the two proposed algorithms are suited also for recovering interfering
echoes. In this (almost noiseless) case the APM is more stable than OMP when the
arrival times of two echoes approach. If the echoes are too close, then OMP can not
longer distinguish between them and takes it as one echo, where the amplitudes are
added. For approaching arrival times with 7.15 ≤ x < 7.20, the OMP finds only one
arrival times while the APM method recognizes two, where for a difference of 0.01
microseconds the corresponding amplitudes are not longer correctly attributed.

In the second scenario, we consider four shifts of the Gabor function fθ with
parameters α = 20(MHz)2, ω = 50.2634MHz and φ = 0.52 microseconds. We study
the behavior of the deconvolution methods for changing low SNR, see Table 2. The
corresponding noisy echo functions are illustrated in Figure 5, bottom. In particular,
we observe that the two algorithms correctly estimate the four arrival times even in
case of strong noise, while the obtained amplitudes are not exact. We remark that the
MP algorithm works only slightly worse than OMP in the two experiments and is in
fact as good as OMP for high noise levels.

Considering the data, there are mainly two components of noise: a) microstruc-
ture noise, produced by multiple reflections and inhomogeneous material, and b)
electronic noise, fed from cables, amplifiers etc., which acts like a bandpass filter.
The first can be considered as Gaussian noise in the coefficient vector ã, which re-
sults in colored noise after convolution with the wave. Hence, to test the algorithms
with different noise levels and different wave forms we have modeled a back wall
deformation as follows.

We have used the data in Figure 6 that originates from the measurement of a
real back wall deformation in a steel pipe that has been extended by zero outside
its support. Then, Gaussian noise with different variances (0.001,0.01 and 0.025)
has been added to the back wall data before convolving each column with a Gabor
function of the form (2). We want to illustrate that the proposed deconvolution meth-
ods perform well for different Gabor functions. The simulated B-scans in the first
row of Figure 8 are obtained using the convolution with the Gabor function with
θ = (α,ω,φ) = (20,10,0), where the bandwidth factor α is given in (MHz)2, and
the center frequency ω in MHz. Analogously, the B-scans in the first row of Figure
9 are obtained by convolution of the noisy geometric model with a Gabor function
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Fig. 5 Top: Four interfering echoes of the Gabor function fθ with θ = (50(MHz)2,25.1327 MHz,0.52µs)
(almost noiseless case) with amplitudes and arrival times as given in Table 1 for x = 6.96 (left), x =
7.07 (middle) and x = 7.15 (right); Bottom: Four interfering echoes of the Gabor function fθ with θ =
(20(MHz)2,50.2634 MHz,0.52µs) with amplitudes and arrival times as given in Table 2, without noise
(left), with SNR of 19.34 (middle) and with SNR of 4.75 (right); time in microseconds.

actual arrival times (µs) amplitudes
parameters 0.50 3.40 x 7.20 3.0 -2.0 2.5 4.0

time x arrival times (µs) amplitudes
obtained by OMP obtained by OMP

6.96 0.50 3.40 6.96 7.20 3.0028 -1.9937 2.5001 3.9988
7.07 0.50 3.40 6.95 7.21 3.0023 -2.0012 -1.3483 2.4355
7.15 0.50 3.40 7.18 2.9950 -1.9958 5.1517
7.18 0.50 3.40 7.19 3.0030 -1.9950 6.2750
7.19 0.50 3.40 7.20 2.9996 -2.0000 6.3707

time x arrival times (µs) amplitudes
obtained by APM obtained by APM

6.96 0.50 3.40 6.96 7.20 2.9998 -1.9955 2.5013 3.9999
7.07 0.50 3.40 7.07 7.20 3.0007 -2.0023 2.5008 4.0031
7.15 0.50 3.40 7.15 7.20 3.0048 -1.9918 2.5027 4.0220
7.18 0.50 3.40 7.18 7.20 3.0014 -1.9979 2.1900 4.3127
7.19 0.50 3.40 7.20 7.21 3.0006 -1.9994 6.0532 0.4065

Table 1. Parameter estimation results for four interfering echoes when one arrival time gets close to another.
The SNR of the interfering echoes is about 45.

with θ = (7.5,10,π/2). The two different Gabor functions are illustrated in Figure 7.
Observe that here noise simulates microstructure noise produced by inhomogeneities
in the material since the noise has been added before the convolution with the pulse
function.

In the second and third rows of Figures 8 – 9, we illustrate the behavior of the
proposed MP resp. OMP algorithm. The reconstructed back wall echo time yields
the wall thickness of the modeled tube correctly up to the discretization error. In
the second row of Figure 8, we present the amplitudes of significant reflections of
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actual arrival times (µs) amplitudes
parameters 0.50 3.40 3.75 7.20 3.0 -2.0 4.0 2.5

SNR arrival times (µs) amplitudes estimation
obtained by OMP obtained by OMP SNR

19.34 0.50 3.40 3.75 7.20 3.1000 -1.9727 3.9863 2.4562 34.22
13.10 0.50 3.40 3.75 7.20 3.1071 -1.9352 3.9093 2.4312 30.88
8.15 0.50 3.40 3.75 7.20 3.1085 -1.7118 3.9806 2.4363 25.37
4.75 0.50 3.40 3.75 7.19 4.0206 -2.5048 3.4768 1.9641 10.33
SNR arrival times (µs) amplitudes estimation

obtained by APM obtained by APM SNR
19.34 0.50 3.40 3.75 7.20 3.1107 -2.0841 3.9907 2.5646 28.85
13.10 0.50 3.40 3.75 7.20 3.0815 -2.0384 3.9552 2.5659 20.34
8.15 0.50 3.40 3.75 7.20 2.9960 -2.4391 4.3420 2.4048 18.13
4.75 0.50 3.39 3.75 7.20 3.7694 -2.8166 3.2185 2.2643 10.30

Table 2. Parameter estimation results for four interfering echoes with different SNR. For OMP the param-
eter ε = 1.25 is taken and the upper bound for arrival times is 5.

Fig. 6 3D illustration of the back wall deformation used in the simulations.

the pulse function computed with the matching pursuit (MP) method. In this case
a nearly nonnegative Gabor wave is used as pulse function. The MP method has
been used with at most M̃ = 5 iterations and with ε = 1.0 in the first, ε = 1.75 in the
second, and ε = 1.5 in the third column. Applying again a convolution to the obtained
sparse A-scan vectors, we find a suitable approximation of the original B-scan (see
third row in Figure 8). This sparse approximation efficiently denoises the original
B-scan. The same experiment is performed with the APM proposed in Section 4.
The fourth row of Figure 8 illustrates the amplitudes of significant reflections of the
pulse function computed with the approximate Prony method. Here the number of
significant amplitudes is found during the algorithm and it swings between 1 and 8
with an average of 1.65. Applying a convolution to the sparse A-scans we obtain the
approximation presented in the last row of Figure 8.

Figure 9 shows the denoising results taking an antisymmetric Gabor wave as pulse
echo and using OMP and APM. The OMP method is used here with M̃ = 5 and with
ε = 1.0;1.25;1.5 in the rows 1,2,3. The advantage of the APM is the ability to detect
the significant translations without an underlying grid. In order to present these data in
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Fig. 7 Gabor pulse functions used for simulations of B-scans in Figures 8-9. Left: even Gabor function,
right: odd Gabor function.

Figure noise SNR MP/OMP APM
variance mean M compression rate mean M compression rate

0.001 16.30 1.2000 0.0043 1.6348 0.0059
Figure 8 0.010 6.50 1.0087 0.0036 1.4609 0.0052

0.025 2.52 1.8696 0.0067 2.0087 0.0072
0.001 18.25 1.3304 0.0045 1.6696 0.0056

Figure 9 0.010 8.42 1.3130 0.0044 1.2348 0.0041
0.025 4.38 1.5130 0.0052 1.8783 0.0063

Table 3. Comparison of the found mean number M of significant coefficients in each row for different
noise levels, and the corresponding compression rates, see also Figures 8 and 9.

the the figures (fourth row in Figures 8 – 9), we have considered a traverse through the
obtained amplitudes (approximation with a linear B-spline) instead of rounding the
the found significant translations to the grid points. Therefore the obtained significant
amplitudes are slightly different for the MP method and APM.

Besides the correct estimation of the arrival times found by the two deconvolution
algorithms in the above experiment, we obtain a sparse approximation of the B-scans
in terms of a small number of significant coefficients representing the relevant in-
formation. The number of significant coefficients found by MP/OMP resp. APM is
presented in Table 3. Figures 8 and 9 show that it is possible to reconstruct the B-scan
using only these significant coefficients. Observing that the B-scans in Figures 8 and
9 have 115 columns and 279 resp. 298 rows, we obtain compression rates of as given
in Table 3.

We observe, that the MP and the OMP give reasonable results even for highly
noisy data. The APM works accurately for the low-level noise case. The reason for
that behavior is, that MP/OMP are rather robust algorithms whereas the APM is
slightly less numerically stable for high noise levels. Thus the MP/OMP methods
are more suitable for a fast determination of material defects while the APM is able
to identify clustered defects in the low-level noise case, and may be especially appro-
priate for determining the more exact structure of a defect, after knowing where that
defect is located. This problem will be considered further in the future.
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Fig. 8 Top: simulated back wall echo with different noise levels and nearly nonnegative Gabor wave,
noise levels from left to right (Gaussian variance): 0.001, 0.01, 0.025; second row: obtained significant
amplitudes after deconvolution with MP; third row: back wall reconstruction using only the significant
amplitudes found by MP; fourth row: obtained significant amplitudes using APM; last row: back wall
reconstruction using only the significant amplitudes found by APM.
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Fig. 9 Top: modeled back wall echo with different noise levels and antisymmetric Gabor wave, noise levels
from left to right (Gaussian variance): 0.001, 0.01, 0.025; second row: obtained significant amplitudes after
deconvolution with OMP; third row: back wall reconstruction using only the significant amplitudes found
by OMP; fourth row: obtained significant amplitudes using APM; last row: back wall reconstruction using
only the significant amplitudes found by APM.
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(a) (b)

(c) (d)

Fig. 10 (a): Original TOFD data; (b): approximative solution of ã with MP method in Section 3.2; (c):
nonzero elements of the solution; (d): approximation of s≈ F · ã.

6.2 Real Data

Finally, we study the results of the deconvolution methods for real TOFD data and
for back wall echoes.

The original TOFD data in Figure 10(a), and in Figure 11(a) has been obtained
from a sample of a large-diameter pipe (outer diameter 1066 mm, wall thickness 23.3
mm). In Figure 10(a), the weld seam has been tested with a TOFD system (Olympus
Omniscan iX) with a 5 MHz transducer, 6 mm diameter (Olympus C543-SM). In
Figure 11(a), a 10 MHz transducer, 6 mm diameter (Olympus C563-SM) with the
same system has been used. Both transducers were applied with a wedge with 70◦

angle of incidence. The flaws in Figure 10(a) are pores, while Figure 11(a) shows a
lack of fusion at the end of the pipe, where the last part of the weld seam has been
ground. Both B-scans are measured with a sampling rate of 100 MHz and an 8-bit
resolution. The resolution in scan direction is 0.5 mm.

For TOFD signals the lateral signal as well as the back wall echo have generally
significantly larger amplitudes than the signals indicating defects. In order to obtain
the essential signals indicating weld deformations, we add suitable weights that can
be chosen a priori using knowledge about the thickness of the tube and an estimate
about positions of lateral signal and back wall echo in the A-scan. Since the ultrasonic
wave send out by the emitter is not given, we estimate it from the given data in order
to find a first approximation of the pulse echo of the form (2). This is done as given
in Section 2, see Figure 1.
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(a) (b)

(c) (d)

Fig. 11 (a): Original TOFD data ; (b): approximative solution of ã with MP method in Section 3.2; (c):
nonzero elements of the solution; (d): approximation of s≈ F · ã.

In Figures 10(b) and 11(b), the results of the MP method (in Section 3.2) are
shown. We obtain only very few nonzero values for each A-scan vector a. Here in
each column, we have taken in the first example (Figure 10(b)) at most M = 10
nonzero values, where M is the upper bound for the number of iterations of MP,
and we have used the error bound ε = 40. For the example in Figure 11(b), (M,ε) =
(6,60) has been taken. For a better illustration, Figures 10(c) and 11(c) show again
the positions the nonzero coefficients, where “black” stands for nonzero and “white”
for zero coefficients. Finally, the Figures 10(d) and 11(d) show an approximation of
the TOFD data, where only the nonzero coefficients obtained by MP, are again con-
volved with the pulse function. Hence these representations can be seen as sparse
approximations of the TOFD B-scans, and also yield a denoised image. However,
most important for further investigation of possible flaws are the geometric data in
(b) resp. (c).

In a third example we test the MP method for a back wall measurement. The B-
scan of the back wall with scrap mark (Figure 12(a) originates from a sample of a
steel pipe of outer diameter 244.5 mm and wall thickness 13.8 mm. It has also been
measured with the Omniscan iX system where we used a 4 MHz broadband trans-
ducer of 15 mm diameter (Karl Deutsch STS 15 WB 2-7) with nominal incidence
angle. The resolution in scan direction is 0.5 mm and the sampling rate is 100 MHz
with an 8-bit resolution. As before, we apply the MP method to each A-scan (each
column) with at most M = 5 iterations and with ε = 15, where the MP procedure is
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(a) (b)

(c) (d)

Fig. 12 (a): Original B-scan of a backwall; (b): approximative solution of ã with MP method; (c): nonzero
elements of the solution; (d): approximation of s≈ F · ã.

stopped if the error does not exceed ε and (at latest) after M iterations. Figure 12(b)
shows the nonzero coefficients of the a vectors in each column. For a better illustra-
tion, the nonzero coefficients are black and the zero coefficients are white in Figure
12(c). Finally, Figure 12(d) shows the result of a convolution of the sparse matrix in
(b) with the pulse yielding a sparse approximation (and a denoising) of the original
data. At last, we remark that the used MP and OMP methods are suitable for real
time computations. For the complete computation of all arrival times and amplitudes
for data in Figures 10–12 together with the computation of the approximation of s in
(d), our MATLAB MP algorithm using a 2.66 GHz Intel Core 2 Duo processor needs
less than 0.1 seconds while the OMP requires 1 second for the data Figure 10 (data
size 356× 441), 0.9 seconds for Figure 11 (data size 356× 331), and 0.65 seconds
for Figure 12 (data size 636×201).

6.3 Simulations for parameter optimization

Finally, we want to illustrate the power of the proposed iterative Newton method for
estimation of parameters in the pulse function model. For this purpose, we have used
the following simulation. In a first step we have randomly chosen four amplitudes
of different sizes in a vector of length 100. Further we have added some Gaussian
noise to the vector (simulating microstructure noise) and have convolved the obtained
vector with a Gabor function of type (2). The obtained A-scan simulation has been
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Fig. 13 Wave parameters (y-axis) against iteration steps (x-axis) (left α , middle ω , right φ ), ã not noisy.

now processed as follows. We have taken an initial guess of a Gabor function with
parameter vector θ0, and have applied the alternating algorithm (MP algorithm and
iterative Newton method) as proposed in Section 2.

In our first example without noise, we started with θ0 = (35,19,1.54) (α in
(MHZ)2 and ω in MHz) quite far away from the true parameter vector. The true
parameters have been obtained already after 6 iterations of the method, namely θ =
(5.0,9.0,π/2), see Figure 13. Since there is no noise, we obtain a perfect approxima-
tion of the A-scan and therefore omitted the corresponding illustration.

In the second and third example, Gaussian noise of variance 0.01 has been used
before convolving the vector with the Gabor function, this corresponds to the SNR
23.7. In Figure 14, the starting parameter vector is θ0 = (12.5,7.0,1.2). Again we ob-
tain a good estimate of the correct parameter vector θ = (5.0,9.0,π/2) already after
6 iterations. The illustrations in the first row of Figure 14 show the parameters α,ω
and φ after each iteration, the second row shows the approximation of the true Gabor
function with the help of the found parameter vector and the approximation of the
A-scan using 4 amplitudes found by the MP algorithm. Finally, in the last example
a symmetric Gabor function has been used with θ = (5.0,9.0,0), while the start-
ing vector has been taken θ0 = (11.5,7.7,0.17). Again, the procedure approximately
finds the correct parameters.

7 Conclusions and Outlook

The deconvolution methods presented in this work are supposed to be used as a pre-
processing step for further applications. Our long term objective is to derive a method
to invert the B-scans, see [21]. We would like to reconstruct the shape of the back wall
based on the B-scan image. Usually, such inversion techniques provide better results
if the raw data only contains low-level noise, and they tend to be unstable if the raw
data is too noisy. Hence, it is important to apply a fast and effective denoising algo-
rithm that is capable to preserve the important signal features while removing most
of the noise.
In this paper, we have proposed two different deconvolution algorithms that both map
an A-scan to a sparse vector that still contains the relevant information of the A-scan
in an encoded form. This sparse representation of the A-scan resp. the B-scan can be
differently processed:
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Fig. 14 Top: wave parameters after each iteration step (left α , middle ω , right φ ); bottom: original (blue)
and approximated (red) wave (left) and data (right); added Gaussian noise of variance 0.01 to ã.

Fig. 15 Top: wave parameters after each iteration step (left α , middle ω , right φ ); bottom: original (blue)
and approximated (red) wave (left) and data (right), added Gaussian noise of variance 0.01 to ã.
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Flaw detection. A comparison of the significant coefficients in the sparse columns
of the B-scan (after deconvolution) provides the positions of significant flaws in the
material. Respectively, in the case of weld seam inspection, the sparse B-scan can be
processed further by a direct inversion method, see [21]. Alternatively, a representa-
tion of the B-scan with only a few coefficients can be used for classification using
machine-learning algorithms. The algorithm ”learns” the B-scans corresponding to
different classes (e.g. for different flaws in the back wall) and afterwards tries to as-
sign the correct class to a new unknown B-scan. In such learning procedures, the
algorithms are usually not able to handle full images but only a very limited number
of representing attributes. Hence, the nonzero coefficients provided by our deconvo-
lution algorithms will act as a good choice of representing attributes for such machine
learning algorithms.

Denoising. A convolution of the obtained sparse vectors with the (computed or esti-
mated) pulse echo yields a denoised B-scan. Since the deconvolution algorithms are
suitably adapted to the measured signals (by using the transmitted pulse echo), this
denoising method outperforms most direct (non-adaptive) denoising methods for im-
ages (see e.g. Figures 10-12).

Compression. Another advantage of our proposed algorithm is that the nonzero coef-
ficients provide a strong compression of the B-scan. The whole B-scan is reduced to a
small number of most significant coefficients, representing the relevant information.
Knowing the shape of the pulse, it is possible to reconstruct the B-scan only with the
knowledge of the position of the sparse nonzero coefficients. Apparently, this can be
used to reduce the amount of storage significantly.
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6. A.K. Nandi, D. Mämpel, B. Roscher, Comparative study of deconvolution algorithms with applications
in non-destructive testing, IEE Digest 145:1/1–1/6 (1995).

7. R. Neelamani, H. Choi, R. Baraniuk, ForWaRD: Fourier-wavelet regularized deconvolution for ill-
conditioned systems, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2):418–432 (2004).

8. R.H. Herrera, R. Orozco, M. Rodriguez, Wavelet-based deconvolution of ultrasonic signals in nonde-
structive evaluation, J. Zhejiang Univ. SCIENCE A 7(10):1748–1756 (2006).

9. T. Olofsson, Computationally efficient sparse deconvolution of B-scan images, in Proc. IEEE Ultrason.
Symp.:540–543 (2005).



Sparse Deconvolution Methods for Ultrasonic NDT 29

10. T. Olofsson, E. Wennerström, Sparse deconvolution of B-Scan Images, IEEE Trans. Ultrason. Ferro-
electr. Freq. Control 54(8):1634–1641 (2007).

11. S. Demirli, J. Saniie, Model-based estimation of ultrasonic echoes. Part II: Nondestructive Evaluation
Applications, IEEE Trans. Ultrason. Ferroelect. Freq. Control 48(3):803–811 (2001).

12. I. Ziskind, M. Wax, Maximum likelihood localization of multiple sources by alternating projection,
IEEE Trans. Acoust. Speech Signal Processing 36(10):1553–1560 (1988).

13. C.F.J. Wu, On the convergence properties of the EM algorithm, The Annals of Statistics 11(1):95–103
(1983).
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