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The Easy Path Wavelet Transform is an adaptive transform for bivariate functions (in
particular natural images) which has been proposed in 13. It provides a sparse represen-

tation by finding a path in the domain of the function leveraging the local correlations of
the function values. It then applies a one dimensional wavelet transform to the obtained

vector, decimates the points and iterates the procedure. The main drawback of such

method is the need to store, for each level of the transform, the path which vectorizes
the two dimensional data. Here we propose a variation on the method which consists of

firstly applying a segmentation procedure to the function domain, partitioning it into

regions where the variation in the function values is low; in a second step, inside each
such region, a path is found in some deterministic way, i.e. not data-dependent. This

circumvents the need to store the paths at each level, while still obtaining good quality

lossy compression. This method is particularly well suited to encode a Region of Interest
in the image with different quality than the rest of the image.
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1. Introduction

In recent years there has been a big interest in using wavelet-like transforms for

natural image compression and denoising. One wishes to find an appropriate trans-

form such that the most important information of the image is concentrated in few

coefficients; by then thresholding coefficients and keeping only the largest ones, one

hopes to obtain a good quality approximation of the original image. However simply

using a two-dimensional tensor wavelet transform doesn’t yield good results, mainly

because edges are poorly preserved. This is due to the support of the basis elements

not being adapted to the directional geometric properties present in natural images.

Therefore transforms such as curvelets 2,3 and shearlets 6,5 have been developed,

which are highly redundant frames with strong anisotropic selectivity. However these

1



February 1, 2017 11:22 WSPC/WS-IJWMIP rbepwt

2 Renato Budinich

are non-adaptive frames which loose their near optimal approximation properties if

strong hypotheses are dropped on the edges in the image (namely piecewise C2).

Instead of choosing an a priori frame to approximate the image, one can instead

choose to adapt the frame elements to the particular image. Many different ap-

proaches to this concept have been studied in the recent years, such as bandlets 9,

grouplets 11 and dictionary learning methods 1,20. For a review of adaptive image

representations see 12.

In 13 a new adaptive transform for images termed Easy Path Wavelet Transform

(EPWT) was introduced. In this method, a path is found among the points of the

image that leverages local correlation in the gray values so as to produce a one

dimensional signal with low entropy. At every level of the transform such a path is

found and then a one dimensional wavelet transform is applied. The image quality

obtained with this method is very good when compared to other methods; the main

drawback comes from the need to store the paths for each level, which are needed

during decoding. In 15 and 14 it was shown that, with a suitable choiche of the

paths, the N -term approximation given by the EPWT is optimal for piecewise-

Hölder functions. In 16 the EPWT was used as part of a hybrid method for Image

Approximation while in 7 for denoising of scattered data.

Here we propose a variation on the original EPWT method, which we call the

Region Based Easy Path Wavelet Transform (RBEPWT) method. The objective is

to reduce the adaptivity storage cost by not requiring to store the paths like in the

EPWT. In order to achieve this, a segmentation method is applied to the image in

a first step, in order to partition the image into areas of low variation of the gray

values. Then, for each region, a path is found in some kind of canonical manner:

the path depends only on the geometrical shape of the region’s border and not on

the gray-values of the inner pixels. In this way in the final encoding one needs to

store only the regions obtained from the initial segmentation step and the wavelet

coefficients; the paths, being a deterministic function of the region’s shape, can be

recomputed on-the-fly during decoding, and thus need not be stored.

The quality of the lossy compression obtained from decoding a hard-thresholded set

of coefficients heavily depends on the initial segmentation. In this regard we require

a segmentation that finds regions where the local variance in the gray-values of the

pixels is low - we do not care if the identified regions correspond to semantic areas in

the image (which is the objective of many segmentation methods used in computer

vision), but we wish instead to not have big jumps in the gray-values in the regions.

We thus need a segmentation algorithm that essentially does a clustering: if we

think of the image as a set of points in a three-dimensional space, where the first

two coordinates are the indexes of the pixel and the third its gray-value, we wish

for the segmentation to identify the main clusters of such points.

In all our preliminary numerical tests we used the Felzenszwalb-Huttenlocher algo-

rithm proposed in 4, because of its excellent quality to computation speed ratio.

In the future we would like to further investigate this important first step in our

method, and develop an ad hoc procedure to find regions that are already somehow
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optimal for the further steps of the RBEPWT transform. We will comment more

on this in Section 2.2.3.

The outline of this paper is as follows. In Section 2 we introduce a common

framework for the EPWT and RBEPWT. In Sections 2.1 and 2.2 we specify the

particular details of the EPWT and RBEPWT respectively when viewed in this

framework; in particular in Section 2.2.3 we comment on the desirable characteristics

of a segmentation method for the RBEPWT. Finally in Section 3 we present the

results of various numerical experiments.

2. Easy-path wavelet transform methods

Both the original EPWT method and the here proposed RBEPWT conform to a

common general framework. Let f : I → {0, . . . , 255} be the input image, where

I = {(i, j) | 0 ≤ i, j ≤ N − 1} is the set of indexes and N = 2k for some k ∈ N;

assume I is ordered in some canonical manner, for example using the lexicographical

ordering. Let L ∈ N be the number of levels of the transform; 2L ≤ N2 must

hold. Choose a set of low-pass and high-pass 1-dimensional wavelet synthesis and

reconstruction filters; following notation from 10 we will call them h, g, h̄, ḡ.

Define IL := I and fL := f . The encoding for the first level consists of:

(1) Finding a path in IL; this can be thought equivalently as a function

pL : {0, 1, . . . , |I| − 1} → IL (2.1)

or as a permutation of the elements of IL. How this path is found is the central

point of such methods, and what differentiates the EPWT from the RBEPWT;

we will comment more on this later. We can then define f̃L : IL → {0, . . . , 255}
by f̃L := fL ◦pL as the 1-dimensional signal obtained from sampling the image

along the path.

(2) Apply one level of a periodic 1-dimensional discrete wavelet transform to f̃L,

obtaining approximation and detail coefficients aL and dL respectively:

aL(k) := f̃L ? h̄(2k)

dL(k) := f̃L ? ḡ(2k), k = 0, . . . ,
|IL|

2
− 1

(2.2)

where ? denotes the discrete convolution.

(3) Define IL−1 := {pL(2k) s.t. k = 0, . . . , |I
L|
2 − 1}; it is the subset of IL obtained

by taking only the coordinates corresponding to even indexes in the path pL,

i.e. it is IL decimated by a factor of 2, following the order induced by pL. Define

fL−1 : IL−1 → {0, . . . , 255} by fL−1(pL(2k)) = aL(k).

Now, IL−1 and fL−1 are a new set of indexes and a vector of values respectively,

with half the points of IL. One can thus iterate the 3 steps of encoding, at each

level halving the number of points.

In summary the encoding steps of the transform consist of:
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(1) permuting the order of the points (i.e. find a path),

(2) applying a discrete wavelet transform,

(3) storing the detail vector and use the approximation vector as values for the new

level, which is obtained by down-sampling the points along the found path.

Since we are interested in lossy compression, typically after the encoding a thresh-

olding procedure will be used on the coefficients. Following the usual assumption

that the coefficients with smallest absolute value in the encoded image are the least

significant ones, we simply keep the n largest coefficients (in absolute value) and

set the others to 0.

For decoding one needs the approximation vector for the lowest level, all the wavelet

detail vectors and the permutations for each level. Then the decoding procedure

consists simply of

(1) applying the inverse wavelet transform for that level,

(2) applying the inverse permutation for that level.

Note that, since we are only interested in the final result of the decoding (where

the spatial disposition of the points is given by the canonical ordering chosen in

advance), we do not need to know, for the intermediate levels, which value in the

vector corresponds to which point in space. In other words, while during encoding

we down-sample both the points in space and the vectors of values associated to

them, in the decoding phase we can operate on the vectors only, upsampling and

permuting them. The spatial information is needed only during encoding in order to

find the path, i.e. the order according to which we vectorize the 2-dimensional data;

during decoding this order (given by the inverse permutations) is already known.

2.1. EPWT

In the EPWT method the path at level l starts from a canonical point (for example

(0, 0)) and at each step, among the closest points that are still avaiable (i.e. aren’t

already part of the path), it makes a greedy choice: the point that gives the least

difference in absolute value is chosenp
l(0) := (0, 0)

pl(k + 1) ∈
(i,j)∈Il∩B◦

h̃
(pl(k))

argmin |f l(i, j)− f l(pl(k))| (2.3)

where h̃ := min {h ∈ N, B◦h(pl(k)) 6⊆ ∪k−1m=1p
l(m), B◦h(pl(k)) ∩ I l 6= ∅} .

Here B◦h((i, j)) denotes the punctured balla centered in point (i, j) of radius h and

h̃ is the minimum required radius to obtain a neighborhood of point (i, j) that

contains points in I l that have not yet been taken as previous points of the path.

awe use either the max distance, defined by d((i, j), (k, l)) = max {|i − k|, |j − l|}, or the usual
Euclidean distance
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If the argmin set contains more than one element, the choice can be done so as to

minimize the direction change in the path.

In order to have access to the inverse permutations during encoding, the paths

for each level have to be stored, alongside the wavelet detail and approximation

coefficients. In 13 it was shown that, with the same number of coefficients, the

EPWT greatly outperforms the classical 2-dimensional wavelet transform. However

the storage cost is strongly affected by the need to store all the permutations; this

is the point we wish to address here with the new RBEPWT method.

2.2. RBEPWT

In the region based EPWT, we first apply a segmentation method to the image, in

order to obtain a subdivision of the original image into regions (subsets of points).

The rationale is that if we have regions where the variation in gray-values is small,

then it is not so important which path is taken inside that region. We can then

have a canonical path-finding procedure which does not depend on the gray-values.

In this way the final encoding consists of the wavelet detail, the approximation

coefficients and the segmentation. We need not to store all the paths, since these

depend only on the segmentation and not on the pixel grayvalues and thus they

can be recomputed on-the-fly during decoding.

We will comment in Section 2.2.3 on the properties the segmentation method

should have. For now we suppose that the segmentation step identifies regions

R0, R1, . . . , Rr−1 ∈ P(I) where I is the set of indexes in the image and P(I) de-

notes the set of sets of I. The regions are given in the form of a label image

Λ ∈ {0, 1, . . . , r − 1}N×N , obtained by filling region Rh with the value h, i.e. such

that (i, j) ∈ Rh ⇔ Λi,j = h.

Suppose now we have a function Π that associates to any set of points a Hamiltonian

path (in the complete graph generated by these points). In other words, for any

region R we wish for Π(R) to be a bijection from {0, 1, . . . , |R| − 1} to R. Later we

will present two examples of such functions, the easy-path and the grad-path.

Call RL
k := Rk for all k = 0, . . . , r − 1 and define the region collection at the

highest level as RL := {RL
0 , R

L
1 , . . . , R

L
r−1}. Define for each region k the path in it

as ρLk := Π(RL
k ). By gluing all these paths together we obtain

pL := ρL0 ∪ ρL1 ∪ . . . ∪ ρLr−1,

which is a permutation of the elements of IL. At this point a global path is defined,

and we can proceed just as described in Section 2 for the general framework: define

f̃L := fL ◦pL, compute aL and dL through discrete convolution with the two filters,

define IL−1 and fL−1. Additionally now we have to define the new region collec-

tion RL−1 := {RL−1
0 , RL−1

1 , . . . , RL−1
r−1 }, where RL−1

k = RL
k ∩ IL−1. An equivalent
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definition would be:

RL−1
0 = ρL0 (even numbers)

RL−1
k =

{
ρLk (even numbers) if |RL−1

k−1 | is even Y RL−1
k−1 = ρLk−1(odd numbers)

ρLk (odd numbers) otherwise ,

(2.4)

where here Y denotes the exclusive OR, i.e. it evaluates to true when only one of the

two conditions is true. This procedure can be repeated analogously for each level. As

already mentioned, the final encoding of the image will consist of the segmentation

information, all the wavelet detail coefficients and the approximation coefficients

for the lowest level.

For decoding, since the permutations here aren’t stored, we first need to recompute

them; to do so we simply need to apply the whole encoding procedure ignoring the

pixel values but not the segmentation information, which has been stored and is

thus available.

By what has been said it is clear that for our method, the path finding procedure

Π must have the following characteristics:

(1) It must not depend on the points in the region being uniform: from level L− 1

onward in fact the points in each region will usually not be uniformly dis-

tributed.

(2) It must be completely deterministic: this is needed in order to obtain the same

paths during encoding and decoding.

(3) It must not depend on the gray-values of the image: these aren’t available during

decoding. An exception can be made, as in the grad-path, if one is willing to

store additional information in the final encoding.

2.2.1. Easy-Path

Algorithm 1 shows the easy-path procedure to find a path π in a region R: starting

from some point (which for example can be chosen using the lexicographical or-

dering), the algorithm tries always to select the closest avaiable neighbour. If there

are more points equally close, it selects the one that would make for the straightest

path, the rationale being that a more regular path will lead to a smoother signal

(see for example 7 for a proof that, when f is sufficiently smooth, a straighter path

gives smaller wavelet coefficients). This is done by computing the scalar product of

the increment vector with a preferred direction vector, which at every iteration is

updated to be the last increment in the path. If there are 2 possible points with

the same minimum angle to the preceeding part of the path, then the preferred

direction is rotated by π/2, making then only one of the two points preferrable.

See Figure 1 for an example of a path determined by easy-path. In our tests using

the Euclidean distance gave better compression performance, so we used that in all

numerical results presented here.
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Algorithm 1 Easy-Path algorithm

Input: region R

Output: path π

choose starting point p ∈ R . p is the current point

Q = R \ p . Q is the set of avaiable points

v = (1, 0) . v is the preferred direction

while Q 6= ∅ do
5: h̄ = min {h ∈ N, Bh(p) ∩Q 6= ∅}

C =
κ∈B

h̄
(p)∩Q

argmin ||p− κ||

if |C| ≥ 2 then

C =
φ∈C

argmax < φ− p, v >
if |C| ≥ 2 then

10: rotate v by π/2

goto 8

end if

end if

pick ψ ∈ C . there is no choice to be done here: C = {ψ}
15: append ψ to π

v = ψ − p
p = ψ

remove ψ from Q

end while

20: return π

2.2.2. Grad-path

Another path-finding procedure is the grad-path, shown in Algorithm 2. It requires

previous computation of the average discretized gradient for each region; these vec-

tors have to be stored, contributing to the storage cost of the final encoding. The

procedure is very similar to the easy-path: the closest point is always preferred.

However the preferred direction is always perpendicular to the average gradient, at

each iteration the sign being updated so as to obtain the most regular path. Fur-

thermore taking the absolute value when computing the scalar product (see line 8)

means that we always prefer a path that remains as much as possible perpendicular

to the average gradient, even if it means a sharper change in the path’s direction.

Only in case of equally distant points forming equal angles the preferred direction

is temporarily rotated.

See Figure 2 for an example of the path generated by the gradpath algorithm.

The points forming the region are the same in the two images, but the gray-values

generate two different average gradients.

In our numerical tests (see Section 3) the grad-path performed only marginally

better than the easy-path - this is without taking into account the additional storage
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Fig. 1: Path found by the easy-path procedure with the max (left) and Euclidean

(right) distance

Fig. 2: Gradpath on same region with different gray-values

cost.

2.2.3. Notes on the segmentation procedure

In order to avoid the need to store the permutation at each level as happens in

the EPWT, in the proposed RBEPWT we are finding paths that do not depend

on the data, at least not directlyb. In fact, the segmentation uses the gray-value

bIn this section we are assuming that the easy-path procedure from Section 2.2.1 is being used
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Algorithm 2 Grad-path algorithm

Input: region R, average gradient g

Output: path π

choose starting point p ∈ R . p is the current point

Q = R \ p . Q is the set of avaiable points

v = rotate g by π/2 . v is perpendicular to the average gradient

while Q 6= ∅ do
5: h̄ = min {h ∈ N, Bh(p) ∩Q 6= ∅}

C =
κ∈B

h̄
(p)∩Q

argmin ||p− κ||

if |C| ≥ 2 then

C =
φ∈C

argmax |< φ− p, v >|
if |C| ≥ 2 then

10: rotate v by π/2

goto 8

end if

end if

pick ψ ∈ C . there is no choice to be done here: C = {ψ}
15: append ψ to π

w = rotate g by π/2

v =
γ=−w,w

argmax < ψ − p, γ >
p = ψ

remove ψ from Q

20: end while

return π

information, but once the regions are determined the paths along which we sample

are completely determined by the regions and are agnostic of the gray-value data.

It is thus clear that the segmentation procedure is of primary importance for our

method.

Given a segmentation R = {R0, . . . , Rr−1} of the index set I, we can define the

perimeter of R as

P (R) :=

∣∣∣∣{((i, j), (k, l)) s.t. ||(i, j)− (k, l)|| = 1, (i, j) ∈ Ra,

(k, l) ∈ Rb for some a 6= b
}∣∣∣∣ ,

where we consider the Euclidean norm. In other words the perimeter is the number

of edges on the border between the regions of the segmentation - here we are thinking

of an edge at the region’s boundary as a pair of pixels on opposite sides of it,

which have distance 1 in the Euclidean norm. If we assume the regions are all path

connected when considering only paths that move horizontally or vertically in the
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image (i.e. not considering paths with segments of the type (i, j), (i+1, j+1)), then

these bordering edges completely define the segmentation. In any case, the perimeter

gives a first relative estimate of the storage cost of the segmentation: in fact, though

we haven’t yet explicitly determined an efficient encoding of the perimeter edges,

we assume that it will somehow encode the direction changes of the regions’ border,

such that e.g. a long straight border will be encoded as a sequence of 0 and thus

will be efficiently compressible.

Thus, having a small perimeter and regular borders are desirable characteristics

of a segmentation for our method. A more fundamental goal is to produce regions

such that, when its points are reordered according to the easy-path procedure, the

gray-values considered in this order give a sequence with few jumps. A potentially

tricky situation would be the image depicted in Figure 3 (a): segmentations (b) and

especially (c) are here clearly preferable to (d), because the easy-path procedure

applied to the latter one would pass many times through the central vertical line of

the image and produce a signal with many jumps.

(a) (b) (c) (d)

Fig. 3: (a) Original image, (b) Felzenszwalb-Huttenlocher segmentation for some

scale parameter k0 and smoothing parameter σ > 0, (c) σ = 0, and finally (d) for

σ = 0 and scale parameter k1 � k0.

In our tests we always applied Felzenszwalb-Huttenlocher’s segmentation pro-

posed in 4 c, because of its very good performance to computation speed ratio. This

method considers the graph G = (V,E), where the set of vertices are the pixels

of the images and the edges connect each pixel to the 8 pixels forming its square

neighborhood. The weights w(e) of the edges e are given by the difference in ab-

solute value of the gray-values. Given any region (set of vertices) C, its internal

difference is defined as

C ⊆ V, Int(C) :=
e∈MST(C,E)

max w(e) , (2.5)

cmore precisely its implementation in the skimage python library
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where MST(C,E) is the minimum spanning tree of the subgraph with vertices C

and all edges in E that are between vertices in C, i.e. (C,E∩C×C). This quantity

measures the inner variance in gray-value, and tells us that there is a path between

any two pixels in C using only edges of weight smaller than Int(C). Furthermore,

given two regions C1 and C2, the authors in 4 define the difference between the two

regions as:

C1, C2 ⊆ V, Diff(C1, C2) :=
(vi,vj)∈C1×C2∩E

min w((vi, vj)) . (2.6)

Finally, given two regions C1 and C2, they define a predicate, which evaluates to

True if there is evidence of a boundary between the two regions and to False

otherwise:

D(C1, C2) :=

{
True if Diff(C1, C2) > min {Ik(C1), Ik(C2)}
False otherwise

, (2.7)

where

Ik(C) := Int(C) +
k

|C|
(2.8)

is the scaled internal difference of a region. The scaling parameter k is introduced to

give a preference to regions of cardinality not too small with respect to k. Note that

instead of the term k
|C| any positive function τ(C) could be used: the segmentation

will then give a preference to regions C for which τ(C) is big. In the future we wish

to experiment with this function in order to optimize the regions for our method.

One possible example would be to define τ(C) = area(C)
perimeter(C) , in order to obtain a

segmentation with a smaller global perimeter and thus smaller storage cost.

The algorithm then starts with each pixel defined as its own region and then, con-

sidering each edge in increasing weight, evaluates the predicate for the two regions

connected by the edge. It is proven to produce a segmentation which is neither too

coarse nor too fine; see 4 for details. Prior to this procedure a Gaussian filter with

variance σ is applied to smooth the image.

When comparing this segmentation method against the requirements of a good

segmentation for our method, as described in the first part of this Section, we must

make two remarks. Firstly, the regions produced are such that if we use the MST of

that region to move between points, we will use only edges of low weight. But when

we apply our method, we will be moving along the path generated by the easy-path

procedure, and thus we will not have any guarantee of not obtaining a signal with

jumps. Secondly, since in (2.6) the minimum edge weight is considered, the method

can behave badly if there is a portion of the image similar to Figure 3a of size

much smaller than the scale parameter k. This could be avoided by substituting

the minimum edge weight in (2.6) with the median edge weight or another quantile,

but this is shown in 4 to make the segmentation problem NP-hard.
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2.3. Thresholding for a Region of Interest

Though we have supposed the index set to be that of a square image, i.e.

I = {(i, j) | 0 ≤ i, j ≤ N − 1}, there is nothing impeding us to relax this condi-

tion: the RBEPWT method can be applied without modification to images with

arbitrary boundary shape. In particular, it can be used to encode only a region of

interest (ROI) of a whole image - see Figure 4. One could then think of encoding

(a) (b) (c)

Fig. 4: Encoding of a ROI for the cameraman image using the CDF 9/7 wavelet and

11 levels. (a): full quality with 2101 coefficients, (b): thresholded to 210 coefficients

and (c): thresholded to 100 coefficients.

with different qualities the ROI and the rest of the image, simply by viewing them

as two separate images with non-regular boundaries. To this end however we can

do something a little bit more clever, leveraging the fact that many coefficients of

the full encoding of the image, especially at low levels, contain highly non-local

information, shared by both the ROI and its complementary. This allows us fine

control over the quality of the encoding for a region of arbitrary shape (and its

complementary), something that is not possible with the classical 2-dimensional

wavelet transform.

For simplicity we will restrict ourselves to the case of Haar wavelets and we will

suppose that the region of interest R is one of the regions found in the segmentation

step; we will also suppose the image to be of size 2N × 2N and to encode using the

maximum number of levels L = 2 log2 2N = 2N . The key observation is that each

value of fL−1 will be determined only by two values of fL; this follows from (2.2)

and the fact that the low and high pass Haar filters have support length 2. In order

to determine all coefficients in the encoding necessary to reconstruct R, it is useful

to organize the coefficients in a graph structure, similarly as to how is done in
18, where a generalization of EPWT-like methods is proposed. There the authors

define, for every level l of the transform, a node in the graph for each element in

I l; edges are defined between a node from level l (i.e. a node associated to a point

in I l) to another at level l − 1 if the value of the latter is associated to a nonzero

value of the filter in the sum defining the former. Thus this graph depends on the
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filter, and specifically only on the lengths of its support; in the Haar case, when

the maximum number of levels is used, the graph is actually a full complete binary

tree.

In order to visualize the permutation, we add to this construction for each level

a set of nodes, again each representing a point in that level of the transform. We

thus have for each point in I l two nodes in the graph, and we can then view the

permutation found at level l by the path-finding procedure of the RBEPWT as a

bipartite subgraph. See Figure 5 for an example.

(a) (b)

(c)

Fig. 5: (a): A segmented 4×4 image with the path found by the easy path procedure

at the fourth level, (b): the regions and path at the third level, (c): the coefficient

tree associated to the RBEPWT with Haar wavelets and 4 levels. Here the implied

order of the pixels is given by row-stacking (i.e. left to right and top to bottom).

The leafs are denoted by their coordinates in the image and are grouped by region.

The red edges represent the permutation given by the path finding procedure, while

the black edges represent the convolution with the low and high pass filters.



February 1, 2017 11:22 WSPC/WS-IJWMIP rbepwt

14 Renato Budinich

Now, the points in R correspond to a set of leaf nodes in the tree; from the

definition of the tree, it follows that only the RBEPWT coefficients corresponding

to nodes ancestors of these leaf nodes are influenced by the values of the points in R.

The farther up the tree a node is, the larger is its zone of influence in the image - the

root node is affected by all points in the image, but closer to the leafs the coefficients

contain more localized information. For example in Figure 5 5 coefficients (4 detail

and one approximation) are needed to perfectly reconstruct R4, and of these only

one (the root node) is common to R0. If we wish to encode only region R then it

suffices to follow the edges of the tree up until the root node, starting from the

leafs associated to R and preserving the coefficients encountered in this visit while

setting to 0 all the others. In this way all the information necessary to perfectly

reconstruct R will be preserved alongside some information of the rest of the image;

(see Figure 10b). To encode with different qualities R and the rest of the image, we

must divide the coefficients into two sets: those that are ancestors to points in R

in the tree and those that are not. Then we threshold the coefficients, preserving

a certain percentage of those in the first set and another percentage of those in

the second but not in the first, always giving precedence to coefficients larger in

absolute value (see Figure 10c).

The general non-Haar case is more complicated: one point in I l will influence

bs/2c coefficients at level l − 1, where s is the length of the filter and is usually

greater than 2. This means the graph will not be a tree anymore, since there will

be leafs with more than one parent; furthermore in the non-orthogonal case the

reconstruction filters may have different lengths than the synthesis, thus making it

not obvious from the graph representation which coefficients are needed for perfect

reconstruction of the ROI.

Finally, this idea could be applied to the standard EPWT and tensor wavelet

transform as well, however both cases would require more coefficients to encode a

ROI compared to the RBEPWT case. For the EPWT, the permutation at each level

is searched globally on the whole set of points and not for each region separately,

thus the coefficients could potentially get mixed more, with points that are nearby

in the image sharing less common coefficients in the graph. For the tensor wavelet

transform, the number of coefficients at level l− 1 influenced by a single coefficient

at level l is of the order of (s/2)2 d, due to the nature of the transform that uses

two-dimensional convolution.

3. Numerical Experiments

We present here some numerical results, which were all obtained using the python

code avaiable at the software page of http://na.math.uni-goettingen.de/ e.

We used the biorthogonal Cohen-Daubechies-Feauveau wavelets (known also as

dsupposing the low and high pass filter both have length s
ealso avaiable at https://github.com/nareto/rbepwt

http://na.math.uni-goettingen.de/
http://na.math.uni-goettingen.de/
https://github.com/nareto/rbepwt


February 1, 2017 11:22 WSPC/WS-IJWMIP rbepwt

A Region Based Easy Path Wavelet Transform for Sparse Image Representation 15

CDF 9/7) because, analogously to other natural images compression methods, they

showed very good performance in our method compared to other wavelets. In Fig-

ures 6-8 our method is compared to the classical two-dimensional tensor wavelet

transform and the EPWT. It is interesting to note how thresholding the coefficients

introduces different types of distortion in the different transforms: the 2D wavelet

transform blurs the image, while the EPWT and RBEPWT methods preserve edges

much better, while introducing a higher frequency noise. In particular, as should

be expected, the RBEPWT preserves the segmentation information: for example

in the cameraman image, the skyscraper to the right of the camera tripod can be

seen only in the RBEPWT images, because it was identified as a separate region in

the segmentation step. In the house image the texture of the bricks is completely

gone, but the borders are still perfectly visible - thus our method is particularly

well-suited for cartoon-like images.

In order to quantify the quality of our method, we computed the peak signal to

noise ratio (PSNR)

PSNR(f, f̃) := 20 log2

255∣∣∣∣∣∣f − f̃ ∣∣∣∣∣∣
2

,

where here f is the matrix corresponding to the original image and f̃ to the recon-

struction using only the most significant RBEPWT coefficients. However, in recent

years there has been a lot of research to find a better quality measurement index

(for example see 21 and 22). Here by better we mean that it correlates better to

scores given by humans to different degraded versions of the same image, such as

those presented in 17 or 8. In 19, the authors show that on average their proposed

HaarPSI index has the best correlation to such databases. Thus, in Figure 9, we

show the PSNR (for comparison with other methods, since despite its shortcomings

it is still widely used) and the HaarPSI values for the cameraman, peppers and

house image. These plots show how, especially for a very low number of coefficients,

our method is a little worse than the EPWT for the cameraman and peppers image,

while performing almost as good for the more cartoon-like house image.

It should be noted here that a better comparison would be obtained by comparing

the quality of the thresholded images with different transforms having the same

storage cost (and not the same number of coefficients). However at this point it is

unclear to us how the segmentation can be efficiently encoded.

In Figure 10 we show an example of the ROI based thresholding described in section

2.3.

Finally, we observe that by setting one coefficient to 1 and the rest to 0 and then

decoding, it is possible to view the elements of the adaptive basis produced by our

method. In Figure 11 some of such elements are shown for the cameraman image,

both for the RBEPWT and the EPWT. As should be expected, the basis for our

method clearly preserves the segmentation structure, while the basis for the EPWT

appears to be totally unstructured.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6: (a): Original cameraman image. (b): Segmentation obtained from the

Felzenszwalb-Huttenlocher algorithm with scale parameter 200, σ = 2 and mini-

mum scale 10. (c)-(f): Image compressed using 512 coefficients and the CDF 7/9

filter: (c) the classical 2D tensor wavelet transform, (d) EPWT, (e) RBEPWT with

easy-path and (f) RBEPWT with grad-path transforms.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7: (a): Original peppers image. (b): Segmentation obtained from the

Felzenszwalb-Huttenlocher algorithm with scale parameter 200, σ = 2 and mini-

mum scale 10. (c)-(f): Image compressed using 512 coefficients and the CDF 7/9

filter: (c) the classical 2D tensor wavelet transform, (d) EPWT, (e) RBEPWT with

easy-path and (f) RBEPWT with grad-path transforms.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8: (a): Original house image. (b): Segmentation obtained from the Felzenszwalb-

Huttenlocher algorithm with scale parameter 200, σ = 2 and minimum scale 10.

(c)-(f): Image compressed using 512 coefficients and the CDF 7/9 filter: (c) the

classical 2D tensor wavelet transform, (d) EPWT, (e) RBEPWT with easy-path

and (f) RBEPWT with grad-path transforms.
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(a)

(b)

(c)

Fig. 9: PSNR and HaarPSI values for the (a) cameraman, (b) peppers and (c) house

image, with 512, 1024, 2048 and 4096 coefficients
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(a) (b)

(c) (d)

Fig. 10: (a): the selected ROI for the house image, roughly corresponding to the

window, the light part of the wall and the area under the roof; (b): decoded image

where all and only the coefficients ancestors to the ROI where preserved (5042 non-

zero coefficients); (c): decoded image where 10% of coefficients ancestors to the ROI

and 0.1% not ancestors were preserved, for a total of 551 non-zero coefficients; (d):

decoded image with standard thresholding with 551 non-zero coefficients (inserted

here for comparison with (c))

4. Final Remarks

We introduced a new method for compression of natural images, which applies an

image segmentation method to the image before applying an EPWT-like method.

We defined two region path-finding procedures, which are deterministic and do not



February 1, 2017 11:22 WSPC/WS-IJWMIP rbepwt

(a) (b)

(c) (d)

(e) (f)

Fig. 11: Basis elements for the cameraman image, encoded with 16 levels. (a)-(b):

approximation and detail coefficients at the first level of the RBEPWT; (c)-(d) the

two detail coefficients at the second level of the RBEPWT; (e)-(f) approximation

and detail coefficients at the first level of the EPWT.
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depend on the single gray values of the pixels in the region. We used the defined

transform to compute a lossy compressed version of the original image, obtained by

setting to 0 all but the greatest coefficients and applying the decoding procedure.

We commented on which are desirable characteristics for the segmentation step of

our method, namely producing regions that enable paths generated by the easy-

path procedure with few jumps and with small and regular perimeters. Finally we

showed how the RBEPWT can be used to encode with different quality a specific

region of interest from the rest of the image.

In the future we wish to study more closely the segmentation step and possibly

develop an ad-hoc procedure for our method.
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11. Stéphane Mallat. Geometrical grouplets. Applied and Computational Harmonic Anal-
ysis, 26(2):161–180, 2009.
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