CONSTRUCTION OF MULTI-SCALING FUNCTIONS WITH
APPROXIMATION AND SYMMETRY

G. PLONKA* AND V. STRELA'

Abstract. This paper presents a new and efficient way to create multi-scaling functions with
given approximation order, regularity, symmetry and short support. Previous techniques were oper-
ating in time domain and required the solution of large systems of nonlinear equations. By switching
to the frequency domain and employing the latest results of the multiwavelet theory we are able to
elaborate a simple and efficient method of construction of multi-scaling functions. Our algorithm
is based on a recently found factorization of the refinement mask through the two-scale similarity
transform (TST). Theoretical results and new examples are presented.
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1. Introduction. This paper discusses the construction of multi-scaling func-
tions which generate a multiresolution analysis (MRA) and lead to multiwavelets. A
standard (scalar) MRA assumes that there is only one scaling function ¢(¢) whose
translates ¢(t — k) (k € Z) constitute an L?-stable basis of their span V4 [D2, SN].
We move a step forward and allow several functions ¢o(t), ..., ¢r—1(t). The vector
o(t) = [¢o(t)...dr—1 ()] is called multi-scaling function if the integer translates
¢ (-—k) (k€ Z,v=0,...,r—1) form an L?-stable basis of V; and if ¢(t) satisfies

a dilation equation,

(1.1) B(t) =D Pn (2t —n).

Here the coefficients P, are r x r matrices instead of usual scalars. The multi-scaling
function ¢ generates a multiresolution analysis (MRA) {V; : j € Z} of multiplicity
7. The corresponding wavelet spaces W; can be generated by a multiwavelet w(t) =
[wo(t) ... wr_1(t)]T associated with ¢(t), satisfying a wavelet equation

(1.2) w(t) =Y D, ¢(2t —n).

n=0

Again, D,, are r X r matrices.

Multiwavelets naturally generalize the scalar wavelets. For r = 1, (1.1) is the well-
studied refinement equation (see e.g. [CDM, DL1, DL2]). However, multiwavelets
have some completely new features arising from the matrix nature (r > 1) of the
equation (1.1). They can simultaneously possess symmetry, orthogonality, and high
approximation order which is not possible in the scalar case [SB, D2]. This suggests
that in some applications multiwavelets may behave better than the scalar ones. The
results of first experiments [SHSTH, XGHS] confirm this conjecture and show that
the multiwavelets are definitely worth studying.

One of the first multiwavelet constructions is due to Alpert and Rokhlin [AR].
They considered a multi-scaling function whose components are polynomials of degree
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7 — 1 supported on [0, 1]. The general theory of multiwavelets, based on the MRA of
multiplicity 7, is discussed in [GLT, GL].

Using fractal interpolation, Geronimo, Hardin, and Massopust succeeded to con-
struct a continuous multi-scaling function ¢(t) = [¢o(t) ¢1(¢)]T with short support,
symmetry and second approximation order [GHM]. The plot of this pair ¢o(t), ¢1(t)
is presented in Figure 1.
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Fic.1 GHM symmetric orthogonal multi-scaling function with approximation order 2

The results of [GHM] triggered many attempts to construct more examples ([SS1,
CL, DGHM]) as well as the systematic study of multi-scaling functions.

Properties of a refinable function can be formulated either in time or in frequency
domain. In [SS2, HSS, L], conditions of orthogonality and approximation were es-
tablished in the time domain. Also, a way to construct multi-scaling functions with
short support and low approximation order was found [SS1, HSS, CL]. Unfortunately,
this method required solution of a large system of nonlinear equations. We therefore
switch to the frequency domain.

Working in the frequency domain, one faces the necessity to deal with the Fourier
transformation of (1.1),

(1.3) s)=P(3) 6 (5).

where (75 = ($0,...,¢:r_1)T, (;ASV = ffooo ¢, (t) e~ dt, and P(w) is the refinement

mask corresponding to ¢(t),

(1.4) P(w) = % > Py,

In the scalar case, P(w) is a trigonometric polynomial. In the vector case, P(w)
becomes a matriz of trigonometric polynomials. To ensure certain approximation
order, P(w) must satisfy necessary and sufficient conditions in the frequency domain.
Those conditions were formulated and proved in [HSS, P3]. In [P3], it was also shown
that the vector ¢(¢) can only provide approximation order m if the refinement mask
P(w) can be factorized in the form:

(15) Pw)= Qmem_l(zw) L Co(2w) PO(w) Co(w)™ ... Crur ()7,
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where P(O)(w) is well-defined and Cy(w), ..., Cyp—1(w) are matrices of a special form.
The factorization (1.5) is not unique. With the help of the two-scale similarity trans-
formation (TST), the whole set of possible factorizations can be described [S1].

The factorization (1.5) naturally generalizes the scalar case r = 1. As known, one
scaling function with compact support and linearly independent integer translates
provides approximation order m if and only if its refinement mask P(w) has m zeros
at w = m:

(1) P = (M)

with ¢(0) = 1 and ¢(7) # 0. For » = 1, (1.6) coincides with (1.5) taking P(O)(w) =
¢(w) and Cy(w) = ... = Cpy_1(w) = (1 — ). Daubechies connected the behaviour
of ¢(w) in (1.6) with the decay properties of (E(w), and hence, she obtained estimates
of smoothness of ¢(¢) [D1]. The factorization (1.5) plays the same role for a multi-
scaling function as (1.6) for a scalar one. In [CDP] and independently in [S1], it was
shown how the factorization of the refinement mask P(w) leads to decay of aﬁ(w)
Similar results on regularity of refinable function vectors are presented in [Sh].

However, up to now, the factorization (1.5) has been shown to be necessary only.
For the construction of multi-scaling functions we need the sufficiency of a factor-
ization (1.5) for approximation order m. In this paper, we show how, under mild
conditions, the factorization of the refinement mask P(w) yields a solution of (1.1)
with desired approximation properties. Using this result and the TST, a construction
of multi-scaling functions providing an arbitrary, fixed approximation order becomes
simple. Description of corresponding algorithm is our main purpose.

The outline of the paper is as follows. In §2 we summarize previously known
and new theoretical results on the symmetry of ¢(¢), its approximation order, the
factorization of the refinement mask P(w) and the TST. The main novelty of §2 is
the observation that the factorization of the refinement mask leads to approximation
order of the multi-scaling functions (Theorem 2.6). Other remarkable new results are
given in Theorems 2.7, 2.9 and Lemma 2.5.

In §3, we present a new algorithm for the construction of a refinement mask P(w)
with any given approximation order. We intensively study, how the inner matrix
P (W) and the transformation matrices My, (w) should be chosen in order to obtain
a smooth, symmetric multi-scaling function with compact support. Several examples
are given.

§4 contains the proof of Theorem 2.6.

2. 0Old and new theoretical results. In this section, we are going to present
the results needed for the construction of symmetric multi-scaling functions with given
approximation order.

Let us start with definitions and notation. For a measurable function f over R
and m € N let

Il = (f LFOF a0 [l = D 101
k=0

— 00

Here and below D := d/dw denotes the differentiation operator with respect to w.
Let W3*(R) be the usual Sobolev space with norm || - ||m,2. For a vector ¢ =
(6,)"Z5 of compactly supported functions let § = S(¢p) be the shift-invariant space
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spanned by the integer translates ¢, (t — k) (v = 0,...,r =1, k € Z). We say that
¢(t) provides approzimation order m if for every f € Wir(IR)

min {||f —s|| : s € S"} < consts A" ||f||W2m(R)’

where 8" is the scaled space " := {s(-/h) : s € S}.

A vector v of length r is said to be in CJ2(R"), and analogously, an r x r matrix V'
is in CHL(R"*"), if all its entries are 2r—periodic m times continuously differentiable
functions.

2.1. Conditions of approximation. Assume that ¢, € C(R) N BV(R) (v =
0,...,7 — 1) are compactly supported functions. Here BV (R) denotes the set of
functions of bounded variation. If the integer translates ¢, (- — [) form a Riesz basis
of S(¢), then the following statements are equivalent (see [JL, P3]):

(i) The function vector ¢(t) provides approximation order m (m € N).
(i1) All algebraic polynomials of degree up to m — 1 can be exactly reproduced
by a linear combination of integer translates of ¢, (¢).

(iii) ¢ () satisfies the Strang-Fix conditions [SF] of order m, in other words, there
is a finitely supported sequence of vectors {ay };ez such that f(t) := >, al ¢t —1)
satisfies the following conditions:

~ ~

£(0) #0; D"f2nl) =0 (l€Z\{0};n=0,....m—1).

Since condition (b) yields vanishing moments for the corresponding multiwavelets it
is often used in applications.

The approximation order of a refinable function vector ¢(t) satisfying (1.1) is
intimately related with the properties of the refinement mask P(w) defined by (1.4).
In the scalar case (r = 1), when there is only one scaling function, P, are real
numbers and P(w) is a scalar trigonometric polynomial. Then m-th approximation
order implies m zeros of P(w) at w = m [D2]. In the vector case, P(w) is a matrix,
and the situation becomes more complicated. But still, similar conditions at the point
w = m hold.

THEOREM 2.1. [HSS, P3] Let ¢ = (6,)25 be a refinable vector of compactly
supported functions ¢,. Further, assume that the integer translates ¢,(t — 1) (I € Z)
form a Riesz basis of S(¢). Then ¢p(t) provides approzimation order m if and only if
the refinement mask P(w) of ¢ satisfies the following conditions: There are vectors
Yy, ER; y, 0 (k=0,...,m—1) such that forn=10,...,m—1,

n

(2.) 5 () @i (0 ) 0) = 2 ()"

(22 5 () o @ (0 Py = 0.

k=0

Here 0 denotes the zero vector.

If a matrix P(w) € C2~H(R"") satisfies (2.1) and (2.2) for n = 0,...,m— 1 with
vectors Yy, -« ., YUpy_1 (Yo 7 0), then we shortly say that P(w) provides approximation
order m with yg,...,y,,_1. In order to prove that the relations (2.1) and (2.2) imply
approximation order m, one only needs to assume that yd (?5(0) # 0. Riesz stability
of integer translates ¢, (t — ) is not needed.
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Remark. The result of Theorem 2.1 is a natural generalization of the scalar case.
For r = 1, equations (2.1), (2.2) can be simplified to

(2.3) P(0)=1; D"P(r)=0 (n=0,...,m—1)

implying m zeros of P(w) at w = m. Note that in the vector case, we need conditions
in two points, w = 0 and w = w. Also, both eigenvalues and eigenvectors of P(0) and
P(r) are important.

2.2. Two-scale similarity transform. A very useful research and construction
tool in the theory of multiwavelets is the two-scale similarity transform (TST) [S1]. We
say that Q(w) is a TST of P(w) with the transformation matriz M (w) € Cor (R™*")
if

Qw) = M(2w) P(w) M (w)™!.

If M(w) is invertible for all w € R, then the TST is non-degenerate. Tt is easy
to see that if P(w) € Car(IR"*") is the refinement mask of ¢ € L?(R"), then a non-
degenerate TST with transformation matrix M (w) € Ca(R™*") yields a matrix Q(w)
which itself is a refinement mask of a refinable function vector 4 € L?(IR") such that

P(w) = M(w) w):

$(w) = M) dlw) = M) P (2) 3 (%)

S () (3) 6 (3)=a(3) 9 (3)

The following theorem shows, that a non-degenerate TST preserves approximation
properties of a refinement mask.

THEOREM 2.2. [S1] Let a transformation matriz M(w) € CI~HR™ ") be in-
vertible for all w € R. Assume that P € CY'"HR"™™") provides approzimation order
m with vectors yg, ..., Yp_1- Then Q(w) = M (2w) P(w) M (w)™! also provides ap-
proximation order m with vectors uq, ..., Umym_1, given by

k

ul = (I;)i’—k yl (D"'M~1(0) (k=0,...,m—1).

=0

For more properties of the TST and the proof of Theorem 2.2 see [S1, S2].

2.3. Factorizations of the refinement mask. In the scalar case, the condi-
tions of approximation (2.3) lead to a factorization of P(w). A zero at w = 7 means
that P(w) has a factor (1 4+ e~™). So P(w) factorizes as in (1.6). This factorization
plays the key role in the construction of regular scalar scaling functions [D2].

In the vector case, the conditions of approximation (2.1), (2.2) are more compli-
cated but still they imply a factorization of the matriz refinement mask P(w). This
factorization opens a constructive way toward the creation of new multi-scaling func-
tions. But before starting with the factorization, we need to review some notation.

Let r € N be fixed, and let y € R" be a vector of length r. To start, assume that
y 1s of the form

(2.4) y=1[yo...y-10...0]"
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with 1 <l <randy, #0forv=0,...,0—1. We introduce the direct sum of square
matrices A @ B := diag(A, B) and define the matrix Cy by

(2.5) Cy(w) = Cy(w) @ I,_;.

Here I,_; denotes the (r —1) x (r —!) unit matrix, and for [ > 1, éy(w) is defined by

[ yo_1 —yo_1 0 0
0 vt -t :
Cy(w) = : L. 0
0 yl—_l2 _yl—_l2
| —e7 /g1 0 N

If1=1,let Cy(w) = (1—e™)/yp.

For general y = [yo...y,—1]" € R, y # 0 we define Cy = (Cj,k)‘;,;l:o by
reshuffling of rows and columns. More exactly, let jo := min{j; y; # 0} and j; :=
max{j;y; # 0}. For all j < j; with y; # 0 let d; := min{u : p > j, yu # 0}. For
Jo < ji1, the entries of Cy are defined by

vi! yi #0 and j=k,
1 yi =0 and j=4%,
(2.6) Cjilw):= —yj_1 y; 70 and d; =k, (J,k=0,...,r=1)
—e /y;, j=j1 and k=jo,
0 otherwise
For jo = j1, Cy is a diagonal matrix of the form
2.7 Cy(w) :=diag(l,...,1,(1—e ™) /y;., 1,...,1).
(2.7) y(w) g( ( )/ )
Jo r—1-jo

It is easy to observe that Cy(w) is invertible for w # 0. In particular,

(2.8) det Cy(w) = lj vl | (1—em).

yu #0

Furthermore, C'y is chosen so that y" Cy(0) = 0T. We introduce
(2.9) Gy(w) i=(1-e™)Cyl(w) .

If y is of the form (2.4), then Gy(w) = éy(w) @® (1 —e ™) I,_; with

Yo n Y2 Yie1
Yoz Y1 Y2 :
éy(w) = : : : Yio1 (z :=e7) .
Yoz W1z - Yi—n Y1
L Yoz Y1z ... Yi-22 Yi-1 |
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Finally, let e = (e, )" Z§ corresponding to y = (y, )" Z4 be defined by
|1 for y, #£0 _
(2.10) ey ._{ 0 for g, =0 (v=0,...,r=1).

Now we can proceed with the factorization of P(w).
THEOREM 2.3. [P3] Let m > 1 be fired. Assume that P € C-7H(R™™") provides
approzimation order m with vectors Yo, ..., Y,_1 (Yg 7 0). Then

(2.11) P(w) :=2Cy, (2w)™' P(w) Cy, (@),

with Cy_ (w)fleﬁnedl)y Yo via (2.6)—(2.7), provides approzimation order at least m—1
with vectors Yy, ..., Ym_n, given by

k+1
(2.12) (@k)T — ﬁ Z (kj/- 1) k-1 (yV)T (Dk+1—ucy0)(0)

fork=0,...,m—2. In particular y, # 0.
Moreover, if e corresponds to y, in the sence of (2.10), then P(w) in (2.11)
satisfies P(0) e = e.

Assume that P € C271(R™*") provides approximation order m, then repeated
application of Theorem 2.3 yields the desired factorization of P(w):

(2.13)P(w) = Qmewm_l(zw) o Cay (W) PO(w) Cpy (W)™ ... C (W)L

Here P(O)(w) € CHR™*") and @, . .., ®m_1 € R” are defined recursively by (2.12)
[P3]. In particular, ®,_1 = y, and, by (2.8),

1 —dw\ ™
det P(w) = (%) det P(O)(w).

However, the factorization (2.13) is not unique. The following theorem is a general-
ization of Theorem 2.3.

THEOREM 2.4. [S1] Let m > 1 be fized, and let P € C~HR™") provide
approzimation order m with vectors Yy, ..., Yy, Further, let M € CT7H(R"™)
satisfy the following conditions:

1. M(w) is invertible for all w # 0.

2. M(0) has a simple eigenvalue 0 with a corresponding left eigenvector y, and

D(det M)(0) # 0.

Then,

(2.14) P(w) =2M(2w)"" P(w) M (w)

provides approzimation order at least m—1 with vectors wg, ..., Um_a (m > 1) defined
by

uT.:Lli:l k+1 ij_k—lyT(Dk+1—jM)(0) (k’IO m_2)
PR k+1j:0 j i ey .
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In particular, wg # 0. If P exactly provides approzimation order m = 1, then 13(0)
has the eigenvalue 1 but there exists no vector y # 0 such that 1~3(w) satisfies (2.1),
(2.2) forn = 0.

In [S1], this result was obtained directly, using similar ideas as in the proof of
Theorem 2.3 in [P3]. Here we would like to give another proof which clearly shows the
connection between the particular factorization matrix C'y and general factorization
matrices M .

LEMMA 2.5. Let y € R” be a fivred nonzero vector, and let M € CJ:~HR"™")
satisfy the assumptions 1 and 2 of Theorem 2.4 (with y instead of y,). Further, let
Cy be an r x r matriz defined by y via (2.6)-(2.7). Then, there exists a matriz
M (w) € CT7HR™") which is invertible for all w € B, and

Cy(w) Mo(w) = M(w).

Proof. Let Gy be the r x r matrix defined by Cy via (2.9). Define Mg(w) as
follows:

[ Cylw) M(w) for w # 0,
Mo(w) := { (fﬁ) ((DGy)(0) M (0) + Gy/(0) (DM)(0)) for w =0.

Here, M(0) is found by the rule of I'Hospital from

Mp(0) = lim C’y((.u)_1 M(w) = lim #Gy(w)M(w).

w—0 w0 ] — e~ tw

Since Cy(w) is invertible for w # 0, the relation Cy(w) Mo(w) = M (w) easily follows
for w # 0. For w = 0, we find

Cy(0) Mo(0) = (—i) (Cy(0) (DGy)(0) M(0) + Cy(0) Gy(0) (DM)(0)) .
Observe that, by definition,
Gy(w) Cy(w) = Cy(w) Gy(w) = (1 — ) I,.

Hence,

(DCy)(0) Gy(0) + Cy(0) (DGyY)(0) = il
From the assumption y* M (0) = 0T we have Gy(0)M(0) = 0,. Thus,
Cy(0) Mo(0) = (—i) (iT, — (DCy)(0) Gy(0)) M(0) = M(0).

We see that Cy(w) Mo(w) = M(w) for all w € R. Since Cy(w) and M (w) are
invertible for w # 0, M(w) is also invertible for w # 0. Further, since D(det Cy)(0) #
0 and D(det M)(0) # 0, it follows that

. det M(w) _ D(det M(0))
det My (0) = ul)l_l% det Cy(w) - D(det Cy(O)) 70

Thus, M(0) is invertible. O
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Proof. (of Theorem 2.4) Recall that by Theorem 2.2, a TST with an invertible
transformation matrix does not change the approximation order of a refinement mask.
Using the result of Lemma 2.5, we simply observe that a factorization step (2.14) with
a matrix M (w) can be considered as a combination of factorization step (2.11) with
Cy, (w) and a non-degenerate TST with the transform matrix Mo(w). O

While the matrices C'y are determined by a left eigenvector y of Cy(0) to the
eigenvalue 0, we want to identify the matrices M with the help of right eigenvectors
of M(0) to the eigenvalue 0. Letting #o be a right eigenvector of M (0) in Theorem
2.4, we then have My, := M. Hence, similarly to (2.13), repeated application of
Theorem 2.4 gives a general factorization of P(w):

(2.15) P(w) = Q%Mrm_l(Qw) My, (20) PO My (W) My, ()7

2.4. Factorization implies approximation order. In this subsection we state
the main theoretical results of the paper. First, let us again return for a moment to
the scalar case (r = 1). In [St1], it was shown that the approximation order defines the
number of factors (14¢e~%) in P(w), and on the other hand each such factor increases
the approximation order by one. Therefore, our next step is to prove the reverse of
Theorem 2.3 and Theorem 2.4, or in other words, to show that the factorization (2.15)
of the refinement mask yields approximation order m for the corresponding refinable
function vector. B

To this end, we need to introduce the “modified” Bernoulli numbers B, (n € N),
defined by the following relations:

(2.16) Bo=1, Zn: (“ Jl“ 1) (—1)' B, =0,

=0
or

n—1
~ ~ (=1)ntt n+1 L=
By=1 B, = —-— -1y B >1).
=1, e JEV B e

In particular,

- 1
Bsi=——.
4 30

By =

1 1
2’ 6’

Note that, apart from El, the modified Bernoulli numbers coincide with the usual
Bernoulli numbers B,,:

B, =B, (neN\{1}), B, =-Bi.

This means that §2n+1 = Bant1 =0 (n > 1), and we have

"L n41 P L N A 1 n=0,
e () A= ()= L 15
(see [AS]).
Now we are ready to state the main results of this section.
THEOREM 2.6. Let m > 1 be a fired integer and let P € CTL(R"™") be a refine-
ment mask providing the approzimation order m with yg,...,Ypy_1 € R" (yy # 0).
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Further, assume that there is a vector e € R" (e # 0), containing only the entries 0
or 1, such that P(0)e = e. Let y = (y,)'Z) €R" (y # 0) be an arbitrary vector such
that e corresponds to y in the sense of (2.10). Then the matriz P(w),

P(w) := %cy(zw) P(w) Cy(w)™

with Cy defined by y via (2.6)-(2.7), provides approrimation order at least m+1 with
vectors Yo, - -, YU

k

(2.18) il = (—ik) Gy, (DGy)(0) + > (?’) Bi1 @ Gy(0) (k=0,...,m—1),

(219)  yl = (cim) 5L, (DGy)(0 +Z( ) et 5T Gy (0)

9m m—1

ey 2 (1) e e o Gy

where y_, := 0.
The proof of Theorem 2.6 is presented in §4. In particular, we obtain from (2.18)

that y! = ﬂg Gy(0) = (Z;;é goyy) y' with gy, = @071,)2;%). Observe that the
technical assumption 13(0)6 = e ensures, that Cy has the same right eigenvector e

to the eigenvalue 0 as 13(0) to the eigenvalue 1.

Again, we can generalize this result using the TST.

THEOREM 2.7. Let m > 1 be a fived integer and let P € CYL(R"™™") be a refine-
ment mask providing approzimation order m with vectors gy, ..., Ypym_1 € R" (yy £ 0).

Further, let v be a right eigenvector of 13(0) to the ergenvalue 1.
Choose a matriz My (w) € CTL(R"™"), such that
1. My (w) is invertible for allw € R, w # 0.
2. My (0) has a simple eigenvalue 0 with My (0)r = 0.
3. D(det M4)(0) # 0.
Let u be a left eigenvector of My (0) corresponding to the eigenvalue 0. Then the
matriz

1 ~
(2.20) P(w) = 5Mr(m) Pw) My (w)™"
provides approzimation order at least m + 1 with vectors wg, ..., Uy, given by
k

wl = (—ik) @, (DGu)( +Z( )Ek_,a,TGu(O) (k=0,...,m—1),

wl = (—im) @] _, (DGu)( +Z< ) 1 ) G (0)

m

> (TZ) (20)7" 5 (D™ (Mo(2)™" P M0))(0) Gu (0),

2
2m—1
k=0
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where Mo(w) is an invertible matriz such that Cy(w) Mo(w) = My (w), u_q := 0,
and @, = Zf:o (l;) =R g (DF MY (0) for k=0,...,m—1.
Proof. In [S1], it is shown that P(w) defined by (2.20) is in C%(R™*") and P(0)

has a left eigenvector w, corresponding to the eigenvalue 1:
u P(0) =u’.

Let Cq be defined by w via (2.6)—(2.7), then T C¢(0) = 0T. By Lemma 2.5, there

m

exists a regular matrix Mo € C.(R"*") such that
Cu(w)My(w) = My (w).

Recall that the eigenvalue 0 of C4(0) is simple, and we have Cy(0) e = 0, where e is
connected with w via (2.10). Hence, from My (0)» = 0, it follows that My(0)r = ce
with some constant ¢ # 0. Since M(w) is invertible for all w € R, Theorem 2.2
implies that the matrix My(2w) 1~3(w) M o(w)~?! also provides approximation order
m. Furthermore,

Mo (0) P(0) Mo(0)™" e = — Mo(0) P(0)r = ~ Mo(0)r = e.

Now, we are ready to apply Theorem 2.6 to the matrix Mo(2w) P(w) Mo(w)™!,
yielding that

P(w) %Mr(Qw)IB(w)Mr(w)_l

= %Cu(Qw) M (2w) P(w) Mo(w)™! Cy(w) ™!

provides approximation order at least m + 1. The construction of uy (k =0,...,m)
follows from Theorems 2.6 and 2.2. O

Remarks. 1. Let us mention that a degenerate TST with D(det M)(0) # 0 can
change the approximation order only by one. This fact does not follow directly from
Theorem 2.4 or from Theorem 2.7. Only together these theorems imply it.

2. In particular, we obtain that, in Theorem 2.7, the vector uy is a multiple of
u, since ul = ﬂg Gu(0).

Repeated application of Theorem 2.7 yields the following Corollary.

COROLLARY 2.8. Suppose that a matriz P(O)(w) € CIYR™*") is given. More-
over, let

PO0)yrg =71y, alPO0) ==, zIP9(x)+#0,

for some ®g, 79 €R". Forn=1,...,m, construct the matrices
() 1 (n=1) —1
P (w) = §Mrn_l(2w)P (WM (w).

Here My, _, (w) are chosen such that
1. My, _, (w) is invertible for all w # 0 and D(det My __,)(0) #0;

2. M(0) has a simple eigenvalue 0 with a right eigenvector v,_1,
M"'n—l(o)r”—l = Oa

where r,_1 15 the 1-eigenvector of P(”_l)(O), ie., P(”_l)(O)'rn_l =7r,_1.
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Then there exist vectors Yy, . .., Y1 (Yo # 0) such that the matriz P™

P () = QLmMr (2w) . My, (20) PO(w) My (W) My, (w)7?
provides approximation order m with yq, ..., Yp_1-

Corollary 2.8 opens an easy way to construction of multi-scaling functions with
given approximation order. We discuss it in §3. Note that the bulky formulas in
Theorems 2.6 and 2.7 for y, and wy are only of theoretical interest. They will be
used for the proof, but they need not be computed during the construction.

2.5. Regularity of multi-scaling functions. In the scalar case, the approx-
imation properties of the refinement mask are closely related with regularity of the
scaling function. What happens in the vector case? To give an answer to this question
we recall results from [CDP, S1].

Let v be a right eigenvector of P(0) for the eigenvalue 1. We introduce the
spectral radius of P(0),

p(P(0)) :=max {|A|: P(0)® =A@, ® #0}.
Suppose that p(P(0)) < 2. Then

(2.21) Y(w):= lim _, P (2])

n—od

converges pointwise for all w and the convergence is uniform on compact sets (see
[CDP]). Moreover, the following theorem holds.
THEOREM 2.9. [CDP] Let P be an r x r matriz of the form
1
P(w) = 5 Ca,y (20) .. Cupy (20) PO(w) Car ()71 . Car (@) 7
where ka are defined by the vectors ®wp # 0 (k = 0,...,m — 1) via (2.6)-(2.7)
and P ( ) is an r x r matriz with trigonometric polynomzals as entries. Suppose
that P (O)e = ey, where ey is defined by wy via (2.10). Further, suppose that
p(P ( )) <2, and let, for k > 1,

(2.22) Vi = % log,, sgp ||P(0) (g) ...pO (;—k) [].

Then there exists a constant C' > 0 such that for allw € R
I (@)l < €+ )™,

where ||'f(w)|| denotes the Euklidian norm of 'f(w) = (Tl,(w))f,;(l). Hence, if v, <
m—d (d eN), then T, (v=0,...,7—1) are d — 1 times continuously differentiable.

If the conditions of Theorem 2.9 are satisfied and infr>19% < m — 1, then a
compactly supported continuous solution Y (¢) of (1.1) is unique in a wide class of
functions. Further, the uniform convergence of the cascade algorithm (in time domain)
is ensured (see [CDP, Sh]). Using the techniques from [S1] we obtain the following
result:

COROLLARY 2.10. Assume that forn=1,... m, P(”)(w) is of the form

1

PM(w) = o7 Mo, (). My (20) PO My, (w)™ . My, (W)™
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Let P(O)(w), P(”)(w) and My _, (w) (n=1,...,m) satisfy the assumptions of Corol-
lary 2.8. Further, suppose that p(P(O)(O)) < 2 and infy>1 v < m—d (d € N), where
vi is defined in (2.22). Then, Y (t) is a compactly supported d — 1 times continuously
differentiable solution of (1.1) with refinement mask pm (w) providing approzimation
order at least m.

Similarly to the scalar case, the regularity of multi-scaling functions depends
both on the approximation order and the behavior of the residual P(O)(w). Roughly
speaking, each approximation order adds one more derivative to the corresponding
function vector, but the starting number of the derivatives depends on the P(O)(w):

LEMMA 2.11. Let P(w) be the refinement mask of a compactly supported con-
tinuously differentiable function vector ¢p € C1(IR") providing approzimation order at
least 1, i.e., there exists a vector y € R", y # 0, such that

y'P0)=y", y'Pm)=0"

Further, assume, that P(0) has a spectrum of the form {1,p1,..., pr—1} with each
py < 1/2. Let M(w) € C1_(R) be an r x v matriz salisfying the assumptions 1, 2 of
Theorem 2.4 (with y instead of y,). Then

(2.23) P(w) :=2M(2w)"" P(w) M ()

is the refinement mask of a continuous function vector b = (1,)"Z5 € C(R")N L' (R)
and there is a constant cog € R such that

Blw) = = M(w)p(w).
w
In particular, if M = CyM,, with Cy defined by y as in (2.6)~(2.7) and a constant,
wmvertible matriz Mg, then ¥ 1s also compactly supported.

Proof. 1. Let us start with the case when 1~3(w) =2Cy(2w)™! P(w) Cy(w) and
Cy is defined by y as in (2.6)-(2.7). The assumptions on the spectrum of P(0) and
results of [CDP, S1] imply that p(IB(O)) =1, and 1 is a simple eigenvalue of 13(0)
Hence, we can represent (}5 and 12; in the form

(2.24) d(w) = f[P (;"_]) a,  Pw) ::f[fa (;"_]) b,

where a and b are right eigenvectors of P(0) and 13(0), respectively. The convergence
of the products in (2.24) is ensured by Theorem 3.2 in [CDP]. The observations in
[P3] imply that 1~3(w) is a matrix of trigonometric polynomials ensuring a compactly
supported solution 4(¢) of (1.1). The solutions ¢ and 1 are uniquely determined by
(2.24) up to a constant factor [CDP, HC].

By the repeated substitution of (2.23) into (2.24) we get

= tin (T500 (5) (5) v (3)”
j=1
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Formula (2.9) gives
- . 1 T (W w
Plw) = i g e Cy<W>j1_Tl P(5) Gy (5) @

2. Replacing Cy(w) and Cy(2w)~! by (1—e~w) Gy(w)~! and (1—e~2iw)—t Gy (2w),
respectively, we obtain from (2.23) (with M = Cy) that

(1+ ) P(w) Gy(w) = Gy(2w) P(w).

N | —

In particular, for w = 0, it follows that 13(0) Gy(0) = Gy(0) P(0). Hence, Gy(0)a

is a right eigenvector of 13(0), and there is a constant ¢g such that
Gy(0)a=cob.

Observing that limy e 27"(1 — e‘“"/Zn)_1

Il
—
-
€
=
|
A
=
)
aQ
@
o+

() = = Cy(w) 17 (;"—]) b= 2 Cyw) ).

Take now a refinement mask P(w) of a compactly supported function vector
¢ € C1(R") and an arbitrary matrix M € C5_(R"*") corresponding to P such that
M satisfies the conditions 1, 2 of Theorem 2.4 (with y instead of y,). Then, by
Corollary 2.10,

P(w) = 2 My (2w) P(w) My(w)

is a refinement mask of a continuous function vector ¢» € C'(R"). Using Lemma 2.5
we can prove the relation

~

$lw) = 7 My(w) $(w)

with an arbitrary chosen constant ¢g in the same manner as above. O
Using the spectral properties of transition operators, more results on regularity

can be obtained [CDP, Sh, J].

2.6. Symmetry of multi-scaling functions. In many applications, symme-
try of the scaling functions is very desirable. Unfortunately, this property is very
restrictive, and in the scalar case symmetry cannot be combined with orthogonality.
In the vector case, there is more freedom, and the components of a refinable function
vector can be symmetric and orthogonal at the same time. One such example was
constructed in [GHM] and is shown in Figure 1. In this subsection we are going to
discuss some results on symmetry of multi-scaling functions. All details can be found
in [S1].

We say that a refinable function vector ¢ = (¢,)/Z4 is symmetric if all its com-
ponents ¢, () are symmetric or antisymmetric. Symmetry implies some restrictions
on a refinement mask P(w).

THEOREM 2.12. [S1] If there is a diagonal matriz

E(w) = dlag (ie—iZTuw’ e :te_iZTr_lw)
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such that the refinement mask P(w) of a refinable function vector ¢ = (¢,)"_5 satis-

fies
(2.25) P(w) = E(2w)P(—w)E(w)™,

then ¢ is symmetric. The constants T, occuring in E(w) are points of symmetry of
the components ¢, (t), i.e., ¢, (T, —t) = ¢, (T, +1).

While constructing a vector of multi-scaling functions using Corollary 2.8, it is
reasonable to start with a symmetric one and try to preserve the symmetry at each
step (see §3). The following theorem specifies the factorization matrices M (w) which
preserve the symmetry. ~

THEOREM 2.13. [S1] Suppose that all components ¢, (t) of a refinable function
vector ;;VS = (@);;}J are symmetric (or antisymmetric) with points of symmetry T,
determining

(2.26) E(w) := diag (ie‘iﬁw, ...,ie—iﬁr—lw) .

Take a matriz M (w) € Car (R™") satisfying assumptions 1, 2 of Theorem 2.4, and a
matriz

(2.27) E(w) := diag (:I:e_iZT”w, e ,:I:e_iZTr—lw)
such that
~—1
(2.28) Mw)=—-EWwM(-w)E (w).
Then the new vector ¢ = (6,)Z5, determined by aﬁ(w) = %M(w)gﬁ(w), is also
symmetric and T,, v =10,...r — 1 are points of symmetry of its components.

Remark. Let us mention that if ¢, has finite support [, starting at point £; > 0
and T, is the point of symmetry of ¢,, then [, < 27,,.

3. Construction of multi-scaling functions. Finally we have reached the
point where we can show how to construct refinement masks which yield multi-scaling
functions with desirable properties.

In the scalar case, there is no problem to find a mask providing any given order
of accuracy. One can start with a trigonometric polynomial P(w) such that P(0) = 1,
and multiply by a power of %(1 + e7™) (see e.g. [St1]). In the vector case, a TST
with transformation matrix M (w) (as described in Theorem 2.7) plays the role of the
factor (14 e~™).

An algorithm for the construction of refinement masks, yielding multi-scaling
functions with given approximation order, can be obtained as a consequence of Corol-
lary 2.8.

ALGORITHM 3.1. Start with a matriz trigonometric polynomial P(”)(w) providing
approximation order n € Ny, such that p(P(")(O)) < 2. Further, let P(")(O) possess
an eigenvalue 1 with corresponding right eigenvector v, i.e., P(")(O)'rn =r,.

1. Choose My _(w) such that:
(a) det My (w) # 0 forw #0,
(b) D(det My _)(0) # 0,
(c) My, (0)r, =0.
2. Construct the matriz P("+1)(w).'

P(”+1)(w) = %Mrn(QW)P(n)(“)M;}z(w)'
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3. Find a right eigenvector v,11 corresponding to the eigenvalue 1 ofP("+1)(0).
4. Repeat steps 1, 2, 3 as many times as needed.
By Theorem 2.7, the approximation order of P(”+1)(w) isn+1, and m—n cycles
of Algorithm 3.1 are needed to get a refinement mask pm providing approximation
order m. In [S1], it was proved that P(”+1)(0) has eigenvalue 1, so step 4 is consistent.

One can see that there are two matrices to be chosen in Algorithm 3.1, the starting
matrix P(”)(w) (only once in the beginning) and the transformation matrix My (w)
(one on each cycle of the algorithm).

Corollary 2.10 shows that the regularity of the final function vector (determined
by the refinement mask P(m)(w)) is governed by its approximation order m and by
the properties of the starting matrix P(")(w).

The approximation order n implies that P can be factored:

P™(w) = 2% Cx,  (w).. . Cp,(2w) POW)Ca,(w)™ ... Cp,_, (W),
where Cyg, are defined by vectors @ # 0 via (2.6)-(2.7). Further, the spectral radii
of P(O)(w) and P(k)(O),

1

PY() = o Ca, L, (0) .. Car, () PO(w) Car (@)1 Oy, (0)7F (k<)

are related as follows [CDP, S1]:
p(PU)(0)) = max{1, 275 y(POO)} (k=0,...,n).

Let ko (0 < ko < n) be the smallest integer such that p(P**)(0)) < 2. Then
by Theorem 2.9, it follows that the Fourier transformed solution vector ¢,, of (1.3)
determined by P satisfies

Hasn(w)H S C(l =+ |w|)_”+k0+Ku’

where Ky := infi>1 71, v = 7log, sup,, ||P(k”)(%) . .P(k”)(zﬂ)ﬂ. Thus, m — n cycles

[
of Algorithm 3.1 yield P providing a solution vector ¢,,(w) such that

~

||&sm(w)|| S C(l =+ |w|)_m+ko+K0.

So, if we want to get a multi-scaling function with approximation order at least m and
p derivatives, we need to apply mg — n cycles of Algorithm 3.1, where mg is chosen
such that mg > max{m, ko + Ko +p + 1}.

3.1. How to choose the transformation matrices M, (w). In the scalar
case, My, (w) = (1—e~) is fixed. In the vector case, we are flexible in the choice of
My, € Cor(R™*7). Actually, only one eigenvalue and one eigenvector are restricted
in My, (w). We can use this freedom to obtain multi-scaling functions with desired
properties.

Finite support. A refinement mask P("+1)(w) corresponds to a finitely sup-

ported scaling vector if and only if all components of P("+1)(w) are trigonometric
polynomials (algebraic polynomials in z = ¢™"'). But

(3.1) PO () = L My, (20) PV () M5 ()
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contains My, (2w) and My ' (w) which generally are not matrices of trigonometric
polynomials at the same time.

LEMMA 3.2. Assume that P(”)(w) 1s @ matriz of trigonometric polynomials. If
My (w) satisfies conditions (a)—(c) of Algorithm 3.1, My _(w) is a matriz of trigono-
metric polynomials, and det My (w) is linear in z = e, then the components of
P("+1)(w) in (3.1) are trigonometric polynomials.

Proof. Let us use a well-known formula for an inverse matrix:

1
3.2 M;'(w)= —————N :
(3:2) P = oV
Here the (i,7) element of the matrix Ny (w) is the minor for the (j,7) element of
My (w) (see [St2], page 225). In particular, Ny (w) contains only trigonometric

polynomials.
Since det My _(w) is linear in z, and det My _(0) = 0, we have

det My (w) = co(l — e_iw),

with a constant ¢y # 0, and according to (3.2),

(3.3) POy = mMrn(Qw)P(")(w)Nrn(w).

It is easy to see that the components of My (2w)P™ (w)Ny (w) are trigonometric
polynomials. In [S1], it was proved that P("+1)(0) is bounded. On the other hand,
(1 —e~)~1 is infinite at w = 0. Thus, all components of My, (2w)P"™ (W) Ny, (w)
must possess a root at w = 0 or, in other words, must be divisible by (1 — e7*¢).
Hence, reducing My (Qw)P(") (W)N ¢, (w) by (1—e~™) we get a matrix trigonometric
polynomial P(”+1)(w). O

One way to choose My (w) satisfying the conditions of Algorithm 3.1 and Lemma
3.2 is given by Lemma 2.5. Take an arbitrary vector y,, = (yn,u)f,;%) corresponding to
r, = (rnyy)g;é in the sense that y, , # 0 if and only if 7, , Z 0 for v =0,...,r — 1.
Put

My (w) = Cyn(w) R,

with Cy (w) defined by y,, as in (2.6)—(2.7) and an arbitrary constant » x r matrix
R,, with the only restriction

R,r, =e,,

where e, corresponds to r, via (2.10). Then My (w) is linear in z = e~ by
construction and, by (2.8), det My _ is of the desired form. Moreover, we have
My (0)r, = Cyn(O) R,vr, = Cyn(O) e, = 0. A simple R, satisfying the rela-

tion above is R, := diag(¥n 0, ..., Pn,r—1), Where
’7: P 1/7%71’ r”,l’ 3& Oa
n,w -— _
1 Ty = 0.

Symmetry A reasonable way to get symmetric multi-scaling functions with

high approximation order is to start with P(”)(w), yielding a symmetric function
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vector with low approximation order, and to preserve symmetry on each cycle of
Algorithm 3.1. It is remarkable that after each cycle, the number of symmetric and
antisymmetric components of the multi-scaling function changes, independent of the
choice of My :

LEMMA 3.3. Suppose that M (w) satisfies the conditions (a)—(c) of Algorithm
3.1, and a TST with transformation matriv M (w) preserves the symmetry; i.e., ¢ =

(6,)"1, ¢ = (@);;ﬁ are two symmetric multi-scaling functions connected by the
relation:

~ e =
(34) Plw) =+ M(w) lw).

Then, for even v, the difference in the number of antisymmetric components in (75 and
¢ is odd, and for odd r, this difference is even.

Proof. Let P(”)(w) be the refinement mask of ;;VS and P(”+1)(w) the refinement
mask of ¢, and let P(™) and PV be related as in Algorithm 3.1, with My = M.
Then (3.4) is a consequence of Lemma 2.11. By Theorem 2.13 we have

(3.5) M(w)=-E(W)M(-w)E (v),

where E(w), E(w) are defined by the points of symmetry 7, T, of o, $V (v =
0,...,7r—1) via (2.26), (2.27). Since M (w) satisfies the conditions of Algorithm 3.1,
det M (w) has a simple zero at w = 0, such that

(3.6) flem™) i=det M(w) = (1 — e ™) fo(e™™),  fo(1) # 0.

From (3.5), (2.26) and (2.27), it follows that

(3.7) det M (w) = f(e™™) = (=1)" det E(w) - det E_l(w) -det M (—w)
— e—2iwa(eiw)(_1)N+r

where T' = ZT;E(TV - i,), and N is the difference in the number of antisymmetric

v

functions in ¢ and (75 Let 2 := ¢~ then by (3.6)
f(z) = (1= 2)fo(2)
and by (3.7)

Ly v - Ly,

z z z

Fz) = 2T (=DM £
Combining these two relations we find
(1= fo(z) = ~(=D)¥ 271 (1= 2) fo()
and hence
(33 folz) = (=N T (),
But (3.8) implies that, if N 4+ 74 1is odd, then fy(1) = 0 and thus D(det M )(0) = 0,

which contradicts the assumptions. So N + r + 1 must be even and N + r must be

odd. O
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3.2. Examples. In this final section, we employ Algorithm 3.1 for the construc-
tion of multi-scaling functions with high approximation order and other desirable
properties.

Ezample 1. In the first example, we are going to increase the approximation order
of the refinement mask P(Z)(w) corresponding to the Geronimo-Hardin—Massopust
multi-scaling function ¢ := [¢g ¢1]T (see Figure 1):

PO(w) = = Bbet BV
90 | (=14 96~ 4 9em2iw — ¢=3iw) /\/T 3 4 10¢ 1w — o= e |

The functions ¢g(t), ¢1(¢) are continuous, symmetric and provide second order ap-
proximation. The integer translates ¢o(t — 1), ¢1(t — 1) (I € Z) are orthogonal. Tt is
easy to see that a 1-eigenvector of P®(0) is o = [v2 1]T:

pon- 5 )61 4]

Let us apply one cycle of Algorithm 3.1 to P(Z)(w) with transformation matrix
My, (w) preserving symmetry and ensuring short support. Then, My, (w) must
satisfy the assumptions of Lemma 3.2 and the following relation:

(3.9) My, (@) = —E(w) My, () E~ ()

(cf. Theorem 2.13). The first GHM scaling function is symmetric about Ty = 1/2,
and the second is symmetric about T = 1, hence E(w) = diag(e™™, ¢~%%). In
order to get the supports of the new scaling functions as short as possible, we choose
Ty =Ty = 1. Thus, let E(w) = diag(—e~ 2%  ¢~%%). We put

T+e ™ —2/2

M"'2(w) = |: 1 — e—iw 0 :| )
then (3.9) is satisfied. Moreover,

2 =2v2 2

Mrz(O)T'zz[O Of][{]:o,

det My, (w) = 2v/2(1 — e7™) £ 0 for w £ 0, D(det My,)(0) = i2/2 # 0, so
My, (w) satisfies all conditions of Algorithm 3.1. My, (w) is a matrix of trigonometric
polynomials and det My, (w) = 2v/2(1 — e=™) is linear in z = e~ so by Lemma
3.2, finite support for the new scaling functions is ensured.

Now we perform step 3 of Algorithm 3.1 and compute pP® (w):

PO ) = L My, (20) PP () M7 ()
L[ =T 4107 — Tem e 15(1 — e %)
40 —4(1 — e~ %w) 10(1 4 e~tw)?

The resulting scaling functions are continuously differentiable and provide approxi-
mation order 3. They are plotted in Figure 2.
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Fic. 2 Symmetric multi-scaling function with approximation order 3

The mask P (w) corresponds to a dilation equation (1.1) with 3 matrix coeffi-

cients
11 -7 15 1110 0 11 -7 —15
PO_E[—ZL 10]’ Pl_@[ 0 20]’ PZ—E[ 4 10 ]
We mention that the GHM dilation equation has 4 coefficients since GHM functions
¢, ¢1 have different supports.

Observe that, in accordance with Lemma 3.3, one scaling function is symmetric
and the other is antisymmetric. Moreover, the sum of the supports grows exactly by
1.

Unfortunately, the new functions are not orthogonal and for practical applications

a biorthogonal multi-scaling function should be constructed. This can be done using
cofactor method described in [SS4].

Ezample 2. In the second example, we construct polynomial, symmetric multi-
scaling functions with two components, short support and arbitrarily high approxi-
mation order. Let us start with the function vector ¢, := [¢20 ¢271]T’

$2,0(t) = X[0,1], $2,1(t) == (1 = 2t) X017,

where X[o,1] denotes the characteristic function of [0, 1]. The index 2 in ¢, denotes the
approximation order 2 provided by ¢,. Observe, that both ¢2 g and ¢2 ; are piecewise
polynomials, but discontinuous, ¢20(1/2 +1t) = ¢2,0(1/2 — t) and ¢21(1/2 +t) =
—¢21(1/2 —t). The vector ¢, has the refinement mask

1[2+2z 0 ]

P(Z)(w) Ti| 1-z 14z

(z:= e_iw),

with 1-eigenvector 5 := [1 0]T

e [§8][2)-(2)

We want to apply to P(Z)(w) one cycle of Algorithm 3.1 with a suitable transformation
matrix My, (w) which preserves symmetry and short support. We try to find My, (w)
satisfying the assumptions of Lemma 3.2 and such that

My, (w) = —diag(e™™, ™) My, (—w) diag(e™™, —e™™*).
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Letting

0 2 —tw
My, (w) = 11—, _1_2] (z =e™'),

we obtain by application of Algorithm 3.1,

PO 0) = £ My, (20) Pof) My, ()™ = [

2(1+ z) 2
2:(14+2) 144z + 22

The corresponding compactly supported function vector ¢ = [¢30 ¢371]T provides
approximation order 3, since My, (w) satisfies all assumptions of Theorem 2.7. We
easily observe that

[ 2a(1-t) te]o,1],
¢s.0(l) = { 0 otherwise
t? te0,1],
d31(t) =1 (2—-1)* te[1,2],
0 otherwise.

In particular, ¢s0 and ¢31 are continuous functions. (This can also be seen by
Corollary 2.10.)

Now we apply a second cycle of Algorithm 3.1 to pP® (w) in order to get a sym-
metric vector ¢, of scaling functions ¢4 o, ¢4,1 with short support and approximation

order 4. Observe that P(B)(O)’f’g = 73 with 73 := [1 2]", so the transformation
matrix

My, (w) =3 [ };i _01] (=)

satisfies the assumptions of Lemma 3.2, and we have
My, (w) = —diag(e™*, —e™**) My, (—w) diag(e™™, ™).

We construct

%Mra(Qw) P3(w) My, (w)™?

1 4(1 + z)? —2(1=2)(1+42)
16 | 3(1—2)(1+2) —144z— 22

210)] (w)

The corresponding (compactly supported) functions ¢4 o and ¢4 1 are again piecewise
polynomials:

(—2t® + 3t7) te€[0,1),
(

Ga0(t) = 2—-1)2(2t—-1) tell,2],
0 otherwise,
2(3t - 3) te0,1)
pa1(t) =14 (2—-1)*(=3t-3) te[l,2]
0 otherwise.

The functions ¢4 ¢ and ¢4 1 are symmetric, continously differentiable functions. Note
that ¢40, ¢a1 are finite element functions studied in [SS3]. They are presented in
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0.4

0.2

-0.4

Fic. 3 Polynomial multi-scaling function with approzimation order 4

Figure 3. Obviously, functions ¢4 and ¢4 ; are not orthogonal. For the construction
of dual scaling functions and wavelets see [SS4].
The procedure can be repeated as follows. Take

M’sz (w) = |: 132 _12_ P :| (k € N, Z = 6_“‘))
and
. 1—2)/k 0 e
M’F2k+1(w) T (2k+1) [ El_i_zg/k —2/(]<7+1) :| (k’EN,z_e )

and apply Algorithm 3.1 repeatedly with these transformation matrices. The refine-
ment mask P (n € N; n > 3) then provides approximation order n, the correspond-
ing multi-scaling functions ¢, o and ¢, 1 are (n —3)-times continuously differentiable.
If n=2k+1 (k> 1), the corresponding multi-scaling functions ¢ox41,0 and ¢ogy1,1
are nothing but polynomial B-splines of order 2k 4+ 1 with double knots, defined by
the spline knots 0,0,1,1,... k,k and 0,1,1,2,2,...,k, k, k + 1 respectively. (This
follows from a comparison with known recursion formulas for the refinement mask of
B-splines vectors with multiple knots [P1, P2]). In particular, supp ¢ax4+1,0 = [0, k],
supp ¢ax41,1 = [0, k + 1] and

Gak41,0(t) = dorg1,0(k — 1), Gokt11(t) = Pakp11(k+1—1).

If n = 2k (k > 1), the corresponding multi-scaling functions ¢ax ¢ and ¢op 1 are
nothing but polynomial B-splines of order 2k, defined as the sum and the difference
of the B-splines Nag o, Nag,1 of order 2k with double knots, respectively. In other
words, if Nog o and Nog 1 are defined by the spline knots 0,0,...,k— 1,k — 1,k and
0,1,1,...,k — 1,k k, then ¢2k70 = NZk,O + NZk,l and ¢2k71 = NZk,O — NZk,L In
particular, supp ¢ 0 = supp ¢2x,1 = [0, k] and

Gak 0(t) = dako(k — 1), Goky1,1(t) = —Papg1,1(k —1).

Remark. For r = 1, the refinement mask P(w) = 27 (1 + ™)™ determines
the cardinal B-spline N, of order m. Let x; := [{/r| (I € Z), where || means the
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integer part of z € R. Then, the refinement mask

1
P}, (@) = 5 Ca,y (20) - Cary (@) PO Cy (W) .. Ca,_ (W) "

with Cyg, defined by the vector xy := (2x41,...,254r)T (k=0,...m —1) and
P = diag (2771,...,2%)
determines the vector of cardinal B-splines with r—fold knots.

4. Proof of Theorem 2.6. Before starting the proof of Theorem 2.6 let us show
some preliminary assertions. For a given P € C7L(IR"*") and a nonzero vector y € R
let the r x r matrix P € C7:(R"*") be defined by

P(u) = L Cy(2) Pw) Oyle)

where Cy(w) is defined by y via (2.6)—(2.7). Hence, we have by (2.9)
(1 - 7) Gy(2) P(w) = (1 - ) P(u) Gy(w),
(4.1) Gy(2w) P(w) = (%) P(w) Gy(w).

In the next lemma we compute Gy (2w) (DkP)(w) in terms of derivatives of 1~3(w) and
lower derivatives of P(w):
LEMMA 4.1. We have for k € N,

Gy(2w) (D" P)(w)

:—i(’j)?’ (D Gy)(2) (D P)) + (2 ) (D PGy )

(l;) (DFIP)(w) (=) ([(2' = e +1](DGy) (w) — ie™™ Gy(w)) .

In particular,

Gy(0) (D P)(0) = = 3 () 2 (916G 0) (0" P)(0) + (0 P)(0) Gy 0

53 (lj) (P P)(0) (=)' [Gy(0) +2'i(DGy) (0)]
and

k

Gy(0) (D P)(x ( ) 2 (1 Gy)(0) (DFP) ()

=

33 (lf) (DFIP)() (=) [=Gy(m) = (2' = 2i( DGy)(r)].

=1
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Proof. From (4.1) it follows by differentiation
(42) 3 (7)2 Gy 0P
=S (e (M5 ) ey @

Observing that

1 —i l4e™* for s =0,
Ds ( + € ) (w) — '25 '
2 L_—SL e”™ fors>1
and

Gy(w) for s =0,

(43) (D Gy)(w) = { (_i)s—l (DGy)(W) for s Z 1,

it follows for { > 0 that

o ((F5=) an) =2 () (F5—) woene

= (H55) = 6y + S e ey )

S

T Z ()0 ey)

= C0 pay)e) (14 e+ 2 - 2) + Tl gy )
= E0 (@ = e + 1) Gy ) + S e Gy (o)

[~
+
—
~—
)
T
L
E
=3
TN
—
+
w@
[
~—
Q
<
~—_
E

(=0
= (M) R Ge)
S (Y OB (0 e DGy ) - i Gy )
2 i wil—e e y)(w) —ie y(w)).
=1
Together with (4.2) the assertion of Lemma 4.1 follows. O

Proof. (of Theorem 2.6) By (2.18) for k = 0 we have y = ﬂg Gy(0) = @;F ey’
where e corresponds to y via (2.10). Further, note that 13(0) e = e implies

(4.4) P(0) Gy(0) = Gy(0).
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By assumption, P satisfies the conditions (2.1)-(2.2)forn =0,...,m—1 with y,, . ..
Y,n_1- Hence, we get

bl

7o Z (lf) (20)' " g (D"~ P)(0) Gy (0)

= o (et B - 3! PO BO)) = -5 BO)

such that y} defined in (2.18)—(2.19) can be represented for & = 0,...,m in the form

(4.5 yT = (—iRFE, (DGy)(0 +Z( VB Gy (0

Qk k—1

g 2 () e B B

1. We have to show that P(w) satisfies the equations (2.1) — (2.2) for n =
0,...,m with yy,...,¥,,. That means, by (2.18) and (4.5) we have to show that for
n

A,(0) + B, (0) + C,(0) + Dy (0) =27 "y,
and
Ap(m) + By(m) + Cp(7) + Dy (7) = oT

are satisfied with

’;) (20)'=" (=il) G, (DGy)(0) (D"~ P)(w),

e S (1) B i Gyt e,

(e 3
- (0)?

B, _ sys Gy(0) P(w),

ST Z (5)(21) 7. (D"7*P)(0) Gy(0) P(w).

s=0

For w = 0 and w = m, we replace Gy(0) (D"_lP)(w) in B, (w) by the corresponding
expressions given in Lemma 4.1 and obtain

B, (w) = By, (w) + B, (w) + B;(w)
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Blw) = (”T) 2(1) - Z()B BT (0 P)w) Gylw),

=0 5=0

B(w) = %;( ) (D) A ’ = (" o B

!
5=0
< ([2 — e + 1](DGy) () — ie™ Gy ()
2. First we show that for w = 0 and w = =,
() + B () = 07,
Note that (7) (=) = (7) (i) Changing the order of summation over [ and s and

l—s
putting ' :=n — [ — r it follows

B () = (—i) f (Z) v, Zj (7;__85) (2" B Z_jl (n - 1) or

r=1

where we have used that (D" Gy)(0) = (—i)71t (DGy)(0) = (—i)”_l_’“l‘|'1 (DGy)(0)
(see (4.3)). Thus,

BY(w) = (—i) nz:é (Z) i ”l‘é‘l (n 1_ 8) (2i)/+*=" B, "—:—Zz—l (n _i — s)
(=it (D?:y_)(o) (D" P)(w) _

JE)s () 2% ( . ) (DGy)(0) (D" P)(w)((20) ™" (=1)" =~

r=0

w O

N ow

n—

X ;_1 (“ _;_ 5) B (~1)".

Observe that by (2.16),

E—1
kN ~ . 0 fork>1,
(4.6) ;<1)B’ (=1) —{ 1 fork=1.
Hence, the last term in the last representation of Bg vanishes for n — s — 1 # r, and
S0

i ( ) n— )51 (DGy)(0) (D"~ P)(w) (2i)"++.

Shifting the summation index, we find for A, (w) (w =0, 7):

n—1

M) = =0 3 () 017 0 DT (DGy)0) (0 P
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n—1

= 0> () (0= 03T (DEYO) (1 Py ) 207

l
=0

Hence, B (w) 4+ A, (w) = 0T for w =0, 7.
3. Let us consider B} (w). We easily observe that B () = 0T. For w = 0, we
find by changing the order of summations over [ and s

B0 =3 (7) e Z () B3 0 B0 Gy 0

)it Z ()72 ) 2= B (0" P)0) Gy 0)

Il
/\@/\

- Z ") @Z (") e B0 By 0) Gy 0
EO8E (o

On the other hand, for I > 1, the equations (2.1) for P and ¥, (n=10,...,m—1)
imply that

n—1-1

> (n . l) (20) 7" G (DI P)(0) Gy (0)

S
s=0
—n4l ~T ~T 3 —n ~T
= 27" g, Gy(0) = G P(0) Gy(0) = (27" = 1)y, _, Gy (0),

where we have used (4.4). Hence, we can write

(47) B0 =X (1) B - 15 Gy(0)

£ (1) @ (0PI 0) Gy o).

s=0

4. Let us concentrate on B2 (w). Putting

B(w) = TV ([ - e 4 1(DGy) () — i Gy(w))

we obtain for w = 0, m by changing the order of summations and shifting the summa-
tion indices

n—I

B =3 (7)o S () o e S (7, ) o P B
- Z ()i ()7) iy, Z (") o P Bl
_ : (") z (") i b z (")
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x (D" 1757 P)(w) B, (w)

-5 () (e (T o P B

5 et (n ; l) (ng? (n —i — r) T (24) - (Dn—l—r—sj_—,)(w))

Application of (2.1)—(2.2) for P in the sum over s implies that Bi(ﬂ') =0 and

n—1 n—I

mo=Y (7)a (" )i e B o

=0 r=1

-x (i) Z (") 1) (2 Gy 0+ Gy (0).

r=

Putting ' := n — | — r and changing again the order of summation we get
n—1 n—i—1 /
Bo=3 (1)B X ("))l ey
1=0 r'=0
% (12°717 (DGy)(0) + Gy 0))

n

=i (") (Z ("} ")B <—1>’) 27 (1) (DGy)(0)

r= (=0
n—1 n n—r—1 n .
~T - o9\l —-n—1/ 1\n-r
S (S ()R ) e g
r=0 (=0
Using the identities (2.17) and (4.6) for Bernoulli numbers and observing that
(=1)% By, = By, for k > 1, it follows

—in —in.T no .7
n—2

EaDY () B (-2 4 )Bar (-1 Gy (0

ZTL ~T n ~T
= on on Yn-1 (DGy)(O) - Wy”‘l Gy(O)

s Z () B (27 =27 B, (-1 Gy (0)

—in ~T

= S Un-1 (DGy)(0 +Z< ) " — 27"V B,_, Gy(0).

5. Let now w = 7. Recall that B, (7) = B2(r) = A,(x) + BX(n) = 0". Further, by
Gy(0)P(m) = 0 we have Cp(7) = Dy(7) = 0T. Hence,

Ap(m) + By(m) + Cp () + Dy (7) = ol
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6. Let w = 0. By Gy(0) P(0) = P(0) Gy(0) = Gy(0) we obtain

D,0)+ 830 =3 (}) e -0l 6y

n—1

_in_ 1 ; (Z) (20)°7"g, (D""*P)(0) Gy (0)

and using the expression for BTZL found in part 4, we obtain

D,,(0) + B,,(0) + By (0) + C1 (0)
1 n—1

= g1 2 (3) el B0 Gy o

+Z (l) o (27 = )5 Gy(0)

n—1

in @E—l (DGy)(0) + Z (Z) QTT (277 —277) Bn_» Gy(0)

Ton
r=0
n—1 n\ ~
B, .. G
#3 (1) Bl G0
n—1

= _Q—Znn Un-1 (DGy)(0) — ﬁ > (Z) (20)* %) (D" P)(0) Gy(0)

n—1

ny s ~T — -n — -n
+Z<1)Bn_,y, Gy(0) (27" — 14277 =274 1) =27y
=0

Recalling that A, (0) + Bg(O) = 07T, the proof is complete. O
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