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In this paper we present a new efficient iterative nonlinear scheme for recovering of a

piecewise constant image from an observed image containing additive noise.

We apply an adaptive neighborhood filter which comes from robust statistics and com-
pletely rejects outliers being greater than a certain constant. We prove that the iterated

application of the scheme leads to a piecewise constant image. This observation gen-

eralizes the known results on convergence of nonlinear diffusion schemes to a constant
steady-state. Moreover, we show that the partition of the image determining the piece-

wise constant steady-state after an infinite iteration process can already be found after
a finite number of iteration steps. This result can be used for a fast approximation of
the piecewise constant image by a mean value procedure. We examine the relations of

our scheme to average and bilateral filtering, diffusion filtering and wavelet shrinkage.
Numerical experiments illustrate the performance of the algorithm.
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wavelets.
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1. Introduction

Pre-smoothing and noise removal are important tools of image preprocessing in or-
der to improve the performances of image compression, detection enhancement etc..
In a wide variety of applications, the images are discontinuous, and the challenge
is to smooth an image while preserving its edges. There are different methods in
the literature to tackle this problem where mostly local and adaptive schemes are
applied. Such methods can be based on anisotropic diffusion (see e.g. [6, 23, 26,
33, 34, 35]), robust statistics (see e.g. [3, 17, 16, 27, 4, 5]), averaging and bilateral
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filtering (see e.g. [32, 2, 11, 15]), regularization techniques (see e.g. [24, 1, 9]), tools
from Harmonical Analysis (see e.g. [8, 12, 30]) and others.

Close connections between these methods have been examined (see e.g. [2, 15,
3, 7, 22, 29, 31]).

Typical averaging local filters like those based on explicit discrete anisotropic
diffusion use the data of the image to be processed only as input in the first iteration
while in all further iteration steps the original data are not involved. Each step of
filtering gradually removes noise and details from the data, and one crucial question
is to find the right stopping time for the filtering in order to obtain the optimal
‘restoration’ result (see e.g. [23, 33, 35, 34]). Most of these iterative schemes are
known to converge to a constant steady-state, i.e., to a constant image which is the
spatial average of the original intensities (see e.g. [33]).

In contrast to these methods, the iterative regularization algorithms consider a
data term and a smoothing term in each iteration step. Similar models are also used
in the theory of W-smoothers coming from robust statistics. A very well working
example of a discrete regularization method is the digital TV filter of Chan, Osher
and Shen [9].

Another statistical iterative method by Polzehl and Spokoiny [27] is a smoothing
scheme using weights which are computed with the help of adaptive estimates of
the local variances of the noise during the iteration. Further, in a control step the
obtained results are compared with smoothed images found in former iteration steps
in order to move not too far from the initial image.

Some methods do not work iteratively at all but apply a global smoothing filter
as e.g. the method of nonlocal means by Buades, Coll and Morel [4, 5] or the original
bilateral filter proposed by Tomasi and Manduchi [32].

Close relations between image smoothing methods can be especially observed
by comparison of the related numerical schemes for the digital signals and images.
In the last time, a lot of hybrid algorithms have been proposed in order to improve
the performance of image denoising (see e.g. [14, 13, 25, 19, 35]).

In this paper we present a simple and efficient nonlinear algorithm for recovering
of a piecewise constant image from an observed image containing additive noise. The
complete denoising scheme consists of three steps.
In a first step we apply an adaptive neighborhood filtering scheme. The proposed
nonlinear averaging filter is a typical smoothing filter which has no recourse to the
input data during the iteration process. In contrast to the usually taken diffusion
filters (like Perona-Malik-filter, Charbonnier-filter, regularized TV-filter etc.) the
filter in our scheme can be seen as a so-called “robust” filter, i.e., it completely
rejects outliers being greater than a certain constant. The used filter corresponds
to the so-called cup-function used by Winkler et al. [36], which is a robust prior
function (see also [21, 17]). Other robust filters with this property are e.g. the
Tukey’s biweight used for robust anisotropic diffusion [3] and the truncated modulus
[36].
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We will be able to show that the iterated application of our proposed neigh-
borhood filter leads to a piecewise constant image, i.e., there exists a partition of
the image, such that in each subdomain of the partition the spatial average of the
pixel values of all pixels belonging to this subset is found. This observation gener-
alizes the known result on convergence of the image to the constant steady-state
mentioned above. We will show even more, namely that the partition of the image
determining the piecewise constant steady-state after an infinite iteration process
can already be found after a finite number of iteration steps. Each iteration step
of the proposed scheme can be seen as a matrix vector multiplication where the
iteration matrix is sparse and can be simply computed. These iteration matrices
determine already certain partitions of the image into subdomains. Hence we only
need to check whether the partition changes further after one iteration step by
comparing the iteration matrices and stop the process if the difference between two
such matrices vanishes or is small enough.

In the second step we apply a simple mean value procedure, which maps the
mean value of intensities in a subdomain of the partition to each pixel of this sub-
domain. If the final partition has been obtained already in the iteration procedure
then this second step yields the same result as an application of infinitely many
iteration steps of the filtering scheme.

If the signal to noise ratio is rather low, then we apply an outlier removement
procedure in the third step, where all subdomains of the partition with less than
a certain number of pixels are regarded as outliers and we compute local median
values for these pixel values.

The paper is organized as follows. In Section 2 we introduce the iterative neigh-
borhood scheme and investigate its properties and its convergence.

In Section 3 the relations of the iterative scheme to other methods of image
denoising are considered. We examine the relations of this new filter to average
and bilateral filtering, diffusion filtering and wavelet shrinkage. We observe that
our scheme can be interpreted as an iterative bilateral filter with a special weight
function. It can also be seen as a discretization of a special diffusion equation with
a diffusivity function which has been not used so far in this context, and as an
application of Haar wavelet frames with hard shrinkage.

In Section 4 we describe the complete algorithm and discuss the choice of pa-
rameters.

The numerical results impressively show the performance of the algorithm. We
compare the proposed algorithm with some other image denoising methods consid-
ered in the literature. In particular, we also consider the digital TV filter by Chan,
Osher and Shen [9] as an example of a regularization method, the four-pixel scheme
by Welk, Steidl and Weickert [35] as one example of TV-diffusion which can be
also interpreted as a Haar wavelet shrinkage scheme, the adaptive weights smooth-
ing by Polzehl and Spokoiny [27] and the method of nonlocal means by Buades,
Coll and Morel [4, 5]. Observe, that our algorithm is especially suitable for recover-
ing of piecewise constant images. It works very efficient for images containing thin



February 27, 2007 11:11 WSPC/WS-IJWMIP plonka˙final

4 Gerlind Plonka & Jianwei Ma

structures, since it is less smoothing than other methods in the neighborhood of
edges.

2. The iterative algorithm and its convergence

We consider a piecewise constant digital image f = (fi,j)
N1−1,N2−1
i=0,j=0 . The aim is to

reconstruct f from an observed image u0 = (u0
i,j)

N1−1,N2−1
i=0,j=0 , where

u0 = f + n,

with n = (ni,j)
N1−1,N2−1
i=0,j=0 being a vector of normally distributed noise ni,j ∈

N(0, σ2) with vanishing mean value and variance σ2. Usually the variance σ2 of
the noise is unknown.

For the reconstruction of f we propose the following simple neighborhood filter
iteration scheme as a first step.

Iteration scheme

Put a suitable shrinkage parameter θ > 0, a smoothing parameter 0 < α ≤ 1
6 , and

let u0 = (u0
i,j)

N1−1,N2−1
i=0,j=0 be the observed image.

Perform the following iteration for k = 0, 1, . . ..
For i = 0, . . . , N1 − 1 and j = 0, . . . , N2 − 1 compute the new image values

uk+1
i,j = uk

i,j + α
∑

(l,m)∈N(i,j)
(l,m)6=(i,j)

Tθ(uk
l,m − uk

i,j)
(l − i)2 + (m− j)2

, (2.1)

where Tθ(x) denotes the function

Tθ(x) =
{

x |x| < θ,

0 |x| ≥ θ.

Further, N(i, j) denotes a neighborhood of the pixel (i, j), where we use
periodic boundary conditions.

The parameter α controls the smoothing process in each iteration. Taking e.g.

N(i, j) := {(l,m) : |i− l| ≤ 1; |j −m| ≤ 1},

we obtain

uk+1
i,j = uk

i,j + α
1∑

r,s=−1
(r,s)6=(0,0)

Tθ(uk
i+r,j+s − uk

i,j)
r2 + s2

. (2.2)

The coefficients of this scheme are illustrated in Figure 1. Other schemes with
greater neighborhood can be simply derived.

The scheme proposed above can be related to ideas of adaptive smoothing (see
[2, 28]), bilinear filtering (see [2, 32]) anisotropic diffusion filtering (see [33, 34, 35])
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Fig. 1. Illustration of the coefficients in the scheme (2.2) for the case that the difference in gray
value between neighboring pixels are all smaller than θ (left) and for the case that the difference

in gray value is greater than θ for some neighbors (right).

as well as iterative Haar wavelet shrinkage (see [22, 25]). We consider these relations
in detail in Section 3.

Let us now consider the properties and convergence of the iteration scheme. For
convenience we restrict our considerations to the scheme (2.2). All ideas can be
simply transferred to more complex schemes.

We choose one index for pixel numbering of the digital image uk. Put N :=
N1 ·N2 and

n = i + N1j, i = 0, . . . , N1 − 1, j = 0, . . . , N2 − 1,

such that the pixel n corresponds to (i, j). Then the iteration scheme (2.2) can be
written in matrix-vector form as

uk+1 = Ak uk,

where uk = (uk
0 , . . . , uk

N−1)
T and where Ak = (Ak

n,p)
N−1
n,p=0 ∈ RN×N is a sparse

matrix of the form

Ak
n,p := (2.3)

1− κnα for p = n,

α for p ∈ {n− 1, n + 1, n−N1, n + N1}(mod N) and |uk
n − uk

p| < θ,

α/2 for p ∈ {n− 1 + N1, n + 1 + N1, n + 1−N1, n− 1−N1}(mod N)
and |uk

n − uk
p| < θ,

0 elsewhere.

Here κn (with 0 ≤ κn ≤ 6) is chosen such that the sum of entries in the nth row of
Ak is 1.

Now we observe the following properties of the iteration matrix Ak.

1. The number of nonzero entries in each row (column) of Ak is at most 9.
2. For α ≤ 1/6 all entries of Ak are non-negative, i.e., Ak ≥ 0.
3. With 1 := (1, . . . , 1)T ∈ RN we have Ak1 = 1.
4. The iteration matrix Ak is symmetric, i.e. Ak = (Ak)T .
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5. For α ≤ 1/6 the Properties 2 and 3 imply for the row sum norm ‖Ak‖∞ = 1
and in particular ρ(Ak) = 1 where ρ(Ak) denotes the spectral radius of
Ak.

6. By suitable ordering of rows and columns of Ak we can transfer Ak into a block
diagonal matrix, where the nth and the pth row (column) belong to the
same block if there exists a sequence of indices n1, n2, . . . , nν such that
n1 ∈ N(n), n2 ∈ N(n1), . . . , p ∈ N(nν) and if

|uk
n − uk

n1
| < θ, |uk

n1
− uk

n2
| < θ, . . . |uk

nν
− uk

p| < θ

holds. Let Jk be the number of such blocks. We assume that this ordering
is done in the same way for rows and columns, i.e., there is a permutation
matrix Pk ∈ RN×N such that

block (Ak
1 , . . . ,Ak

Jk
) = (Pk)T Ak Pk.

Then for each matrix block Ak
m, m = 1, . . . , Jk, the properties 1 – 5 are

again satisfied. Moreover, each of the block matrices Ak
m is irreducible by

construction.
The ordering of Ak into blocks defines a partition Sk of the pixel set
{0, . . . , N − 1} into different sets, Sk = {Sk

m}
Jk
m=1 separating pixels whose

pixel values differ strongly enough. Two pixels n, n′ are in the same set Sk
m

if in the above procedure the nth and the n′th row of Ak are transferred
into the same block matrix Ak

m.
7. Finally we observe:

Lemma 2.1. For α ≤ 1/6 each block matrix Ak
m, m = 1, . . . , Jk of the iteration

matrix Ak in (2.3) possesses only one simple eigenvalue 1 and no further eigenvalues
on the unit circle.

Proof. 1. Consider for m ∈ {1, . . . , Jk} the matrix Bk
m = (Bk

µ,ν) = Ak
m − I,

where I denotes the unit matrix of suitable size. Denote the size of Bk
m by Nk,m.

Then, by Ak
m ≥ 0 and Ak

m 1m = 1m (with 1m the 1-vector of length Nk,m) we
have Bµ,µ ≤ 0 ∀µ and Bµ,ν ≥ 0 ∀µ, ν with µ 6= ν as well as Bk

m1m = 0. Hence,
Bk

m is weakly diagonal dominant. Further, in all main submatrices (Bk
µ,ν)j

µ,ν=0,
j = 0, . . . , Nk,m − 2 (up to the full matrix Bk

m) there is at least one row, where
the condition of strong diagonal dominance holds since the block matrix Ak

m (and
hence Bk

m) is irreducible by definition. Thus, all main submatrices of Bk
m (up to

the full matrix) are invertible (see e.g. [18], p. 363), i.e., rk (Bk
m) = Nk,m − 1. We

conclude that the eigenvalue 1 of Ak
m is simple.

2. Since Ak
m is symmetric and ρ(Ak

m) = 1, we only need to check, whether Ak
m

has the eigenvalue −1. By construction, Ak
m + I is strongly diagonal dominant and

hence invertible such that −1 can not be an eigenvalue of Ak
m. �

As we have seen in Property 6, each iteration matrix Ak uniquely defines a
partition Sk = {Sk

m}
Jk
m=1 of the pixel set. Let rk be the greatest distance between
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two pixel values in the same set Sk
m, m ∈ {1, . . . , Jk}, i.e.,

rk := max{|uk
n − uk

n′ |; n, n′ ∈ Sk
m, m ∈ {1, . . . , Jk}},

and let

µk
m =

1
#Sk

m

∑
n∈Sk

m

uk
n, m = 1, . . . , Jk (2.4)

be the mean value of pixel values in Sk
m. Here #Sk

m denotes the number of elements
in the set Sk

m.
Now let us consider the question, how the partition Sk can change after one

iteration step of the iteration scheme, i.e., how the partitions Sk and Sk+1 are
related?

If the new partition Sk+1 is different from Sk, then for a fixed set Sk
m ∈ Sk the

following types of change are possible:
1. Sk

m is divided into two or more subsets Sk+1
m1

, Sk+1
m2

, . . ..
2. Sk

m is united with one or more neighboring sets, i.e., Sk+1
m1

= Sk
m∪Sk

m′ ∪ . . .∪Sk
mν .

3. Sk
m is united with one or more neighboring subsets of Sk

m′ to obtain a new set
Sk+1

m1
of Sk+1.

4. Sk
m is divided into two or more subsets Sk+1

m1
, . . . which are united themselves

with one ore more neighboring sets Sk
m′ (or a neighboring subsets of Sk

m′).

Example 2.1. We give two small examples for the occurrence of change of parti-
tions Sk of type 1 and type 2.

(i) Consider a (3× 3) image u0 of the form

u0 =

0 0 2θ − 2ε

0 θ − ε 2θ − 2ε

0 0 2θ − 2ε


with θ being a fixed shrinkage parameter and with 0 < ε < θ. Let the index num-
bering start at the left upper corner of the matrix (image), i.e., u0

0 = u0
1 = 0, u0

2 =
2θ − 2ε, u0

3 = 0, etc.. The corresponding partition S0 = {{0, 1, 2, 3, 4, 5, 6, 7, 8}}
consists of only one set since the fourth pixel value θ − ε is obviously connected
with all eight neighbors. Application of one iteration of the scheme (2.2) yields

u1 =

α
2 (θ − ε) α(θ − ε) (2− α

2 )(θ − ε)
α(θ − ε) (1− 2α)(θ − ε) (2− α)(θ − ε)
α
2 (θ − ε) α(θ − ε) (2− α

2 )(θ − ε)

 .

Since α ≤ 1
6 , it follows for ε < α

1+αθ that |((1−2α)− (2−α))(θ− ε)| > θ. Hence the
corresponding new partition S1 = {S1

1 , S1
2} with S1

1 = {0, 1, 3, 4, 6, 7}, S1
2 = {2, 5, 8}

consists of two sets.
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(ii) Let again θ be a fixed shrinkage parameter and let 0 < ε < θ. Consider now
a (4× 4) image u0 of the form

u0 =


0 θ + ε θ + ε θ + ε

0 θ + ε 2ε θ + ε

0 θ + ε θ + ε θ + ε

0 0 0 0


yielding the partition S0 = {{0, 4, 8, 12, 13, 14, 15}, {1, 2, 3, 5, 6, 7, 9, 10, 11}} consist-
ing of two sets. Application of one iteration of the scheme (2.2) leads to

u1 =


0 θ(1− α

2 ) + ε(1 + α
2 ) θ(1− α) + ε(1 + α) θ(1− α

2 ) + ε(1 + α
2 )

0 θ(1− α) + ε(1 + α) 6αθ + ε(2− 6α) θ(1− α) + ε(1 + α)
0 θ(1− α

2 ) + ε(1 + α
2 ) θ(1− α) + ε(1 + α) θ(1− α

2 ) + ε(1 + α
2 )

0 0 0 0

 .

Now for ε < α
1+αθ, the new partition only consists of one set S1 =

{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}. The above two examples also nicely
show the influence of the parameter α. Choosing α as big as possible encourages
the change of partitions in the above two configurations.

After these considerations we prove the following convergence theorem which is
the main result of this paper.

Theorem 2.1. Consider the iteration scheme (2.2) with α ≤ 1/6 and starting
with the noisy image u0. Then, after a finite number of k iterations the partition
Sk = (Sk

m)Jk
m=1 of pixels corresponding to the blocks Ak

m, m = 1, . . . , Jk of the
ordered iteration matrix Ak is settled and will not change further, i.e., there exists
a finite k such that

Sk = Sk+ν ν = 1, 2, . . . .

The iteration scheme (2.2) will converge to the spatial average of uk in all subsets
Sk

m,

lim
ν→∞

uk+ν =
Jk∑

m=1

µk
m χSk

m

with µk
m in (2.4) and where χSk

m
is the characteristic function corresponding to the

index set Sk
m, i.e.,

χSk
m

(n) =
{

1 for n ∈ Sk
m,

0 for n 6∈ Sk
m.

Proof. Let uk be the vector obtained after the kth iteration of (2.2) and let Ak

be the next iteration matrix. Further, let Sk = (Sk
m)Jk

m=1 be the partition of the
index set corresponding to

block (Ak
1 , . . . ,Ak

Jk
) = (Pk)T Ak Pk
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as described above, where each of the matrices Ak
m, m = 1, . . . , Jk is symmetric, non-

negative and has a simple eigenvalue 1 with Ak
m 1m = 1m with 1m = (1, . . . , 1)T

being a vector of suitable length. Moreover, the above considerations imply that
there is an ε with 0 < ε ≤ 1 such that all further eigenvalues λj of Ak are bounded
by |λj | < 1− ε.

By ‖Ak‖2 = 1 we obviously have ‖uk+1‖2 = ‖Akuk‖2 ≤ ‖uk‖2, where ‖ · ‖2
denotes the spectral norm for matrices and the Euclidean norm for vectors.

Let now {ek
1 , . . . , ek

Jk
} be the set of eigenvectors of Ak corresponding to the

Jk eigenvalues 1, being obtained by extending the eigenvectors 1m of Ak
m, m =

1, . . . , Jk to vectors of length N by inserting zeros. Now, we extend this orthogonal
set {ek

1 , . . . , ek
Jk
} to an orthogonal set of eigenvectors {ek

1 , . . . , ek
Jk

, bk
1 , . . . , bk

N−Jk
} of

Ak, where again the vectors bk
j are constructed by extending the eigenvectors of all

block matrices Ak
m to eigenvectors of Ak by inserting zeros.

This set of eigenvectors now forms an orthogonal basis of RN . Consider the
unique decomposition of uk with respect to this basis,

uk =
Jk∑

m=1

µk
m ek

m +
N−Jk∑

l=1

cl b
k
l = ek + rk, cl ∈ R,

where ek and rk represent the first and the second sum, respectively. Hence,

‖uk‖22 = ‖ek‖22 + ‖rk‖22.

We observe that

uk+1 = Ak uk =
Jk∑

m=1

µk
m ek

m +
N−Jk∑

l=1

cl Ak bk
l = ek + rk+1

and with Akbk
l = λl b

k
l we obtain

‖rk+1‖22 =
N−Jk∑

l=1

|cl|2|λl|2 ‖bk
l ‖22 ≤ (1− ε)2‖rk‖22. (2.5)

Moreover, in each subset Sk
m we have

‖rk+1
m ‖2 ≤ (1− ε)‖rk

m‖2, (2.6)

where the vector rk
m is obtained by removing all components of the vector rk not

belonging to the index set Sk
m.

Observe that ‖uk‖22 is bounded from below by µ ‖1‖22 = µN , where µ =
1
N

∑N−1
n=0 uk

n = 1
N

∑N−1
n=0 u0

n. Further, the above considerations imply that

‖uk+1‖22 ≤ (1− ε) ‖rk‖22 + ‖ek‖22 = ‖uk‖22 − ε ‖rk‖22.

By (2.5), which holds for each iteration independently of the special form of the
iteration matrix, there exists an integer k1 such that ‖rk1‖2 < 6αθ. Let Jk1 be the
number of index sets after k1 iterations. Since the application of the scheme (2.2)
ensures that |uk

n − uk+1
n | < 6αθ, we simply see, that a possible change of index sets
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for a k-th iteration with k ≥ k1 can be only of type 2. Each change of index sets of
type 2 decreases the number Jk of different index sets by at least one. Since we have
started with a finite number of sets, there will be no further change of index sets of
type 2 after a finite number of iterations. Now, from (2.6) the further assertion of
the theorem follows. �

Remark. As we can see in the proof of Theorem 2.1, only the properties 2-7
of the iteration matrices Ak are applied for this convergence result. These prop-
erties can also be derived if the weights in the iteration scheme (2.2) are taken in
another way, as long as the neighborhood filter is local and the radiometric weight
punishes big intensity differences by having no influence to the smoothing process.
For example, the function Tθ can be also replaced by Tukey’s biweight

Tσ(x) =

{
x(1− x2

σ2 )2 |x| ≤ σ,

0 |x| > σ

with a suitable fixed parameter σ.

3. Relations to other schemes

In this section we shortly describe the close relations of our neighborhood filter
introduced in Section 2 to other schemes in the literature.

3.1. Adaptive smoothing and bilateral filtering

Given an image uk = (uk
i,j)

N1−1,N2−1
i=0,j=0 , one iteration of adaptive smoothing as de-

scribed in [28] yields

uk+1
i,j =

∑1
r=−1

∑1
s=−1 uk

i+r,j+s ωk
i+r,j+s∑1

r=−1

∑1
s=−1 ωk

i+r,j+s

,

with the weight

wk
i+r,j+s = exp

(
−|dk

i,j |
2σ2

)
, (3.1)

where σ is a suitable constant, and where dk
i,j depends on the magnitude of the

gradient of uk
i,j , e.g.

dk
i,j = 1√

2

(
(uk

i+1,j − uk
i,j)

2 + (uk
i,j+1 − uk

i,j)
2 + (uk

i−1,j − uk
i,j)

2 + (uk
i,j−1 − uk

i,j)
2
) 1

2 ,

cf. [28].
Bilateral filtering was introduced in [32] as a nonlinear filter which combines

domain and range filtering. The discrete version of bilateral filtering can be written
as follows. For a given image u0 = (u0

i,j)
N1−1,N2−1
i=0,j=0 one computes u1 by

u1
i,j =

∑n
r=−n

∑n
s=−n u0

i+r,j+s ωi+r,j+s∑n
r=−n

∑n
s=−n ωi+r,j+s

, (3.2)
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where the weight ωi+r,j+s is given as a product of a spatial and a radiometric weight,

ωi+r,j+s = (ω1)i+r,j+s · (ω2)i+r,j+s.

The first weight measures the geometric distance between the center sample (i, j)
and the sample (i+r, j+s) using the Euclidean metric. The second weight measures
a radiometric distance between the center sample u0

i,j and u0
i+r,j+s. In [32], it is

suggested to apply only one iteration of type (3.2) with

(ω1)i+r,j+s = exp
(
−r2 + s2

2σ2
1

)
, (ω2)i+r,j+s = exp

(
−

(u0
i+r,j+s − u0

i,j)
2

2σ2
2

)
.

The bilateral filtering considered in [32] is not an iterative procedure. We remark
that iterative bilateral filtering can be seen as a generalization of the adaptive
smoothing algorithm (see e.g. [28, 2]). Further improvements for image denoising
have been achieved using these ideas (see e.g. [11]).

Our scheme (2.1) is related to the two schemes (3.1) and (3.2) as follows. We also
take a weighted average of a pixel value and its neighbors in (2.2). In our approach,
the weight depends on the size |uk

i+r,j+s − uk
i,j | as well as on the distance of pixels

(i+ r, j + s) and (i, j) analogously as in (3.2) and in contrast to the weight in (3.1).
In fact, our scheme (2.1) can be seen as an iterative bilateral filtering with the

weight functions

(ω1)k
i+r,j+s =

{
α

r2+s2 (r, s) 6= (0, 0),
1 (r, s) = (0, 0),

(ω2)k
i+r,j+s =


1 |uk

i+r,j+s − uk
i,j | < θ and (r, s) 6= (0, 0),

0 |uk
i+r,j+s − uk

i,j | ≥ θ and (r, s) 6= (0, 0),

1−
1∑

r,s=−1
(r,s)6=0

(ω1)k
i+r,j+s (ω2)k

i+r,j+s (r, s) = (0, 0),

and with periodic boundary conditions. While the adaptive smoothing procedure
leads for k →∞ to a constant image with the same average grey level as the initial
image, our scheme (2.2) yields an image with different constants corresponding to
the obtained final partition. This property is due to the fact that in contrast to the
schemes above (see [2, 11, 28, 32]) our weight measuring the radiometric distance
ω2 completely vanishes if the difference between neighboring pixel values is too big.

3.2. Nonlinear diffusion filtering

Consider the diffusion process

ut = div (g(|∇u|)∇u) on (0, N1)× (0, N2)× (0,∞) (3.3)

with the given noisy image u0 as initial state

u(x, 0) = u0(x), x ∈ [0, N1)× [0, N2),
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and with periodic boundary conditions. Here subscripts denote partial derivatives.
The time t is a scale parameter. Increasing t corresponds to stronger filtering. The
divergence expression can be decomposed by means of two orthonormal basis vectors
x1, x2,

div (g(|∇u|)∇u) = ∂x1(g(|∇u|) ∂x1u) + ∂x2(g(|∇u|) ∂x2u).

We slightly change the diffusion equation (3.3) and consider a discretization of

ut = ∂x1(g(|∂x1u|) ∂x1u) + ∂x2(g(|∂x2u|) ∂x2u) on (0, N1)× (0, N2)× (0,∞)

(see also [23]). Choosing x1 = (1, 0), x2 = (0, 1), and replacing the derivatives by
finite differences, we obtain the discrete scheme

uk+1
i,j −uk

i,j

τ = g(|uk
i+1,j − uk

i,j |) (uk
i+1,j − uk

i,j)− g(|uk
i,j − uk

i−1,j |) (uk
i,j − uk

i−1,j)

+g(|uk
i,j+1 − uk

i,j |) (uk
i,j+1 − uk

i,j)− g(|uk
i,j − uk

i,j−1|) (uk
i,j − uk

i,j−1).

Analogously, choosing the diagonal directions x1 = 1√
2
(1, 1), x2 = 1√

2
(1,−1) we

find

uk+1
i,j − uk

i,j

τ
=

= 1
2

[
g

(
|uk

i+1,j+1−uk
i,j |√

2

)
(uk

i+1,j+1 − uk
i,j)− g

(
|uk

i,j−uk
i−1,j−1|√
2

)
(uk

i,j − uk
i−1,j−1)

+g

(
|uk

i+1,j−1−uk
i,j |√

2

)
(uk

i+1,j−1 − uk
i,j)− g

(
|uk

i−1,j+1−uk
i,j |√

2

)
(uk

i−1,j+1 − uk
i,j)
]

.

Averaging the two equations leads to

uk+1
i,j = uk

i,j + τ
1∑

r,s=−1
(r,s)6=(0,0)

g(
√

2
1−|r|−|s|

(|ui+r,j+s − ui,j |)) (ui+r,j+s − ui,j)
r2 + s2

. (3.4)

This scheme is very similar to our scheme in (2.1) if α = τ and if the diffusivity g

is of the form

g(|x|) :=
{

1 |x| < θ,

0 |x| ≥ θ.

However, this diffusivity function is different from the most usual diffusivity func-
tions used for image smoothing (see e.g. [3, 10, 23, 33]). It can be derived from
the robust cup-function used e.g. in [36], see also [17, 21]. It occurs in [22], there it
has been derived from hard wavelet shrinkage. Its behavior is similar to the Tukey
diffusivity function used in [3] which is also derived from robust statistics. Indeed,
the numerical results in [3] imply that the Tukey diffusivity preserves edges better
than other diffusivities which do not completely vanish for high gradients.
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u(k)(z)

G(z)

H(z)

S��
��

1
2G(z−1)

1
2H(z−1)

u(k+1)(z)

-

-

- -

-

-

Fig. 2. Nonsubsampled two-channel filter bank with H(z) = 1+z√
2

and G(z) = 1−z√
2

.

3.3. Wavelet shrinkage

We use a redundant wavelet system and apply a Haar wavelet filter bank with hard
thresholding. Let us consider a translation-invariant Haar wavelet filter bank with
a single scale in one dimension (see Figure 2).

Let ak = (ak
i )N−1

i=0 be a discrete signal and ak(z) =
∑N−1

i=0 ak
i z−i its z-transform.

Further, let H(z) := 1√
2
(1 + z), G(z) = 1√

2
(1 − z) the low-pass and the high-pass

filter of the filter bank and S the shrinkage function. We obtain from the filter bank

ak+1(z) =
1
2
[
H(z−1)H(z)ak(z) + G(z−1)S(G(z)ak(z))

]
,

where the shrinkage function S acts on the coefficients of G(z)ak(z), i.e.,

S(G(z)ak(z)) = S

(
N−1∑
i=0

ak
i − ak

i+1√
2

z−i

)
:=

N−1∑
i=0

S

(
ak

i − ak
i+1√

2

)
z−i,

and where we use periodic boundary conditions. By

H(z−1)H(z) + G(z−1)G(z) = 2

we find

ak+1(z) = ak(z)− 1
2G(z−1)

[
G(z)ak(z)− S(G(z)ak(z))

]
= ak(z)− 1

4 (1− z−1)(1− z)ak(z) + 1
2
√

2
(1− z−1)S( (1−z)ak(z)√

2
),

or componentwisely,

ak+1
i = 1

2ak
i + 1

4ak
i+1 + 1

4ak
i−1 + 1

2
√

2

(
S
(

ak
i−ak

i+1√
2

)
− S

(
ak

i−1−ak
i√

2

))
. (3.5)

Now, let again u0 = (u0
i,j)

N1−1,N2−1
i=0,j=0 be the observed noisy image and apply the

above wavelet shrinkage scheme (3.5) to uk in x-direction, y-direction and the
two diagonal directions. Averaging these four approximations with the weights
1/3, 1/3, 1/6, 1/6 leads to

uk+1
i,j =

1
2
uk

i,j +
1
12

1∑
r,s=−1

(r,s)6=(0,0)

uk
i+r,j+s

r2 + s2
+

1
6
√

2

1∑
r,s=−1

(r,s)6=(0,0)

1
r2 + s2

S

(
uk

i,j − uk
i+r,j+s√
2

)
,
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where we have used that −S(x) = S(−x), i.e., that S is an odd function. By∑1
r,s=−1

(r,s)6=(0,0)
(r2 + s2)−1 = 6, this equation can be written as

uk+1
i,j = uk

i,j +
1
12

1∑
r,s=−1

(r,s)6=(0,0)

(uk
i+r,j+s − uk

i,j)−
√

2S(
√

2
−1

(uk
i+r,j+s − uk

i,j))
r2 + s2

.

Comparison with (2.1) and (2.2) yields equivalence with our special scheme (2.2)
for α = 1/12 and with the hard thresholding function

S(x) =
{

x |x| ≥ θ/
√

2,

0 |x| < θ/
√

2.

4. The algorithm and numerical examples

4.1. The algorithm

The complete algorithm for denoising of piecewise constant images now consists of
three steps. Let u0 = (u0

i,j)
N1−1,N2−1
i=1,j=1 be the given noisy image

1. For a fixed thresholding parameter θ > 0, a smoothing parameter α ≤ 1
6 and a

fixed number K ∈ N perform the iteration

uk+1
i,j = uk

i,j + α
1∑

r,s=−1
(r,s)6=(0,0)

Tθ(uk
i+r,j+s − uk

i,j)
r2 + s2

for k = 0, 1, 2, . . . ,K − 1 and using periodic boundary conditions.
2. Apply the following mean value procedure. Establish a new iteration matrix

AK as in (2.3) with a suitable shrinkage parameter θ1. Take the par-
tition (SK

m )JK
m=1, determined by this iteration matrix AK , compute for

m = 1, . . . , JK the mean values

µK
m :=

1
#SK

m

∑
n∈SK

m

uK
n ,

and replace each value uK
n with n ∈ SK

m by µK
m.

3. Using the partition (SK
m )JK

m=1 we apply the following median value procedure.
All pixel values belonging to subsets of the partition with less than 6 com-
ponents are replaced by the median of their neighbor pixel values.

We shortly want to discuss the choice of parameters. Let c be the contrast of
the original piecewise constant image f , i.e.

c = min{|fi,j − fi′,j′ |, (i′, j′) ∈ N(i, j), fi,j 6= f(i′, j′)}.

Then a good choice for the shrinkage parameter is θ ≈ 0.45c. In our numerical
results we have seen that this parameter should be taken independently of the
signal-to-noise ratio. However, if the ratio between contrast c of the original image
and the deviation σ of the added noise is small, i.e. c/σ ≤ 1.5, then we suggest to
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do the first iteration step in the scheme (2.2) with θ = ∞. Such a “smoothing step”
has been used also in the algorithm by Polzehl and Spokoiny for finding an initial
estimate for image values in case of small ratios c/σ (see [27]).

As we have also seen from the examples, there is no reason to choose the smooth-
ing parameter α very small. A smoothing parameter α ∈ [1/10, 1/6] ensures a fast
smoothing process while the convergence result holds.

The optimal number K of iterations depends on the considered image and on
the signal-to-noise ratio. In practice, only a few iterations of the iteration process
are necessary until a partition of pixels is obtained, which does not change or only
slowly changes after further iterations. One can also take an adaptive choice of K

by comparing two successive iteration matrices or their corresponding partitions.
If we have arrived at the final partition already after finishing the iteration, we

can choose θ1 = θ in order to perform the piecewise constant image which also
would have been obtained, if we had performed infinitely many iterations in step 1.
If the separation process has not been finished completely after the first step, our
practical observations suggest to apply the shrinkage parameter θ1 = θc

10σ .

The third step of the algorithm improves the result especially for smaller signal-
to-noise ratios.

4.2. Numerical examples

In this section, we want to show the performance of our method for denoising piece-
wise constant images and compare it with other methods. In particular, we consider
the digital total variation filter by Chan, Osher and Shen [9], the statistical adaptive
weights smoothing of Polzehl and Spokoiny [27] for piecewise constant images, the
four-pixel scheme of Welk, Steidl and Weickert [35], which is a stable iterative non-
linear diffusion scheme with regularized TV diffusivity, and the noniterative method
of non-local means by Buades, Coll and Morel [4, 5].

In the first test, we consider the performance of the proposed methods for de-
noising an artificial piecewise constant (128×128) image with a deep narrow scratch
and a deep wide scratch (see Figure 3(a)). We added zero-mean Gaussian noise such
that the ratio ρ between standard deviation of the image and the noise is one. Here
the signal-to-noise ratio (SNR) is defined by

SNR = 20 log10

‖f − f‖2
‖n‖2

with f standing for the ideal image with mean f and n representing the noise. Thus
the SNR of the noisy image is approximately 0.

Fig. 4(a) shows the image contaminated with heavy noise and below a cut
through the image, comparing the noisy image with the original in Fig. 3(a). In
this example the ratio between contrast c and deviation σ is c/σ = 3.3, i.e., it is
rather big. We applied the above mentioned denoising methods, where everytimes
we tried to optimize the parameters in order to get an optimal result for each
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Fig. 3. Piecewise constant images with two gray levels (a) and with five gray levels (b)

method. We present the denoised image and a cut through the image (below) for
all five methods to be compared.

Fig. 4(b) is obtained using 50 iterations of digital TV-filter with optimized fitting
parameter λ = 0.9 (see [9]). Fig. 4(c) shows the result of the adaptive weights
smoothing where exact knowledge of the contrast c and the variance of the noise
σ2 has been used. The further parameters N0 = 1, λ = 1.0, η = 3.0 and 3 iterations
have been taken for optimizing the result of the procedure. See [27] for an extensive
description of these parameters.

Fig. 4(d) is obtained using the four-pixel scheme with a time step τ = 0.1
and 30 iterations (see [35]). Fig. 4(e) shows the result using the non-local means
method with h = 12σ as proposed in [5]. Because, this last method is much more
time-consuming than the others, we have not been able to optimize the parameter
for the special image. Finally, Fig. 4(f) shows the result of our algorithm using 10
iterations of the iteration scheme with θ = 4.4, α = 0.1 and θ1 = θ/5.

We observe that the methods considered in 4(b), 4(c), 4(d) and 4(f) well detect
the occurrence of the thin scratch. However, the hight of the scratch tends to be
smoothed out as one can see in the corresponding cuts through the images in 4(b),
4(c), 4(d) and 4(e). The scratch will be completely smoothed away taking more
iterations in 4(c) end 4(d). In particular, our simple method 4(f) works very well
for edge-preserving denoising. The result of the non-local means method 4(e) is less
convincing than the others, such that one may say that this procedure is not really
suitable for piecewise constant images.

In the second test, we show the performance for a more sophisticated (almost)
piecewise constant 320× 320 image (see Figure 3(b)). This image has five different
gray levels. We added Gaussian noise such that we have the ratio ρ = 1.5, this
implies here an SNR of 3.20 for the noisy image. We proceed as before using (almost)
optimized parameters in each method (up to that of non-local means). Again Fig.
5(a) shows the image contaminated with heavy noise and a cut through the noisy
image. In this example the ratio between contrast c and deviation σ is c/σ = 0.8.

Fig. 5(b) is obtained using 10 iterations of digital TV-filter with optimized fitting
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parameter λ = 7.0 (see [9]). Fig. 5(c) shows the result of the adaptive weights
smoothing where exact knowledge of the contrast c, the variance of the noise σ2

as well as N0 = 9, λ = 2.5, η = 3.0 and 4 iterations have been used (see [27]).
According to the low ratio between contrast and deviation of the noise, the initial
estimate of the image values has been obtained by local mean of 9 intensities as
proposed in [27]. Fig. 5(d) is obtained using the four-pixel scheme [35] with a time
step τ = 0.01 and 35 iterations. Fig. 5(e) shows the result using the non-local means
method with h = 12σ as proposed in [5]. Finally, Fig. 5(f) shows the result of our
algorithm using 50 iterations of the iteration scheme with θ = 0.13, α = 0.1 and
θ1 = θ/10. Because of the low ratio c/σ, one iteration step with θ = ∞ has been
used first.

We obtain satisfactory results for the methods in 5(b), 5(c), 5(d) and 5(f). It
should be noted that a good result is already obtained in this experiment using only
the first step of our algorithm.

5. Conclusion

A fast and efficient nonlinear algorithm has been proposed for edge-preserving de-
noising of piecewise constant images. We have provided a detailed mathematical
analysis of the behavior of the scheme using the representation of one iteration step
as a matrix vector multiplication. The iteration matrices determine a partition of
the image into different regions in which it is smoothed by averaging the grey val-
ues of the region. Furthermore, the relations of the iteration scheme to average and
bilateral filtering, nonlinear diffusion and wavelet shrinkage have been explored.

Moreover, convergence of the discrete diffusion schemes with popular diffusivities
has been indirectly demonstrated. Good performance has been shown in numerical
experiments in comparison to some existing methods. This will be significant for
ongoing applications in metrology industry where we need to detect the features
with sharp edges from measuring engineering surfaces (see e.g. [19]). In order to
prove the convergence, we have just considered Tθ as a hard thresholding function
here. More complex formulations will be designed for general images in future work.
Another important extension is to apply the nonlinear scheme for image segmenta-
tion, because the iteration process of this algorithm corresponds to a partition of
the image into subdomains.
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