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Abstract

The Easy Path Wavelet Transform (EPWT) [19] has recently been proposed by
one of the authors as a tool for sparse representations of bivariate functions from discrete
data, in particular from image data. The EPWT is a locally adaptive wavelet transform.
It works along pathways through the array of function values and it exploits the local
correlations of the given data in a simple appropriate manner. In this paper, we show that
the EPWT leads, for a suitable choice of the pathways, to optimal N -term approximations
for piecewise Hölder continuous functions with singularities along curves.
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1 Introduction

During the last few years, there has been an increasing interest in efficient representations
of large high-dimensional data, especially for signals. In the one-dimensional case, wavelets
are particularly efficient to represent piecewise smooth signals with point singularities. In
higher dimensions, however, tensor product wavelet bases are no longer optimal for the
representation of piecewise smooth functions with discontinuities along curves.

Just very recently, more sophisticated methods were developed to design approximation
schemes for efficient representations of two-dimensional data, in particular for images,
where correlations along curves are essentially taken into account to capture the geometry
of the given data. Curvelets [2, 3], shearlets [12, 13] and directionlets [24] are examples
for non-adaptive highly redundant function frames with strong anisotropic directional
selectivity.
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For piecewise Hölder continuous functions of second order with discontinuities along
C2-curves, Candès and Donoho [2] proved that a best approximation fN to a given function
f with N curvelets satisfies the asymptotic bound

‖f − fN‖2 ≤ C N−2 (log2N)3,

whereas a (tensor product) wavelet expansion leads to asymptotically only O(N−1) [17].
Up to the (log2N)3 factor, this curvelet approximation result is asymptotically optimal
(see [9], Section 7.4). A similar estimate has been achieved by Guo and Labate [12]
for shearlet frames. These results, however, are not adaptive with respect to the assumed
regularity of the target function, and so they cannot be applied to images of less regularity,
i.e., images which are not at least piecewise C2 with discontinuities along C2-curves.

In such relevant cases, one should rather adapt the approximation scheme to the image
geometry, instead of fixing a basis or a frame beforehand to approximate f . During the last
few years, several different approaches were developed for doing so [1, 7, 8, 10, 11, 14, 15,
16, 18, 19, 20, 21, 22, 23]. In [16], for instance, bandelet orthogonal bases and frames are
introduced to adapt to the geometric regularity of the image. Due to their construction,
the utilized bandelets are anisotropic wavelets that are warped along a geometrical flow
to generate orthonormal bases in different bands. LePennec and Mallat [16] showed that
their bandelet dictionary yields asymptotically optimal N -term approximations, even in
more general image models, where the edges may also be blurred.

Further examples for geometry-based image representations are the nonlinear edge-
adapted (EA) multiscale decompositions in [1, 14] (and references therein), being based
on ENO reconstructions. We remark that the resulting ENO-EA schemes lead to an
optimal N -term approximation, yielding ‖f − fN‖2 ≤ C N−2 for piecewise C2-functions
with discontinuities along C2-curves. Moreover, unlike previous non-adaptive schemes,
the ENO-EA multiresolution techniques provide optimal approximation results also for
BV -spaces and Lp spaces, see [1].

In many relevant applications to image denoising and image regularization, the space
BV containing all functions of bounded variation plays an important role. The space
BV seems to be well-adapted to model natural images, since it also allows sharp edges,
unlike the bivariate Besov space B1

1(L1), see [4]. However, in case of BV spaces, there
is no simple data representation, e.g. in terms of wavelet coefficients. For useful relations
between Haar decompositions on dyadic rings and the space BV we refer to [5].

In this paper, we prove optimal N -term approximations for a function class being very
close to the space BV . For this purpose, we use the locally adaptive Easy Path Wavelet
Transform (EPWT) which has recently been explored in our previous paper [19]. The
EPWT applies a one-dimensional wavelet transform along suitable pathways of data vec-
tors, where local correlations of the given data are essentially exploited. As supported by
our numerical experiments in [19], the EPWT leads to an efficient compression method for
two-dimensional digital data, especially for image data. But in this paper we focus on the
approximation properties of the EPWT, particularly for piecewise smooth images. More
precisely, we show that the application of the EPWT leads to an N -term approximation
of the form

‖f − fN‖22 ≤ C N−α (1.1)

for piecewise Hölder continuous functions of order α (with 0 < α ≤ 1) with allowing
discontinuities along curves of finite length.
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As we will see later, the restriction α ≤ 1 is due to the application of the adaptive Haar
wavelet basis employed for the EPWT. Note that Haar wavelets admit a straightforward
transfer from one-dimensional functions along path vectors to bivariate Haar-like functions.
As shown in [19], one does not necessarily need to restrict the EPWT to this simple wavelet
transform. In fact, the numerical results show the enormous efficiency of the EPWT for
Daubechies D4 filters and biorthogonal 7−9 filters. These observations give rise to expect
that the results presented in this paper can be extended to piecewise Hölder continuous
functions of order α > 1. This problem, however, is subject of future research.

The outline of this paper is as follows. In Section 2, we first introduce the EPWT
algorithm, before we apply the resulting approximation method to target functions from a
function class to be described. To this end, we recall the basic ideas of the EPWT, where
we show that it generates a data-dependent multiresolution analysis and a corresponding
adaptive Haar wavelet basis. In order to achieve optimal approximation results, we require
specific side conditions for the path vectors that are used in the EPWT algorithm. These
side conditions are derived in Subsection 2.3, and further illustrations are given through
a numerical example in Subsection 2.4. In Subsection 2.5, we present a strategy for the
construction of path vectors which are satisfying the side conditions. Finally, Section 3 is
devoted to error analysis, where we prove asymptotically optimal N -term error estimates
of the form (1.1) for piecewise Hölder continuous functions.

2 EPWT and Adaptive Haar Wavelet Bases

2.1 The EPWT Algorithm

Suppose that F ∈ L2([0, 1)2) is a piecewise regular image, being uniformly regular over a
finite set of regions {Ωi}1≤i≤K , each of whose boundaries ∂Ωi is continuous and of finite
length. Moreover, the set {Ωi}1≤i≤K is assumed to be a disjoint partition of [0, 1)2, so
that

K⋃
i=1

Ωi = [0, 1)2,

where each closure Ωi is assumed to be a connected subset of [0, 1]2, for i = 1, . . . ,K.
Furthermore, we assume that F satisfies a Hölder condition in each region Ωi, 1 ≤ i ≤ K,
i.e.,

|F (x)− F (x+ h)| ≤ C‖h‖α2 , for x, x+ h ∈ Ωi (2.1)

for some α ∈ (0, 1] and C > 0 which do not depend on i. But F may be discontinuous
across the boundaries between adjacent regions.

With assuming that F represents a digital image, the image is given by uniform samples
of F over a rectangular grid. For a suitable given integer J > 1, let {F (2−Jn)}n∈IJ be the
given samples of F , where IJ := {n = (n1, n2) : 0 ≤ n1 ≤ 2J − 1, 0 ≤ n2 ≤ 2J − 1}. We
regard the piecewise constant function

F 2J(x) :=
∑
n∈IJ

F (2−Jn)χ[0,1)2(2Jx− n) for x ∈ [0, 1)2

as an approximation to F in L2([0, 1)2). Moreover, by

ΓJi :=
{
n ∈ IJ :

n

2J
∈ Ωi

}
for 1 ≤ i ≤ K
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we denote the index set of grid points that are contained in region Ωi, for 1 ≤ i ≤ K.
Obviously,

K⋃
i=1

ΓJi = IJ ,

and for the size #ΓJi of ΓJi we have #ΓJi ≤ #IJ = 22J . Consequently, (2.1) yields the
error bound

|F 2J(2−Jn)− F 2J(2−Jm)| ≤ C 2−Jα ‖n−m‖α2 , (2.2)

provided that n,m ∈ ΓJi for some 1 ≤ i ≤ K.

Remark. Note that the data F 2J is obtained from F by interpolation, rather than
by its L2-projection onto the linear space

span{χ[0,1)2(2J · −n) : n ∈ IJ}

of piecewise constant functions. We prefer to work with interpolation of F in order to
derive the error estimate (2.2) from the Hölder continuity of F in (2.1). This way we
do not need to deal with the averaging of function values for pixels lying on overlapping
region boundaries. �

Now let us briefly recall the EPWT algorithm from our previous work [19]. For the
sake of simplicity, we use the (one-dimensional) Haar wavelet basis. To this end, let

φj,k(t) := 2j/2 φ(2jt− k) and ψj,k(t) := 2j/2 ψ(2jt− k), (2.3)

with φ(t) := χ[0,1)(t) and ψ(t) := χ[0,1/2)(t)− χ[1/2,1)(t), where for any interval [a, b) ⊂ R,
χ[a,b) denotes its characteristic function.

The EPWT is a wavelet transform that works along path vectors through index subsets
of IJ . For the characterization of suitable path vectors (see Subsections 2.3 and 2.5), we
first need to introduce neighborhoods of indices and index sets. For any index n = (n1, n2) ∈
IJ , we define its neighborhood by

N(n) := {m = (m1,m2) ∈ IJ \ {n} : |n1 −m1| ≤ 1 and |n2 −m2| ≤ 1}.

Hence, an interior index, i.e., an index that does not lie on the boundary of the index
domain IJ , has eight neighbors. Similarly, for two disjunct index sets I1 ⊂ IJ and I2 ⊂ IJ ,
we say that I1 and I2 are neighbors, I2 ⊂ N(I1), iff there exist two indices n = (n1, n2) ∈ I1

and m = (m1,m2) ∈ I2 such that m ∈ N(n).
Now the EPWT algorithm is performed as follows. For the application of the first level

of the EPWT we need to find a path vector p2J = (p2J(n))22J−1
n=0 through the index set IJ .

This path vector is a suitable permutation of all indices in IJ and can e.g. be determined
using the following strategy. Start with p2J(0) := (0, 0). Now, for a given n-th component
p2J(n) being contained in the index set ΓJi for some i ∈ {1, . . . ,K}, we choose the path
vectors next component p2J(n+ 1) such that

p2J(n+ 1) ∈ (N(p2J(n)) ∩ ΓJi ) \ {p2J(0), . . . , p2J(n)},

i.e., p2J(n + 1) should be a neighbor index of p2J(n) in the same region set ΓJi that has
not been used yet in the path.
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In case that (N(p2J(n)) ∩ ΓJi ) \ {p2J(0), . . . p2J(n)} is an empty set, the path is inter-
rupted, and we need to start a new pathway by choosing the next index p2J(n + 1) from
ΓJi \{p2J(0), . . . , p2J(n)}. If, however, this set is also empty, we will choose p2J(n+1) from
the set of remaining indices IJ \ {p2J(0), . . . , p2J(n)}. For a more detailed description of
the path vector construction we refer to [19].

In particular, for a suitably chosen path vector p2J , the number of interruptions can
be bounded by K̃ = C1K, where K is the number of regions, and where the constant
C1 does not depend on J , see Subsection 2.5. The obtained vector p2J is composed of
connected pathways, i.e., two successive components in these pathways are neighbors. We
remark that in case of EPWT with Haar wavelet filters, the above strategy can even be
relaxed. In fact, it suffices to choose p2J such that the even path vector’s components
p2J(2n) and the successive odd components p2J(2n + 1) are neighbors in the same index
set ΓJi (up to C1K exceptions), while p2J(2n+ 1) and p2J(2n+ 2) do not necessarily need
to be neighbors.

We regard the univariate function along the path vector p2J

f̃2J(t) :=
22J−1∑̀

=0

F 2J
(
p2J (`)

2J

)
φ(22J t− `) =

22J−1∑̀
=0

f2J(p2J(`))φ2J,`(t) for t ∈ [0, 1)

with φ2J,` = 2Jφ(22J ·−`) in (2.3), and f2J(p2J(`)) := 2−JF 2J(2−Jp2J(`)). By using (2.2),
the estimate

|f̃2J(2−2J+1`)− f̃2J(2−2J(2`+ 1))| =
∣∣∣F 2J

(
p2J (2`)

2J

)
− F 2J

(
p2J (2`+1)

2J

)∣∣∣ ≤ C 2(−J+1/2)α

(2.4)
holds for ` ∈ {0, . . . , 22J−1 − 1}, as long as p2J(2`) and p2J(2` + 1) are neighbors and
contained in the same index set ΓJi for some 1 ≤ i ≤ K. Now we apply a one-dimensional
Haar wavelet transform to the given data set {F 2J(2−Jn)}n∈IJ = {f̃2J(2−2J`)}22J−1

`=0 along
the path vector p2J , and so we obtain the scaling and wavelet coefficients

f2J−1(`) := 〈f̃2J , φ2J−1,`〉 = 2−J−1/2
(
F 2J

(
p2J (2`)

2J

)
+ F 2J

(
p2J (2`+1)

2J

))
(2.5)

= 2−1/2
(
f2J(p2J(2`)) + f2J(p2J(2`+ 1)

)
,

g2J−1(`) := 〈f̃2J , ψ2J−1,`〉 = 2−J−1/2
(
F 2J

(
p2J (2`)

2J

)
− F 2J

(
p2J (2`+1)

2J

))
= 2−1/2

(
f2J(p2J(2`))− f2J(p2J(2`+ 1)

)
,

for ` = 0, . . . , 22J−1 − 1, where we used the identities

〈φ(22J · −r), φ2J−1,`〉 = 2−J〈φ2J,r, 2−1/2(φ2J,2` + φ2J,2`+1)〉
= 2−J−1/2(δr,2` + δr,2`+1)

and
〈φ(22J · −r), ψ2J−1,`〉 = 2−J−1/2(δr,2` − δr,2`+1)

with δr,` denoting the usual Kronecker symbol. For the wavelet coefficients, (2.4) yields
the estimate

|g2J−1(`)| ≤ 1
2 C 2(−J+1/2)(α+1),
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if p2J(2`) and p2J(2`+1) are neighbors and contained in the same index set ΓJi for some i.
The path vector p2J determines a partition of IJ into index sets

I2J−1
` := {p2J(2`), p2J(2`+ 1)} for ` = 0, . . . , 22J−1 − 1.

Now we consider the “low-pass” image

F 2J−1(x) :=
22J−1−1∑
`=0

f2J−1(`)h2J−1,`(x) for x ∈ [0, 1)2 (2.6)

with the L2-normalized characteristic functions

h2J−1,`(x) := 2J−1/2
(
χ[0,1)2(2Jx− p2J(2`)) + χ[0,1)2(2Jx− p2J(2`+ 1))

)
corresponding to the index sets I2J−1

` , for ` = 0, . . . , 22J−1 − 1. Hence, h2J−1,l are nor-
malized characteristic functions on two (usually neighboring) squares of length 2−J .

For the EPWT at the second level, where j = 2J−1, we first locate a second connected
path vector p2J−1 = (p2J−1(`))22J−1−1

`=0 through the index sets I2J−1
` , ` = 0, . . . , 22J−1 − 1,

i.e., the entries of p2J−1 form a permutation of the index set {0, . . . , 22J−1 − 1}. Similarly
as before, we require that I2J−1

p2J−1(2r+1)
∈ N(I2J−1

p2J−1(2r)
) for all r ∈ {0, . . . , 22J−2 − 1} and

that I2J−1
p2J−1(2r)

and I2J−1
p2J−1(2r+1)

are subsets of the same index set ΓJi for some i (up to a
finite set of indices whose size does not depend on J). Then, we apply the (one level)
Haar wavelet transform to the univariate function along the path vector p2J−1,

f̃2J−1(t) :=
22J−1−1∑
`=0

f2J−1(p2J−1(`))φ2J−1,`(t) for t ∈ [0, 1),

which yields the scaling and wavelet coefficients

f2J−2(`) := 〈f̃2J−1, φ2J−2,`〉, g2J−2(`) := 〈f̃2J−1, ψ2J−2,`〉, ` = 0, . . . , 22J−2 − 1.

Like in the above construction, a corresponding “low pass” image

F 2J−2(x) :=
22J−2−1∑
`=0

f2J−2(`)h2J−2,`(x) for x ∈ [0, 1)2

is obtained, with h2J−2,` being the L2-normalized characteristic functions of the index sets

I2J−2
` := I2J−1

p2J−1(2`)
∪ I2J−1

p2J−1(2`+1)
for ` = 0, . . . , 22J−2 − 1,

i.e.,

h2J−2,` := 2−1/2
(
h2J−1,p2J−1(2`) + h2J−1,p2J−1(2`+1)

)
.

We continue by iteration over the remaining levels 2J− j, for j = 2J −2, 2J −3, . . . , 0,
where at any level 2J − j we first locate a path vector pj+1 = (pj+1(`))2j+1−1

`=0 through
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the index sets Ij+1
` := Ij+2

pj+2(2`)
∪ Ij+2

pj+2(2`+1)
, ` = 0, . . . , 2j+1 − 1 with similar strategies as

above, before the Haar wavelet transform is applied to

f̃ j+1(t) :=
2j+1−1∑
`=0

f j+1(pj+1(`))φj+1,`(t),

yielding

f j(`) := 〈f̃ j+1, φj,`〉, and gj(`) := 〈f̃ j+1, ψj,`〉, for ` = 0, . . . , 2j − 1.

Observe that for j = 2J, . . . , 0 the index sets Ij` , ` = 0, . . . , 2j − 1 form a disjoint dyadic
partition of IJ , where #Ij` = 22J−j . Further note that the components of the path vector
p2J lie in IJ , and so p2J contains 2d integer entries, whereas the path vectors pj , with
j ≤ 2J − 1, contain 1d integer entries. This is in contrast to the notation in [19].

2.2 Adaptive Haar Wavelet Bases

The EPWT algorithm of the previous subsection can be viewed as a tool for adaptive
multiresolution analysis. We can further explain this as follows. Let us consider the space
V2J of piecewise constant functions

V2J = span {h2J,` : ` = 0, . . . , 22J − 1},

where each h2J,` is the L2-normalized characteristic function on one square with edge
length 2−J , i.e.,

h2J,` := 2Jχ[0,1)2(2J · −p2J(`)) for ` = 0, . . . , 22J − 1.

Obviously, the function set {h2J,` : ` = 0, . . . , 22J − 1} forms an orthonormal basis of
V2J , and the function F 2J , as defined in the last subsection, can be written as

F 2J(x) =
22J−1∑
`=0

2−JF (2−Jp2J(`))h2J,`(x) =
22J−1∑
`=0

f2J(p2J(`))h2J,`(x) for x ∈ [0, 1)2

with f2J(p2J(`)) := 2−J F (2−Jp2J(`)). By applying the first level of the EPWT with Haar
filters along the path vector (p2J(`))22J−1

`=0 , we determine the coarser function spaces

V2J−1(F ) := span
{
h2J−1,` := 2−1/2 (h2J,2` + h2J,2`+1) for ` = 0, . . . , 22J−1 − 1

}
,

W2J−1(F ) := span
{

Ψ2J−1,` := 2−1/2 (h2J,2` − h2J,2`+1) for ` = 0, . . . , 22J−1 − 1
}
.

Note that the space V2J−1(F ) (resp. W2J−1(F )) is generated by piecewise constant func-
tions whose support usually consists of two neighboring squares of edge length 2−J . We
have V2J−1(F ) ⊂ V2J and W2J−1(F ) ⊂ V2J . Moreover,

V2J−1(F ) +W2J−1(F ) = V2J , V2J−1(F ) ⊥W2J−1(F ).
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Hence, the first step of the EPWT yields an orthonormal decomposition of F 2J into
F 2J−1 ∈ V2J−1(F ) and G2J−1 ∈W2J−1(F ), with F 2J−1 in (2.6), and

G2J−1(x) =
22J−1−1∑
`=0

g2J−1(`) Ψ2J−1,`(x) for x ∈ [0, 1)2.

Proceeding further along these lines, we obtain for j = 2J − 1, 2J − 2, . . . , 0 the adaptive
scaling and wavelet spaces from the path vectors (pj+1(`))2j+1−1

`=0 ,

Vj(F ) := span
{
hj,` := 2−1/2

(
hj+1,pj+1(2`) + hj+1,pj+1(2`+1)

)
for ` = 0, . . . , 2j − 1

}
,

Wj(F ) := span
{

Ψj,` := 2−1/2
(
hj+1,pj+1(2`) − hj+1,pj+1(2`+1)

)
for ` = 0, . . . , 2j − 1

}
.

In particular, h0,0 = χ[0,1)2 and V0(F ) = span {h0,0}. The support of the orthogonal
basis functions hj,` ∈ Vj(F ) (resp. Ψj,` ∈ Wj(F )) usually consists of connected areas
generated by 22J−j squares with edge length 2−J . Obviously, we have Vj(F ) + Wj(F ) =
Vj+1(F ), Vj(F ) ⊥Wj(F ), and the function set

{h0,0} ∪ {Ψj,` : j = 0, . . . , 2J − 1, ` = 0, . . . , 2j − 1}

forms an orthonormal basis of V2J .
The application of 2J levels to a function F 2J ∈ V2J by using the EPWT algorithm

finally yields a unique orthonormal decomposition

F 2J = F 0 +
2J−1∑
j=0

Gj

with F 0 = f0(0)h0,0 = f0(0)χ[0,1)2 , where

f0(0) =
∫

[0,1)2
F 2J(x) dx = 2−2J

22J−1∑
`=0

F 2J(p2J(`))

and

Gj(x) :=
2j−1∑
`=0

gj(`) Ψj,`(x) for x ∈ [0, 1)2 for j = 0, . . . , 2J − 1.

2.3 Conditions for the Path Vectors

In this subsection, we fix two specific side conditions for the path vectors that are required
for our error analysis in the following Section 3. The two side conditions are termed (a)
region condition and (b) diameter condition, as stated below.

To introduce the two conditions, let J > 0 be an arbitrary fixed integer. Suppose
that the path vectors (pj(`))2j−1

`=0 , j = 1, . . . , 2J , are iteratively chosen at the levels of the
EPWT algorithm. We assume that their corresponding index sets Ij` , ` = 0, . . . , 2j − 1,

I2J
` := {p2J(`)} for ` = 0, . . . , 22J − 1,
Ij` := Ij+1

pj+1(2`)
∪ Ij+1

pj+1(2`+1)
for ` = 0, . . . , 2j − 1, 1 ≤ j < 2J,

are satisfying the following two conditions for every J > 0.
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(a) Region condition. After the performance of the (2J − j)th level of the EPWT,
j ∈ {2J − 1, . . . , 0}, there are at most C1K index sets Ij` , whose components are not
completely contained in one region index set ΓJi for some i ∈ {1, . . . ,K}, and the
constant C1 does not depend on J or j.

(b) Diameter condition. After the performance of the (2J − j)th level of the EPWT,
j ∈ {2J − 1, . . . , 0}, almost all index sets Ij` , ` ∈ {0, . . . , 2j − 1}, whose components
are completely contained in one region index set ΓJi , for some i ∈ {1, . . . ,K}, possess
an almost optimal “diameter”, i.e., there is a constant D < ∞, being independent
of J and j, such that

diam Ij` = max
k1,k2∈Ij`

‖k1 − k2‖2 ≤ D 2J−j/2. (2.7)

Moreover, the number of index sets with Ij` ⊂ ΓJi , for some i, that do not satisfy
this optimal diameter condition, is bounded by a constant C2 < ∞ which does not
depend on J or j.

For notational simplicity, we denote by Λj the set of all indices ` ∈ {0, . . . , 2j − 1} for
which the index set Ij` is contained in ΓJi , for some i, and which satisfies the diameter
condition (2.7). By assumptions (a) and (b), at each level 2J − j, the number of indices
` being not contained in Λj is bounded by C1K + C2.

Remark. Since each index set Ij` has by definition 22J−j elements, the diameter
condition can for instance be satisfied for even j, if the indices in Ij` are arranged in a
square of length 2J−j/2. In this case, condition (2.7) holds with D =

√
2. �

2.4 Example

For the purpose of illustration, we consider one specific example for an image of size
16 × 16. This numerical example demonstrates the efficacy of the EPWT algorithm.
Furthermore, it helps to explain the region condition and the diameter condition of the
previous subsection. To this end, we consider a piecewise Hölder continuous function F
and its interpolation F 2J for J = 4, see Figure 1(a). The image F 2J consists of three
regions, and we assume that the Hölder condition (2.2) (with a suitable constant C) is
satisfied in each of these regions.

We aim to apply the EPWT algorithm such that the region condition (a) and the
diameter condition (b) are satisfied with small constants C1, D, and C2. In a first step,
we determine a path p8 of length 256 that is built by concatenating three connected
pathways p8

1 (background), p8
2 (approximation of circle) and p8

3 (approximation of sloping
bar), see Figure 1(b). The first indices of the pathways p8

1, p8
2 and p8

3 are indicated by small
circles. In this example, the vectors p8

ν , for ν = 1, 2, 3, are even completely connected,
i.e., we have p8

ν(` + 1) ∈ N(p8
ν(`)), for ν = 1, 2, 3 and for ` = 0, . . . ,#Γ4

ν − 2. The path
vector p8 determines a low-pass image F 7, where we have also indicated the index sets
I7
` , ` = 0, . . . , 127 that are determined by p8, see Figure 1(c).

There is only one index set, which does not satisfy the region condition, see the last
index (0, 15) of p8

1 in the right upper corner and the first index (2, 4) of p8
2 in Figure 1(c).
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Application of the EPWT algorithm to a 16× 16 image. (a) interpolated image
F 8, (b) connected path p8 for F 8, (c) low-pass image F 7 with index sets of size 2, (d)
low-pass image F 6 with index sets of size 4, (e) low-pass image F 5 with index sets of size
8, (f) low-pass image F 4 with index sets of size 16.
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Hence, we have C1 = 1/3. Since there are index sets I7
` of the form {m, n} with ‖m−n‖2 =√

2, the diameter condition (2.7) is satisfied with D = 1, and we have C2 = 0.
At the second level of the EPWT, a suitable path vector p7 determines a low-pass

image F 6, see Figure 1(d), with indicated index sets of size 4. There are only two index
sets, which do not satisfy the region condition, i.e., C1 = 2/3. Furthermore, there are
two index sets at the bottom of the image, which satisfy the diameter condition (2.7) only
with the constant D = 3/2, wheras all other index sets satisfy (2.7) with D ≤

√
5/2.

At the third level of the EPWT, a path vector p6 determines the low-pass image F 5,
see Figure 1(e), where we have also indicated the index sets of size 8. An appropriate
concatenation of those two index sets of size 4 that did not meet the region condition in
F 6 now leads to only one exception of the region condition, i.e., C1 = 1/3. We observe
that all other index sets in Figure 1(e) satisfy the diameter condition (2.7) with D =√

18/
√

8 = 3/2.
At the fourth level of the EPWT, we obtain the low-pass image F 4 in Figure 1(f) with

only one index set violating the region condition. Five index sets satisfy the diameter
condition with D =

√
45/4 ≈ 1.67705. The remaining index sets satisfy (2.7) with D ≤√

40/4 ≈ 1.58114. In this case, (level-independent) constants are C1 = 2/3, D =
√

45/4,
and C2 = 0.

2.5 Algorithm for the Path Vector Construction

Now let us turn to the construction of the path vectors. Recall that the path vectors
are required to satisfy the region condition and diameter condition in Subsection 2.3.
Assuming that the image consists of a finite number of smooth regions, we may apply
an edge detector to the image in order to determine the regions Ωi, i = 1, . . . ,K, and
their corresponding index sets ΓJi . At level (2J − j + 1), the construction of the path
vectors pj = (pj(`))2j−1

`=0 is, through their index sets Ij` , performed by the application of
the following algorithm.

Algorithm
Let i = 1, ` = 0.

1. Choose an index set pj(2`) ∈ ΓJi \ {pj(0), . . . , pj(2` − 1)} possessing the smallest
positive number of neighbor index sets in ΓJi and go to 2. If such an index set does
not exist, and if i < K, let i = i+ 1 and go to 1. Otherwise, go to 3.

2. Choose pj(2`+ 1) such that

IpJ (2`+1) = argmin
Ijk∈ΓJi \{pj(0),...,pj(2`)}

{diam (Ij
pj(2`)

∪ Ijk)}.

Let ` = `+ 1 and go to 1.

3. Take all index sets that can not be incorporated into the path using the two steps
above to built the remaining pairs pj(2`) and pj(2` + 1) leading to new index sets
Ij−1
` = Ij

pj(2`)
∪ Ij

pj(2`+1)
.

We remark that the above algorithm leads to path vectors pj satisfying the region
condition and the diameter condition in Subsection 2.3, if the regions Ωi are convex.
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Remarks.
1. Similarly as in the relaxed EPWT of [19], one may utilize an edge detection strategy for
the path vector construction. This is done by fixing a threshold value θ for the maximum
absolute difference of function values of consecutive indices in the path vector. For further
details on this, we refer to [19].

2. For efficient coding of pj , we are interested in path vectors, where (almost) all
components are connected, i.e., where Ij

pj(l+1)
∈ N(Ij

pj(l)
) for (almost) all l = 0, . . . 2j − 2.

In this case, the development of strategies to satisfy the side conditions is more challenging.

3 Approximation Properties of the EPWT Algorithm

Recall that for given integer J > 0, the function F 2J is assumed to be the piecewise
constant approximation of the image F satisfying (2.2). In this section, we shall prove the
optimal N -term approximation to F by a suitably chosen EPWT, where the path vectors
are required to satisfy the region condition and the diameter condition of Subsection 2.3.

Let us first prove suitable estimates for the scaling and the wavelet coefficients.

Theorem 3.1 Let F 2J be an image in V 2J satisfying (2.2) for each index set ΓJi , i =
1, . . . ,K, as determined in Subsection 2.1. For the application of the EPWT to F 2J

(according to Section 2), we assume that the path vectors (pj+1(`))2j+1−1
`=0 , j = 2J−1, . . . , 0,

satisfy the region condition (a) and the diameter condition (b) of Subsection 2.3. Let
f2J(p2J(`)) := 2−JF 2J(2−Jp2J(`)), ` = 0, . . . , 22J − 1, and let f j(`) = 〈f̃ j+1, φj,`〉, j =
2J − 1, 2J − 2, . . . , 0, ` = 0, . . . , 2j − 1 be the scaling coefficients that are obtained by the
EPWT. Then, for all j = 2J, . . . , 0 and ` ∈ Λj−1, the estimate

|f j(pj(2`))− f j(pj(2`+ 1))| ≤ 2α/2C Dα 2−j(α+1)/2 (3.1)

holds, where D > 1 is the constant of the diameter condition (2.7), and where C and
α are the Hölder constant and the Hölder exponent in (2.2). Furthermore, for all ` ∈
{0, . . . , 2j−1 − 1} \ Λj−1, we find the estimate

|f j(pj(2`))− f j(pj(2`+ 1))| ≤ C ′ 2−j/2 (3.2)

with some constant C ′ being independent of J and j.

Proof. For j = 2J , estimate (3.1) follows directly from (2.4). By using the represen-
tation φ2J−1,` = 2−1/2(φ2J,2` + φ2J,2`+1) we find

f2J−1(`) = 2−J−1/2
(
F 2J

(
p2J (2`)

2J

)
+ F 2J

(
p2J (2`+1)

2J

))
= 2−J−1/2

∑
n∈I2J−1

`

F 2J
(
n
2J

)
,

see (2.5). Hence,

|f2J−1(p2J−1(2`))− f2J−1(p2J−1(2`+ 1))|

= 2−J−1/2
∣∣∣ ∑
n∈I2J−1

p2J−1(2`)

F 2J
(
n
2J

)
−

∑
n∈I2J−1

p2J−1(2`+1)

F 2J
(
n
2J

)∣∣∣
≤ 2−J−1/2 2C

(
2D
2J

)α
= 2α/2C Dα 2−(J−1/2)(α+1),
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follows by I2J−2
` = I2J−1

p2J−1(2`)
∪ I2J−1

p2J−1(2`+1)
and (2.2), where we note that the sets I2J−1

p2J−1(2`)

and I2J−1
p2J−1(2`+1)

contain only two indices and, moreover, the diameter condition

diam I2J−2
` ≤ 2D

holds. Likewise, for general j ∈ {1, . . . , 2J − 1} we observe that f j(`), as obtained by the
application of the (2J − j)th level of the EPWT algorithm, can be viewed as a weighted
average of function values F 2J(2−Jn) with n ∈ Ij` , i.e.,

f j(`) = 2−J 1
2J−j/2

∑
n∈Ij`

F 2J
(
n
2J

)
,

where #Ij` = 22J−j . Hence, by using the diameter property for ` ∈ Λj−1, we obtain

|f j(pj(2`))− f j(pj(2`+ 1))| = 2−2J+j/2

∣∣∣∣∣∣∣
∑

n∈Ij
pj(2`)

F 2J
(
n
2J

)
−

∑
n∈Ij

pj(2`+1)

F 2J
(
n
2J

)∣∣∣∣∣∣∣
≤ 2−2J+j/2 22J−j C

(D 2J−(j−1)/2

2J
)α

= 2α/2C Dα 2−j(α+1)/2.

Finally, since F (resp. F 2J) is bounded, we obtain

|f j(pj(2`))− f j(pj(2`+ 1))| ≤ C ′ 2−j/2

for all indices ` ∈ {0, . . . , 2j−1− 1} \Λj−1, with some constant C ′ being independent from
j. Note that the last estimate follows from the previous one by letting α = 0. �

We are now in a position to estimate the wavelet coefficients obtained by the EPWT.

Theorem 3.2 For j = 2J − 1, . . . , 0, let gj(`) = 〈f̃ j+1, ψj,`〉, ` = 0, . . . , 2j − 1, denote
the wavelet coefficients that are obtained by applying the EPWT algorithm to F 2J ∈ V2J

(according to Section 2), where we assume that F 2J satisfies (2.2). Further assume that
the path vectors (pj+1(`))2j+1−1

`=0 , j = 2J − 1, . . . , 0, in the EPWT algorithm satisfy the
region condition (a) and the diameter condition (b) of Subsection 2.3. Then, for all j =
2J − 1, . . . , 0 and ` ∈ Λj, the estimate

|gj(`)| ≤ 1
2 C D

α 2−j(α+1)/2 (3.3)

holds, where D > 1 is the constant of the diameter condition (2.7), and where C and
α are the Hölder constant and the Hölder exponent in (2.2). Furthermore, for all ` ∈
{0, . . . , 2j − 1} \ Λj, we find the estimate

|gj(`))| ≤ 1
2 C
′ 2−j/2 (3.4)

with some constant C ′ being independent of J and j.

13



Proof. The proof follows from Theorem 3.1, with observing that the one-dimensional
Haar wavelet satisfies ψj,` = 2−1/2 (φj+1,2`−φj+1,2`+1), and by using 〈φj+1,r, φj+1,`〉 = δr,`.
By (3.1), we obtain

|gj(`)| = |〈f̃ j+1, ψj,`〉|

=
∣∣∣ 2j+1−1∑

r=0

f j+1(pj+1(r)) 〈φj+1,r, 2−1/2 (φj+1,2` − φj+1,2`+1)〉
∣∣∣

= 2−1/2 |f j+1(pj+1(2`))− f j+1(pj+1(2`+ 1))|
≤ 2−1/2 2α/2C Dα 2−(j+1)(α+1)/2 = 1

2 C D
α 2−j(α+1)/2.

Likewise, for all ` ∈ {0, . . . , 2j − 1} \ Λj

|gj(`)| ≤ 2−1/2C ′ 2−(j+1)/2 = C ′ 2−(j+2)/2

follows from (3.2). �

Observe that the complete image F 2J is now covered by the vector of wavelet coeffi-
cients (as generated by the EPWT)

g = ((g2J−1)T , . . . , g0, g−1)T

with gj = (gj(`))2j−1
`=0 for j = 0, . . . , 2J − 1, and the mean value

g−1 = g−1(0) := f0(0) = 2−2J
∑
n∈IJ

F 2J(2−Jn),

together with the side information on the path vectors in each iteration step

p = ((p2J)T , . . . , (p1)T )T ∈ R2(22J−1).

In order to find a sparse representation of the digital image F 2J , we apply a shrinkage
procedure to the EPWT wavelet coefficients gj(`), using the hard threshold function

sσ(x) =
{
x |x| ≥ σ,
0 |x| < σ.

We now study the error of a sparse representation using only the N wavelet coefficients
with largest absolute value for an approximative reconstruction of F 2J . For convenience,
let S2J

N be the set of indices (j, `) of the N wavelet coefficients with largest absolute value.
Using the orthogonal decomposition of F 2J of Subsection 2.2, the L2-error can be

represented as
εN = ‖F 2J − F 2J

N ‖22 =
∑

(j,`)6∈S2J
N

|gj(`)|2, (3.5)

where F 2J
N is the approximation of F 2J that is reconstructed from the N wavelet coeffi-

cients gj(`), (j, `) ∈ S2J
N with largest absolute value.

Now we prove the main result of this paper, by showing the optimal N -term approxi-
mation of the EPWT algorithm.
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Theorem 3.3 Let F 2J
N be the N -term approximation of F 2J as constructed above, and let

the assumptions of Theorem 3.2 be satisfied. Then the estimate

εN = ‖F 2J − F 2J
N ‖22 ≤ C̃ N−α (3.6)

holds for all J ∈ N, where the constant C̃ <∞ does not depend on J .

Proof. We organize the proof into two parts.
1. Let the sequence of all wavelet coefficients gj(`), j = 0, . . . , 2J−1, ` = 0, . . . , 2j−1,

and g−1 = g−1(0) be sorted in decreasing order, such that we obtain the new sequence
(gµ)22J−1

µ=0 with |gµ| ≥ |gµ+1| for µ = 0, . . . , 22J − 2.

We first show that ‖(gµ)22J−1
µ=0 ‖

p
lp =

∑22J−1
µ=0 |gµ|p with 1

2 <
1
p <

α+1
2 is bounded inde-

pendently from the choice of the integer J > 1. For that purpose, we use the estimates in
Theorem 3.2, where we distinguish between type I wavelet coefficients gj(`) satisfying the
estimate (3.3) and type II wavelet coefficients satisfying only the estimate (3.4). From the
region condition (a) and the diameter condition (b) on the path vectors pj , it follows that
there are at most C1K + C2 wavelet coefficients of type II in each level j and the sum of
these type II coefficients is bounded by

∑
gµ of type II

|gµ|p ≤ |g−1(0)|p + (C1K + C2)
2J−1∑
j=0

(
1
2
C ′2−j/2)p

= |g−1(0)|p + (C1K + C2)(C ′/2)p
2J−1∑
j=0

2−jp/2

≤ |g−1(0)|p + (C1K + C2)(C ′/2)p(1− 2−p/2)−1

for all p > 0, independently from J .
For the type I coefficients we obtain the bound

∑
gµ of type I

|gµ|p ≤
2J−1∑
j=0

2j |(C Dα/2) 2−j(α+1)/2|p

= (C Dα/2)p
2J−1∑
j=0

2−j(p(α+1)/2−1)

by using (3.3). This expansion is finite (independent from J), if p(α + 1)/2 > 1, i.e., if
1
p <

α+1
2 .

2. We apply now the following result by Stechkin (see e.g. [9]):
Let F be a finite or countable index set, 0 < p ≤ q, and α = (αµ)µ∈F be a sequence in
lp(F). If FN is the set of indices corresponding to the N largest values of |αµ|, we have∑

µ6∈FN

|αµ|q ≤ ‖α‖qlp N
−rq, (3.7)

where r := 1
p −

1
q ≥ 0.

In our case, we choose F = {0, . . . , 22J − 1}, q = 2 and p as before. Then we obtain from
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(3.7) with rq = 2r = 2
p − 1 for the considered sequence (gµ)22J−1

µ=0 the inequality

22J−1∑
µ=N+1

|gµ|2 ≤ ‖(gµ)22J−1
µ=0 ‖

2
lp N

1−2/p.

For p→ 2/(α+ 1) the assertion of the theorem follows. �

Let us conclude by stating the following corollary.

Corollary 3.4 Let F ∈ L2([0, 1)2) be piecewise Hölder continuous (as assumed in Sub-
section 2.1). Then, for any ε > 0 there exists an integer J(ε), such that for all J ≥ J(ε)
the N -term estimate

‖F − F 2J
N ‖2L2 < C̃N−α + ε

holds, where C̃ is the constant in (3.6).

Proof. For given J > 0 and n = (n1, n2) ∈ IJ let

AJn := [2−Jn1, 2−J(n1 + 1))× [2−Jn2, 2−J(n2 + 1)).

Then,

‖F − F 2J‖2L2 =
∑
n∈IJ

∫
AJn

|F (x)− F (2−Jn)|2 dx.

We consider two types of indices n ∈ IJ . If AJn∩∂Ωi = ∅ for all i ∈ {1, . . . ,K}, we say that
n belongs to the subset I ′J of IJ . Otherwise, it belongs to I ′′J . With assuming finite length
for ∪Ki=1∂Ωi, there exists a constant L being independent of J , such that #I ′′J ≤ L 2J for
all J . For the indices in I ′J we can use the Hölder condition (2.1) and find

∑
n∈I′J

∫
AJn

|F (x)− F (2−Jn)|2 dx ≤
∑
n∈I′J

2−2J(C2(−J+1/2)α)2 ≤ C2 2(−2J+1)α

with using #I ′J ≤ #IJ = 22J . Since the image F is bounded, i.e., |F (x)| < C ′ for some
C ′ > 0, we also have∑

n∈I′′J

∫
AJn

|F (x)− F (2−Jn)|2 dx <
∑
n∈I′′J

2−2J(2C ′)2 < 2−J+2 LC ′.

Hence, ‖F−F 2J‖2L2 < C22(−2J+1)α+2−J+2LC ′ holds. Moreover, for any ε > 0 we can find
an integer J(ε), such that ‖F − F 2J‖2L2 < ε holds for all J ≥ J(ε). This in combination
with (3.6) concludes our proof. �
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