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Abstract. In this paper, we discuss the numerical solution of two nonlinear approximation

problems. Many applications in electrical engineering, signal processing, and mathematical physics
lead to the following problem: Let h be a linear combination of exponentials with real frequencies.
Determine all frequencies, all coefficients, and the number of summands, if finitely many perturbed,
uniformly sampled data of h are given. We solve this problem by an approximate Prony method
(APM) and prove the stability of the solution in the square and uniform norm. Further, an APM
for nonuniformly sampled data is proposed too.
The second approximation problem is related to the first one and reads as follows: Let ϕ be a
given 1–periodic window function as defined in Section 4. Further let f be a linear combination
of translates of ϕ. Determine all shift parameters, all coefficients, and the number of translates,
if finitely many perturbed, uniformly sampled data of f are given. Using Fourier technique, this
problem is transferred into the above parameter estimation problem for an exponential sum which
is solved by APM. The stability of the solution is discussed in the square and uniform norm too.
Numerical experiments show the performance of our approximation methods.
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1. Introduction. The recovery of signal parameters from noisy sampled data is
a fundamental problem in signal processing which can be considered as a nonlinear
approximation problem. In this paper, we discuss the numerical solution of two
nonlinear approximation problems. These problems arise for example in electrical
engineering, signal processing, or mathematical physics and read as follows:

1. Recover the pairwise different frequencies fj ∈ (−π, π), the complex coeffi-
cients cj 6= 0, and the number M ∈ N in the exponential sum

h(x) :=
M∑
j=1

cj eifjx (x ∈ R) , (1.1)

if perturbed sampled data h̃k := h(k) + ek (k = 0, . . . , 2N) are given, where ek are
small error terms.
The second problem is related to the first one:

2. Let ϕ ∈ C(R) be a given 1–periodic window function as defined in Section 4.
Recover the pairwise different shift parameters sj ∈ (− 1

2 ,
1
2 ), the complex coefficients

cj 6= 0, and the number M ∈ N in the sum of translates

f(x) :=
M∑
j=1

cj ϕ(x+ sj) (x ∈ R) , (1.2)
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if perturbed sampled data f̃k := f(k/n)+ek (k = −n/2, . . . , n/2−1) are given, where
n is a power of 2 and ek are small error terms.

The first problem can be solved by an approximate Prony method (APM). The APM
is based on ideas of G. Beylkin and L. Monzón [3, 4]. Note that the emphasis in [3, 4]
is placed on approximate compressed representation of functions by linear combina-
tions with only few exponentials. See also the impressive results in [5, 6]. Recently,
the two last named authors of this paper have investigated the properties and the
numerical behavior of APM in [26], where only real–valued exponential sums (1.1)
were considered. Further, the APM is generalized to the parameter estimation for a
sum of nonincreasing exponentials in [27].
The first part of APM recovers the frequencies fj of (1.1). Here we solve a singular
value problem of the rectangular Hankel matrix H̃ := (h̃k+l)

2N−L,L
k,l=0 and find fj via

zeros of a convenient polynomial of degree L, where L denotes an a priori known
upper bound of M . Note that there exists a variety of further algorithms to recover
the exponents fj like ESPRIT or least squares Prony method, see e.g. [15, 23, 24] and
the references therein. The second part uses the obtained frequencies and computes
the coefficients cj of (1.1) by solving an overdetermined linear Vandermonde–type
system in a weighted least squares sense. Therefore, the second part of APM is
closely related to the theory of nonequispaced fast Fourier transform (NFFT) (see
[12, 2, 28, 11, 25, 16, 21]).
In contrast to [3, 4], we prefer an approach to the APM by the perturbation theory
for a singular value decomposition of H̃ (see [26]). In this paper, we investigate the
stability of the approximation of (1.1) in the square and uniform norm for the first
time. It is a known fact that clustered frequencies fj make some troubles for the non-
linear approximation. Therefore, the strong relation between the separation distance
of fj and the number T = 2N is very interesting in Section 3. Furthermore we prove
the simultaneous approximation property of the suggested method. More precisely,
under suitable assumptions we show that the derivative of h in (1.1) can be also very
well approximated, see the estimate (3.5) in Theorem 3.4.
The second approximation problem is transferred into the first one with the help of
Fourier technique. We use oversampling and present a new APM–algorithm of a sum
(1.2) of translates. Corresponding error estimates between the original function f
and its reconstruction are given in the square and uniform norm. The critical case
of clustered shift parameters sj is discussed too. We show a relation between the
separation distance of sj and the number n of sampled data.
Further, an APM for nonuniformly sampled data is presented too. We overcome the
uniform sampling in the first problem by using results from the theory of NFFT. Fi-
nally, numerical experiments show the performance of our approximation methods.
This paper is organized as follows. In Section 2, we sketch the classical Prony method
and present the APM. In Section 3, we consider the stability of the exponential sum
and estimate the error between the original exponential sum h and its reconstruction
in the square norm (see Lemma 3.3) and more important in the uniform norm (see
Theorem 3.4). The nonlinear approximation problem for a sum (1.2) of translates is
discussed in Section 4. We present the Algorithm 4.7 in order to compute all shift
parameters and all coefficients of a sum f of translates as given in (1.2). The stability
for sums of translates is handled in Section 5, see Lemma 5.2 for an estimate in the
square norm and Theorem 5.3 for an estimate in the uniform norm. In Section 6,
we generalize the APM to a new parameter estimation for an exponential sum from
nonuniform sampling. Various numerical examples are described in Section 7. Finally,
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conclusions are presented in Section 8.
In the following we use standard notations. By R and C, we denote the set of all real
and complex numbers, respectively. The complex unit circle is denoted by T. Let Z
be the set of all integers and let N be the set of all positive integers. The Kronecker
symbol is δk. The linear space of all column vectors with N complex components is
denoted by CN , where (·, ·) is the corresponding scalar product. The linear space of
all complex M × N matrices is denoted by CM×N . For a matrix A ∈ CM×N , its
transpose is denoted by AT and its conjugate–transpose by AH. For the maximum
column sum norm, spectral norm and maximum row sum norm of A ∈ CM×N , we
write ‖A‖1, ‖A‖2 and ‖A‖∞, respectively. Then ker A is the null space of a matrix
A. For the sum norm, Euclidean norm and maximum norm of a vector b ∈ CN , we
use the notation ‖b‖1, ‖b‖2 and ‖b‖∞, respectively.
For T > 0, the Banach space of all continuous functions f : [−T, T ]→ C with the uni-
form norm ‖f‖∞ is denoted by C[−T, T ]. The Hilbert space of all square integrable
functions f : [−T, T ] → C with the corresponding square norm ‖f‖2 is denoted by
L2[−T, T ]. For a 1–periodic, continuous function ϕ : R→ C, the jth complex Fourier
coefficient is denoted by cj(ϕ).
Computed quantities and approximations wear a tilde. Thus f̃ denotes a computed
approximation to a function f and Ã a computed approximation to a matrix A.
Definitions are indicated by the symbol :=. Other notations are introduced when
needed.

2. Nonlinear approximation by exponential sums. We consider a linear
combination (1.1) of complex exponentials with complex coefficients cj 6= 0 and pair-
wise different, ordered frequencies fj ∈ (−π, π), i.e.

−π < f1 < . . . < fM < π .

Then h is infinitely differentiable, bounded and almost periodic on R (see [10, pp. 9
– 23]). We introduce the separation distance q of these frequencies by

q := min
j=1,...,M−1

(fj+1 − fj) .

Hence q (M−1) < 2π. Let N ∈ N with N ≥ 2M+1 be given. Assume that perturbed
sampled data

h̃k := h(k) + ek, |ek| ≤ ε1 (k = 0, . . . , 2N)

are known, where the error terms ek ∈ C are bounded by a certain accuracy ε1 > 0.
Furthermore we suppose that |cj | � ε1 (j = 1, . . . ,M).
Then we consider the following nonlinear approximation problem for an exponential
sum (1.1): Recover the pairwise different frequencies fj ∈ (−π, π) and the complex
coefficients cj in such a way that

∣∣h̃k − M∑
j=1

cj eifjk
∣∣ ≤ ε (k = 0, . . . , 2N) (2.1)

for very small accuracy ε > 0 and for minimal number M of nontrivial summands.
With other words, we are interested in approximate representations of h̃k ∈ C by
uniformly sampled data h(k) (k = 0, . . . , 2N) of an exponential sum (1.1). Since
|fj | < π (j = 1, . . . ,M), we infer that the Nyquist condition is fulfilled (see [7, p.
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183]).
All reconstructed values of the frequencies fj , the coefficients cj , and the number
M of exponentials depend on ε, ε1 and N (see [4]). By the assumption |cj | � ε1
(j = 1, . . . ,M), we will be able to recover the original integer M in the case of small
error bounds ε and ε1.
The classical Prony method solves this problem for exact sampled data h̃k = h(k),
cf. [17, pp. 457 – 462]. This procedure is based on a separate computation of all
frequencies fj and then of all coefficients cj . First we form the exact rectangular
Hankel matrix

H :=
(
h(k + l)

)2N−L,L
k,l=0

∈ C(2N−L+1)×(L+1) , (2.2)

where L ∈ N with M ≤ L ≤ N is an a priori known upper bound of M . If T denotes
the complex unit circle, then we introduce the pairwise different numbers

wj := eifj ∈ T (j = 1, . . . ,M) .

Thus we obtain that

M∏
j=1

(z − wj) =
M∑
l=0

pl z
l (z ∈ C)

with certain coefficients pl ∈ C (l = 0, . . . ,M) and pM = 1. Using these coefficients,
we construct the vector p := (pk)Lk=0, where pM+1 = . . . = pL := 0. By S :=(
δk−l−1

)L
k,l=0

we denote the forward shift matrix, where δk is the Kronecker symbol.

Lemma 2.1 Let L, M, N ∈ N with M ≤ L ≤ N be given. Furthermore let hk =
h(k) ∈ C (k = 0, . . . , 2N) be the exact sampled data of (1.1) with cj ∈ C \ {0} and
pairwise distinct frequencies fj ∈ (−π, π) (j = 1, . . . ,M).
Then the rectangular Hankel matrix (2.2) has the singular value 0, where

ker H = span {p,Sp, . . . ,SL−Mp}

and dim (ker H) = L−M + 1 .

For a proof see [27]. The classical Prony method is based on the following result.

Lemma 2.2 Under the assumptions of Lemma 2.1 the following assertions are equiv-
alent:
(i) The polynomial

L∑
k=0

uk z
k (z ∈ C) (2.3)

with complex coefficients uk (k = 0, . . . , L) has M different zeros wj = eifj ∈ T
(j = 1, . . . ,M).
(ii) 0 is a singular value of the complex rectangular Hankel matrix (2.2) with a right
singular vector u := (ul)Ll=0 ∈ CL+1.

For a proof see [27].
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Algorithm 2.3 (Classical Prony Method)

Input: L, N ∈ N (N � 1, 3 ≤ L ≤ N , L is upper bound of the number of
exponentials), h(k) ∈ C (k = 0, . . . , 2N), 0 < ε, ε′ � 1.

1. Compute a right singular vector u = (ul)Ll=0 corresponding to the singular value 0
of (2.2).
2. For the polynomial (2.3), evaluate all zeros z̃j ∈ C with | |z̃j | − 1| ≤ ε′ (j =
1, . . . , M̃). Note that L ≥ M̃ .
3. For w̃j := z̃j/|z̃j | (j = 1, . . . , M̃), compute c̃j ∈ C (j = 1, . . . , M̃) as least squares
solution of the overdetermined linear Vandermonde–type system

M̃∑
j=1

c̃j w̃
k
j = h(k) (k = 0, . . . , 2N).

4. Cancel all that pairs (w̃l, c̃l) (l ∈ {1, . . . , M̃}) with |c̃l| ≤ ε and denote the re-
maining set by {(w̃j , c̃j) : j = 1, . . . ,M} with M ≤ M̃ . Form f̃j := Im (log w̃j)
(j = 1, . . . ,M), where log is the principal value of the complex logarithm.

Output: M ∈ N, f̃j ∈ (−π, π), c̃j ∈ C (j = 1, . . . ,M).

Note that we consider a rectangular Hankel matrix (2.2) with only L+ 1 columns in
order to determine the zeros of a polynomial (2.3) of relatively low degree L (see step
2 of Algorithm 2.3).
Unfortunately, the classical Prony method is notorious for its sensitivity to noise such
that numerous modifications were attempted to improve its numerical behavior. The
main drawback of this Prony method is the fact that 0 has to be a singular value of
(2.2) (see Lemma 2.1 or step 1 of Algorithm 2.3). But in practice, only perturbed
values h̃k = h(k) + ek ∈ C (k = 0, . . . , 2N) of the exact sampled data h(k) of an
exponential sum (1.1) are known such that 0 is not a singular value of (2.2), in
general. Here we assume that |ek| ≤ ε1 with certain accuracy ε1 > 0. Then the error
Hankel matrix

E :=
(
ek+l

)2N−L,L
k,l=0

∈ C(2N−L+1)×(L+1)

has a small spectral norm by

‖E‖2 ≤
√
‖E‖1 ‖E‖∞ ≤

√
(L+ 1) (2N − L+ 1) ε1 ≤ (N + 1) ε1 .

Then the perturbed rectangular Hankel matrix can be represented by

H̃ :=
(
h̃k+l

)2N−L,L
k,l=0

= H + E ∈ C(2N−L+1)×(L+1) . (2.4)

By the singular value decomposition of the complex rectangular Hankel matrix H̃
(see [18, pp. 414 – 415]), there exist two unitary matrices Ṽ ∈ C(2N−L+1)×(2N−L+1),
Ũ ∈ C(L+1)×(L+1) and a rectangular diagonal matrix D̃ :=

(
σ̃k δj−k

)2N−L,L
j,k=0

with
σ̃0 ≥ σ̃1 ≥ . . . ≥ σ̃L ≥ 0 such that

H̃ = Ṽ D̃ ŨH . (2.5)

By (2.5), the orthonormal columns ṽk ∈ C2N−L+1 (k = 0, . . . , 2N − L) of Ṽ and
ũk ∈ CL+1 (k = 0, . . . , L) of Ũ fulfill the conditions

H̃ ũk = σ̃k ṽk, H̃H ṽk = σ̃k ũk (k = 0, . . . , L),
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i.e., ũk is a right singular vector and ṽk is a left singular vector of H̃ related to the
singular value σ̃k ≥ 0 (see [18, p. 415]).
Note that σ ≥ 0 is a singular value of the exact rectangular Hankel matrix H if and
only if σ2 is an eigenvalue of the Hermitian and positive semidefinite matrix HH H
(see [18, p. 414]). Thus all eigenvalues of HH H are nonnegative. Let σ0 ≥ σ1 ≥
. . . ≥ σL ≥ 0 be the ordered singular values of the exact Hankel matrix H. Note that
ker H = ker HH H, since obviously ker H ⊆ ker HH H and since from u ∈ ker HH H it
follows that

0 = (HH Hu, u) = ‖Hu‖22 ,

i.e., u ∈ ker H. Then by Lemma 2.1, we know that dim (ker HH H) = L−M + 1, and
hence σM−1 > 0 and σk = 0 (k = M, . . . , L). Then the basic perturbation bound for
the singular values σk of H reads as follows (see [18, p. 419])

|σ̃k − σk| ≤ ‖E‖2 (k = 0, . . . , L) .

Thus at least L−M + 1 singular values of H̃ are contained in [0, ‖E‖2]. We evaluate
the smallest singular value σ̃ ∈ (0, ‖E‖2] and a corresponding right singular vector of
the matrix H̃.

For noisy data we can not assume that our reconstruction yields roots z̃j ∈ T. There-
fore we compute all zeros z̃j with | |z̃j | − 1| ≤ ε2, where 0 < ε2 � 1. Now we can
formulate the following APM–algorithm.

Algorithm 2.4 (APM)

Input: L, N ∈ N (3 ≤ L ≤ N , L is upper bound of the number of exponentials),
h̃k = h(k) + ek ∈ C (k = 0, . . . , 2N) with |ek| ≤ ε1, accuracy bounds ε1, ε2 > 0.

1. Compute a right singular vector ũ = (ũk)Lk=0 corresponding to the smallest singular
value σ̃ > 0 of the perturbed rectangular Hankel matrix (2.4).
2. For the polynomial

∑L
k=0 ũk z

k, evaluate all zeros z̃j (j = 1, . . . , M̃) with | |z̃j |−1| ≤
ε2. Note that L ≥ M̃ .
3. For w̃j := z̃j/|z̃j | (j = 1, . . . , M̃), compute c̃j ∈ C (j = 1, . . . , M̃) as least squares
solution of the overdetermined linear Vandermonde–type system

M̃∑
j=1

c̃j w̃
k
j = h̃k (k = 0, . . . , 2N) .

4. Delete all the w̃l (l ∈ {1, . . . , M̃}) with |c̃l| ≤ ε1 and denote the remaining set by
{w̃j : j = 1, . . . ,M} with M ≤ M̃ .
5. Repeat step 3 and solve the overdetermined linear Vandermonde–type system

M∑
j=1

c̃j w̃
k
j = h̃k (k = 0, . . . , 2N)

with respect to the new set {w̃j : j = 1, . . . ,M} again. Set f̃j := Im (log w̃j)
(j = 1, . . . ,M).

Output: M ∈ N, f̃j ∈ (−π, π), c̃j ∈ C (j = 1, . . . ,M).
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Remark 2.5 The convergence and stability properties of Algorithm 2.4 are discussed
in [26]. In all numerical tests of Algorithm 2.4 (see Section 7 and [26]), we have
obtained very good reconstruction results. All frequencies and coefficients can be
computed such that

max
j=1,...,M

|fj − f̃j | � 1,
M∑
j=1

|cj − c̃j | � 1 . (2.6)

We have to assume that the frequencies fj are separated, that |cj | are not too small,
that the number 2N+1 of samples is sufficiently large, that a convenient upper bound
L of the number of exponentials is known, and that the error bound ε1 of the sampled
data is small. If none such upper bound L is known, one can always set L = N . Up
to now, error estimates of max |fj − f̃j | and

∑M
j=1 |cj − c̃j | are unknown.

If noiseless data are given, then the Algorithm 2.4 can be simplified by leaving step
5. But for perturbed data, the step 5 is essentially in general.
The steps 1 and 2 of Algorithm 2.4 can be replaced by the least squares ESPRIT
method [23, p. 493], for corresponding numerical tests see [26]. Furthermore we can
avoid the singular value decomposition by solving an overdetermined Hankel system,
see [27, Algorithm 3.9]. Further we remark that in [3] the quadratic Toeplitz matrix

T :=
(
h(k − l)

)2N
k,l=0

∈ C(2N+1)×(2N+1)

was considered instead of the rectangular Hankel matrix (2.2), where all coefficients cj
are positive such that h(−k) = h(k) for negative integers k. In this case one obtains
an algorithm similar to [3, Algorithm 2]. In the step 3 (and analogously in step 5) of
Algorithm 2.4, we use the diagonal preconditioner D = diag

(
1 − |k|/(N + 1)

)N
k=−N .

For very large M̃ and N , we can apply the CGNR method (conjugate gradient on the
normal equations), where the multiplication of the rectangular Vandermonde–type
matrix

W̃ :=
(
w̃kj
)2N, M̃
k=0,j=1

=
(
eikf̃j

)2N, M̃
k=0,j=1

is realized in each iteration step by the NFFT (see [25, 21]). By [1, 26], the condition
number of W̃ is bounded for large N . Thus W̃ is well conditioned, provided the
frequencies f̃j (j = 1, . . . , M̃) are not too close to each other or provided N is large
enough, see also [22].

3. Stability of exponential sums. In this section, we discuss the stability of
exponential sums. We start with the known Ingham inequality (see [19] or [29, pp. 162
– 164]).

Lemma 3.1 Let M ∈ N and T > 0 be given. If the ordered frequencies fj (j =
1, . . . ,M) fulfill the gap condition

fj+1 − fj ≥ q >
π

T
(j = 1, . . . ,M − 1),

then the exponentials eifjx (j = 1, . . . ,M) are Riesz stable in L2[−T, T ], i.e., for all
complex vectors c = (cj)Mj=1

α(T ) ‖c‖22 ≤ ‖
M∑
j=1

cj eifjx‖22 ≤ β(T ) ‖c‖22
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with positive constants

α(T ) :=
2
π

(
1− π2

T 2q2
)
, β(T ) :=

4
√

2
π

(
1 +

π2

4T 2q2
)

and with the square norm

‖f‖2 :=
( 1

2T

∫ T

−T
|f(x)|2 dx

)1/2

(f ∈ L2[−T, T ]) .

For a proof see [19] or [29, pp. 162 – 164]. The Ingham inequality for exponential
sums can be considered as a far–reaching generalization of the Parseval equation for
Fourier series. The constants α(T ) and β(T ) are not optimal in general. Note that
these constants are independently on M . The assumption q > π

T is necessary for the
existence of a positive constant α(T ).
Now we show that a Ingham–type inequality is also true in the uniform norm of
C[−T, T ].

Corollary 3.2 If the assumptions of Lemma 3.1 are fulfilled, then the exponentials
eifjx (j = 1, . . . ,M) are Riesz stable in C[−T, T ], i.e., for all complex vectors c =
(cj)Mj=1 √

α(T )
M
‖c‖1 ≤ ‖

M∑
j=1

cj eifjx‖∞ ≤ ‖c‖1

with the uniform norm

‖f‖∞ := max
−T≤x≤T

|f(x)| (f ∈ C[−T, T ]) .

Proof. Let h ∈ C[−T, T ] be given by (1.1). Then ‖h‖2 ≤ ‖h‖∞ < ∞. Using the
triangle inequality, we obtain that

‖h‖∞ ≤
M∑
j=1

|cj | · 1 = ‖c‖1 .

From Lemma 3.1, it follows that√
α(T )
M
‖c‖1 ≤

√
α(T ) ‖c‖2 ≤ ‖h‖2 .

This completes the proof.

Now we estimate the error ‖h − h̃‖2 between the original exponential sum (1.1) and
its reconstruction

h̃(x) :=
M∑
j=1

c̃j eif̃jx (x ∈ [−T, T ]) . (3.1)
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Lemma 3.3 Let M ∈ N and T > 0 be given. Let c = (cj)Mj=1 and c̃ = (c̃j)Mj=1 be
arbitrary complex vectors. If (fj)Mj=1, (f̃j)Mj=1 ∈ RM fulfill the conditions

fj+1 − fj ≥ q >
π

T
(j = 1, . . . ,M − 1),

|f̃j − fj | ≤ δ <
π

4T
(j = 1, . . . ,M),

then

‖h− h̃‖2 ≤
√
β(T )

[
‖c− c̃‖2 + ‖c‖2

(
1− cos(Tδ) + sin(Tδ)

)]
in the norm of L2[−T, T ]. Note that

1− cos(Tδ) + sin(Tδ) = 1−
√

2 sin(
π

4
− Tδ) = Tδ +O(δ2) ∈ [0, 1) .

Proof. 1. If δ = 0, then fj = f̃j (j = 1, . . . ,M) and the assertion

‖h− h̃‖2 ≤
√
β(T ) ‖c− c̃‖2

follows directly from Lemma 3.1. Therefore we suppose that 0 < δ < π
4T . For

simplicity, we can assume that T = π. First we use the ideas of [29, pp. 42 – 44] and
estimate

M∑
j=1

cj
(
eifjx − eif̃jx

)
(x ∈ [−π, π]) (3.2)

in the norm of L2[−π, π]. Here c = (cj)Mj=1 is an arbitrary complex vector. Further
let (fj)Mj=−M and (f̃j)Mj=1 be real vectors with following properties

fj+1 − fj ≥ q > 1 (j = 1, . . . ,M − 1),

|f̃j − fj | ≤ δ <
1
4

(j = 1, . . . ,M) .

Write

eifjx − eif̃jx = eifjx
(
1− eiδjx

)
with δj := f̃j − fj and |δj | ≤ δ < 1

4 (j = 1, . . . ,M).
2. Now we expand the function 1 − eiδjx (x ∈ [−π, π]) into a Fourier series relative
to the orthonormal basis {1, cos(kx), sin(k − 1

2 )x : k = 1, 2, . . .} in L2[−π, π]. Note
that δj ∈ [−δ, δ] ⊂ [− 1

4 ,
1
4 ]. Then we obtain for each x ∈ (−π, π) that

1− eiδjx =
(
1− sinc(πδj)

)
+
∞∑
k=1

2 (−1)kδj sin(πδj)
π(k2 − δ2j )

cos(kx)

+ i
∞∑
k=1

2 (−1)kδj cos(πδj)
π((k − 1

2 )2 − δ2j )
sin(k − 1

2
)x .

Interchanging the order of summation and then using the triangle inequality, we see
that

‖
M∑
j=1

cj
(
eifjx − eif̃jx

)
‖2 ≤ S1 + S2 + S3
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with

S1 := ‖
M∑
j=1

(
1− sinc(πδj)

)
cj eifjx‖2 ,

S2 :=
∞∑
k=1

‖ cos(kx)
M∑
j=1

2 (−1)kδj sin(πδj)
π(k2 − δ2j )

cj eifjx‖2 ,

S3 :=
∞∑
k=1

‖ sin(k − 1
2

)x
M∑
j=1

2 (−1)kδj cos(πδj)
π((k − 1

2 )2 − δ2j )
cj eifjx‖2 .

From Lemma 3.1 and δj ∈ [−δ, δ], it follows that

S1 ≤
√
β(π)

( M∑
j=1

|cj |2
(
1− sinc(πδj)

)2)1/2

≤
√
β(π) ‖c‖2

(
1− sinc(πδ)

)
.

Now we estimate

S2 ≤
∞∑
k=1

‖
M∑
j=1

2 (−1)kδj sin(πδj)
π(k2 − δ2j )

cj eifjx‖2 ≤
√
β(π) ‖c‖2

∞∑
k=1

2δ
π(k2 − δ2)

sin(πδ) .

Using the known expansion

π cot(πδ) =
1
δ

+
∞∑
k=1

2δ
δ2 − k2

,

we receive

S2 ≤
√
β(π) ‖c‖2

(
sinc(πδ)− cos(πδ)

)
.

Analogously, we estimate

S3 ≤
∞∑
k=1

‖
M∑
j=1

2 (−1)kδj cos(πδj)
π((k − 1

2 )2 − δ2j )
cj eifjx‖2

≤
√
β(π) ‖c‖2

∞∑
k=1

2δ
π((k − 1

2 )2 − δ2)
cos(πδ) .

Applying the known expansion

π tan(πδ) =
∞∑
k=1

2δ
(k − 1

2 )2 − δ2
,

we obtain

S3 ≤
√
β(π) ‖c‖2 sin(πδ) .

Hence we conclude that

‖
M∑
j=1

cj
(
eifjx − eif̃jx

)
‖2 ≤

√
β(π) ‖c‖2

(
1− cos(πδ) + sin(πδ)

)
. (3.3)
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3. Finally, we estimate the normwise error by the triangle inequality. Then we obtain
by Lemma 3.1 and (3.3) that

‖h− h̃‖2 ≤ ‖
M∑
j=1

(cj − c̃j) eif̃jx‖2 + ‖
M∑
j=1

cj
(
eifjx − eif̃jx

)
‖2

≤
√
β(π)

[
‖c− c̃‖2 + ‖c‖2

(
1− cos(π δ) + sin(π δ)

)]
.

This completes the proof in the case T = π. If T 6= π, then we use the substitution
t = π

T x ∈ [−π, π] for x ∈ [−T, T ].

A similar result is true in the uniform norm of C[−T, T ].

Theorem 3.4 Let M ∈ N and T > 0 be given. Let c = (cj)Mj=1 and c̃ = (c̃j)Mj=1 be
arbitrary complex vectors. If (fj)Mj=1, (f̃j)Mj=1 ∈ (−π, π)M fulfill the conditions

fj+1 − fj ≥ q >
3π
2T

(j = 1, . . . ,M − 1),

|f̃j − fj | ≤ δ <
π

4T
(j = 1, . . . ,M),

then both eifjx (j = 1, . . . ,M) and eif̃jx (j = 1, . . . ,M) are Riesz stable in C[−T, T ].
Further

‖h− h̃‖∞ ≤ ‖c− c̃‖1 + 2 ‖c‖1 sin
δT

2
, (3.4)

‖h′ − h̃′‖∞ ≤ π ‖c− c̃‖1 + ‖c‖1
(
δ + 2π sin

δT

2
)

(3.5)

in the norm of C[−T, T ].

Proof. 1. By the gap condition we know that

fj+1 − fj ≥ q >
3π
2T

>
π

T
.

Hence the original exponentials eifjx (j = 1, . . . ,M) are Riesz stable in C[−T, T ] by
Corollary 3.2. Using the assumptions, we conclude that

f̃j+1 − f̃j = (fj+1 − fj) + (f̃j+1 − fj+1) + (fj − f̃j)

≥ q − 2
π

4T
>
π

T
.

Thus the reconstructed exponentials eif̃jx (j = 1, . . . ,M) are Riesz stable in C[−T, T ]
by Corollary 3.2 too.
2. Using (3.2), we estimate the normwise error ‖h − h̃‖∞ by the triangle inequality.
Then we obtain

‖h− h̃‖∞ ≤ ‖
M∑
j=1

(cj − c̃j) eif̃jx‖∞ + ‖
M∑
j=1

cj
(
eifjx − eif̃jx

)
‖∞

≤ ‖c− c̃‖1 +
M∑
j=1

|cj | max
−T≤x≤T

|eifjx − eif̃jx| .
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Since

|eifjx − eif̃jx| = |1− eiδjx| =
√

2− 2 cos(δjx)

= 2 | sin δjx
2
| ≤ 2 sin

δT

2

for all x ∈ [−T, T ] and for δj = f̃j − fj ∈ [−δ, δ] with δT < π
4 , we receive (3.4).

3. The derivatives h′ and h̃′ can be explicitly represented by

h′(x) = i
M∑
j=1

fj cj eifjx , h̃′(x) = i
M∑
j=1

f̃j c̃j eif̃jx

for all x ∈ [−T, T ]. From the triangle inequality it follows that

‖(i fj cj)Mj=1 − (i f̃j c̃j)Mj=1‖1 ≤ π ‖c− c̃‖1 + δ ‖c‖1 .

Further we see immediately that

‖(i f̃j c̃j)Mj=1‖1 ≤ π ‖c̃‖1 .

Then by (3.4) we receive the assertion (3.5). Note that similar estimates are also true
for derivatives of higher order.

Remark 3.5 Assume that perturbed sampled data

h̃k := h(k) + ek, |ek| ≤ ε1 (k = 0, . . . , 2N)

of a exponential sum (1.1) are given. Then from [26, Lemma 5.1] it follows that
‖c − c̃‖2 ≤

√
3 ε1 for each N ≥ π2/q. By Lemma 3.3, h̃ is a good approximation of

h in L2[−T, T ]. Fortunately, by Theorem 3.4, h̃ is also a good approximation of h
in C1[−T, T ], if N is large enough. Thus we obtain a uniform approximation of h
from given perturbed values at 2N + 1 equidistant nodes. Since the approximation of
h is again an exponential sum h̃ with computed frequencies and coefficients, we can
use h̃ for an efficient determination of derivatives and integrals. See Example 7.2 for
numerical results.

Remark 3.6 The conclusions of Section 3 show the stability of exponential sums with
respect to the square and uniform norm. All results are valid without the additional
assumption (2.6). But if f̃j , c̃j (j = 1, . . . ,M) reconstructed by Algorithm 2.4 fulfill
the condition (2.6), then we obtain small errors ‖h− h̃‖2 and ‖h− h̃‖∞ by Lemma 3.3
and Theorem 3.4, respectively. With other words, the reconstruction by the Algorithm
2.4 is stable.

4. APM for sums of translates. Let N ∈ 2 N be fixed. We introduce an
oversampling factor α > 1 such that n := αN is a power of 2. Let ϕ ∈ C(R) be a
1–periodic even, nonnegative function with a uniformly convergent Fourier expansion.
Further we assume that all Fourier coefficients

ck(ϕ) :=

1/2∫
−1/2

ϕ(x) e−2πikx dx = 2

1/2∫
0

ϕ(x) cos(2πkx) dx (k ∈ Z)

are nonnegative and that ck(ϕ) > 0 for k = 0, . . . , N/2. Such a function ϕ is called a
window function. We can consider one of the following window functions.
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Example 4.1 A well known window function is the 1–periodization of a Gaussian
function (see [12, 28, 11])

ϕ(x) =
∞∑

k=−∞

ϕ0(x+ k), ϕ0(x) :=
1√
πb

e−(nx)2/b (x ∈ R, b ≥ 1)

with the Fourier coefficients ck(ϕ) = 1
n e−b(πk/n)2 > 0 (k ∈ Z) .

Example 4.2 Another window function is the 1–periodization of a centered cardinal
B–spline (see [2, 28])

ϕ(x) =
∞∑

k=−∞

ϕ0(x+ k), ϕ0(x) := M2m(nx) (x ∈ R; m ∈ N)

with the Fourier coefficients ck(ϕ) = 1
n

(
sinckπn

)2m (k ∈ Z) . With M2m (m ∈ N) we
denote the centered cardinal B–spline of order 2m.

Example 4.3 Let m ∈ N be fixed. A possible window function is the 1–periodization
of the 2m-th power of a sinc–function (see [21])

ϕ(x) =
∞∑

k=−∞

ϕ0(x+ k) , ϕ0(x) :=
N (2α− 1)

2m
sinc2m

(πNx (2α− 1)
2m

)
with the Fourier coefficients ck(ϕ) = M2m

(
2mk

(2α−1)N

)
(k ∈ Z) .

Example 4.4 Let m ∈ N be fixed. As next window function we mention the 1–
periodization of a Kaiser–Bessel function (see [20])

ϕ(x) =
∞∑

k=−∞

ϕ0(x+ k) ,

ϕ0(x) :=


sinh(b

√
m2 − n2x2)

π
√
m2 − n2x2

for |x| ≤ m
n

(
b := π

(
2− 1

α

))
,

sin(b
√
n2x2 −m2)

π
√
n2x2 −m2

otherwise

with the Fourier coefficients

ck(ϕ) =
{

1
n I0

(
m
√
b2 − (2πk/n)2

)
for |k| ≤ n

(
1− 1

2α

)
,

0 otherwise,

where I0 denotes the modified zero–order Bessel function.

Now we consider a linear combination (1.2) of translates with complex coefficients
cj 6= 0 and pairwise different shift parameters sj , where

−1
2
< s1 < . . . < sM <

1
2

(4.1)
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is fulfilled. Then f ∈ C(R) is a complex–valued 1–periodic function. Further let
N ≥ 2M + 1. Assume that perturbed, uniformly sampled data

f̃l = f(
l

n
) + el, |el| ≤ ε1 (l = −n/2, . . . , n/2− 1)

are given, where the error terms el ∈ C are bounded by a certain accuracy ε1 (0 <
ε1 � 1). Again we suppose that |cj | � ε1 (j = 1, . . . ,M).
Then we consider the following nonlinear approximation problem for a sum (1.2) of
translates: Determine the pairwise different shift parameters sj ∈ (− 1

2 ,
1
2 ) and the

complex coefficients cj in such a way that

∣∣f̃l − M∑
j=1

cj ϕ
( l
n

+ sj
)∣∣ ≤ ε (l = −n/2, . . . , n/2− 1) (4.2)

for very small accuracy ε > 0 and for minimal number M of translates. Note that all
reconstructed values of the parameters sj , the coefficients cj , and the number M of
translates depend on ε, ε1, and n. By the assumption |cj | � ε1 (j = 1, . . . ,M), we
will be able to recover the original integer M in the case of small error bounds ε and
ε1.
This nonlinear inverse problem (4.2) can be numerically solved in two steps. First
we convert the given problem (4.2) into a parameter estimation problem (2.1) for an
exponential sum by using Fourier technique. Then the parameters of the transformed
exponential sum are recovered by APM. Thus this procedure is based on a separate
computation of all shift parameters sj and then of all coefficients cj .
For the 1–periodic function (1.2), we compute the corresponding Fourier coefficients.
By (1.2) we obtain for k ∈ Z

ck(f) =

1/2∫
−1/2

f(x) e−2πikx dx =
( M∑
j=1

cj e2πiksj
)
ck(ϕ) = h(k) ck(ϕ) (4.3)

with the exponential sum

h(x) :=
M∑
j=1

cj e2πixsj (x ∈ R) . (4.4)

In applications, the Fourier coefficients ck(ϕ) of the window function ϕ are often
explicitly known, where ck(ϕ) > 0 (k = 0, . . . , N/2) by assumption. Further the
function f is sampled on a fine grid, i.e., we know noisy sampled data f̃l = f(l/n)+el
(l = −n/2, . . . , n/2− 1) on the fine grid {l/n : l = −n/2, . . . , n/2− 1} of [−1/2, 1/2],
where el are small error terms. Then we can compute ck(f) (k = −N/2, . . . , N/2) by
discrete Fourier transform

ck(f) ≈ 1
n

n/2−1∑
l=−n/2

f
( l
n

)
e−2πikl/n

≈ f̂k :=
1
n

n/2−1∑
l=−n/2

f̃l e−2πikl/n .
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For shortness we set

h̃k := f̂k/ck(ϕ) (k = −N/2, . . . , N/2) . (4.5)

Lemma 4.5 Let ϕ be a window function. Further let c = (cj)Mj=1 ∈ CM and let
f̃l = f(l/n) + el (l = −n/2, . . . , n/2− 1) with |el| ≤ ε1 be given.
Then h̃k is an approximate value of h(k) for each k ∈ {−N/2, . . . , N/2}, where the
following error estimate

|h̃k − h(k)| ≤ ε1
ck(ϕ)

+ ‖c‖1 max
j=0,...,N/2

∞∑
l=−∞
l 6=0

cj+ln(ϕ)
cj(ϕ)

is fulfilled.

Proof. The function f ∈ C(R) defined by (1.2) is 1–periodic and has a uniformly
convergent Fourier expansion. Let k ∈ {−N/2, . . . , N/2} be an arbitrary fixed index.
By the discrete Poisson summation formula (see [7, pp. 181 – 182])

1
n

n/2−1∑
j=−n/2

f
( j
n

)
e−2πikj/n − ck(f) =

∞∑
l=−∞
l6=0

ck+ln(f)

and by the simple estimate

1
n

∣∣ n/2−1∑
j=−n/2

ej e−2πikj/n
∣∣ ≤ 1

n

n/2−1∑
j=−n/2

|ej | ≤ ε1 ,

we conclude that

|f̂k − ck(f)| ≤ ε1 +
∞∑

l=−∞
l 6=0

|ck+ln(f)| .

From (4.3) and (4.5) it follows that

h̃k − h(k) =
1

ck(ϕ)
(
f̂k − ck(f)

)
and hence

|h̃k − h(k)| ≤ 1
ck(ϕ)

(
ε1 +

∞∑
l=−∞
l6=0

|ck+ln(f)|
)
.

Using (4.3) and

|h(k + ln)| ≤
M∑
j=1

|cj | = ‖c‖1 (l ∈ Z) ,

we obtain for all l ∈ Z

|ck+ln(f)| = |h(k + ln)| ck+ln(ϕ) ≤ ‖c‖1 ck+ln(ϕ) .
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Thus we receive the estimate

|h̃k − h(k)| ≤ ε1
ck(ϕ)

+ ‖c‖1
∞∑

l=−∞
l 6=0

ck+ln(ϕ)
ck(ϕ)

≤ ε1
ck(ϕ)

+ ‖c‖1 max
j=−N/2,...,N/2

∞∑
l=−∞
l 6=0

cj+ln(ϕ)
cj(ϕ)

.

Since the Fourier coefficients of ϕ are even, we obtain the error estimate of Lemma
4.5.

Remark 4.6 For a concrete window function ϕ from the Examples 4.1 – 4.4, we can
more precisely estimate the expression

max
j=0,...,N/2

∞∑
l=−∞
l 6=0

cj+ln(ϕ)
cj(ϕ)

. (4.6)

Let n = αN be a power of 2, where α > 1 is the oversampling factor. For the window
function ϕ of Example 4.1,

e−bπ
2(1− 1

α )
[
1 +

α

(2α− 1)bπ2
+ e−2bπ2/α

(
1 +

α

(2α+ 1)bπ2

)]
is an upper bound of (4.6) (see [28]). For ϕ of Example 4.2,

4m
2m− 1

( 1
2α− 1

)2m
is an upper bound of (4.6) (see [28]). For ϕ of Examples 4.3 – 4.4, the expression
(4.6) vanishes, since ck(ϕ) = 0 (|k| > n/2).

Thus h̃k is an approximate value of h(k) for k ∈ {−N/2, . . . , N/2}. For the computed
data h̃k (k = −N/2, . . . , N/2), we determine a minimal number M of exponential
terms with frequencies 2πsj ∈ (−π, π) and complex coefficients cj (j = 1, . . . ,M) in
such a way that

∣∣h̃k − M∑
j=1

cj e2πiksj
∣∣ ≤ ε (k = −N/2, . . . , N/2) (4.7)

for very small accuracy ε > 0. Our nonlinear approximation problem (4.2) is trans-
ferred into a parameter estimation problem (4.7) of an exponential sum. Starting from
the given perturbed sampled data f̃l (l = −n/2, . . . , n/2− 1), we obtain approximate
values h̃k (k = −N/2, . . . , N/2) of the exponential sum (4.4). In the next step we
use the APM–Algorithm 2.4 in order to determine the frequencies 2π sj of h (= shift
parameters sj of f) and the coefficients cj . Note that in the case |cj | ≤ ε1 for certain
j ∈ {1, . . . ,M}, we often cannot recover the corresponding shift parameter sj in (4.2).

Algorithm 4.7 (APM for sums of translates)
Input: N ∈ 2N, L ∈ L (3 ≤ L ≤ N/2, L is an upper bound of the number of translated
functions), n = αN power of 2 with α > 1, f̃l = f(l/n) + el (l = −n/2, . . . , n/2− 1)
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with |el| ≤ ε1, ck(ϕ) > 0 (k = 0, . . . , N/2), accuracies ε1, ε2 > 0.

1. By fast Fourier transform compute

f̂k :=
1
n

n/2−1∑
l=−n/2

f̃l e−2πikl/n (k = −N/2, . . . , N/2) ,

h̃k := f̂k/ck(ϕ) (k = −N/2, . . . , N/2) .

2. Compute a right singular vector ũ = (ũl)Ll=0 corresponding to the smallest singular

value σ̃ > 0 of the perturbed rectangular Hankel matrix H̃ := (h̃k+l−N/2)N−L,Lk,l=0 .

3. For the corresponding polynomial
∑L
k=0 ũk z

k, evaluate all zeros z̃j (j = 1, . . . , M̃)
with | |z̃j | − 1| ≤ ε2. Note that L ≥ M̃ .

4. For w̃j := z̃j/|z̃j | (j = 1, . . . , M̃), compute c̃j ∈ C (j = 1, . . . , M̃) as least squares
solution of the overdetermined linear Vandermonde–type system

M̃∑
j=1

c̃j w̃
k
j = h̃k (k = −N/2, . . . , N/2)

with the diagonal preconditioner D = diag
(
1− |k|/(N/2 + 1)

)N/2
k=−N/2. For very large

M̃ and N use the CGNR method, where the multiplication of the Vandermonde–type

matrix W̃ := (w̃kj )N/2, M̃k=−N/2,j=1 is realized in each iteration step by NFFT [21].

5. Delete all the w̃l (l ∈ {1, . . . , M̃}) with |c̃l| ≤ ε1 and denote the remaining set by
{w̃j : j = 1, . . . ,M} with M ≤ M̃ . Form s̃j := 1

2π Im(log w̃j) (j = 1, . . . ,M).
6. Compute c̃j ∈ C (j = 1, . . . ,M) as least squares solution of the overdetermined
linear system

M∑
j=1

c̃j ϕ
( l
n

+ s̃j
)

= f̃l (l = −n/2, . . . , n/2− 1) .

Output: M ∈ N, s̃j ∈ (− 1
2 ,

1
2 ), c̃j ∈ C (j = 1, . . . ,M).

For corresponding numerical tests of Algorithm 4.7 see the Examples 7.4 and 7.5.

Remark 4.8 If further we assume that the window function ϕ is well–localized, i.e.,
there exists m ∈ N with 2m � n such that the values ϕ(x) are very small for all
x ∈ R \ (Im + Z) with Im := [−m/n, m/n], then ϕ can be approximated by a 1–
periodic function ψ supported in Im + Z. For the window function ϕ of Example 4.1
– 4.4, we construct its truncated version

ψ(x) :=
∞∑

k=−∞

ϕ0(x+ k)χm(x+ k) (x ∈ R) , (4.8)

where χm is the characteristic function of [−m/n, m/n]. For the window function ϕ
of Example 4.2, we see that ψ = ϕ. Now we can replace ϕ by its truncated version
ψ in (4.2). For each l ∈ {−n2 , . . . ,

n
2 − 1}, we define the index set Jm,n(l) := {j ∈

{1, . . . ,M} : l−m ≤ n sj ≤ l+m}. In this case, we can replace the window function
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ϕ in step 6 of Algorithm 4.7 by the function ψ. Then the related linear system of
equations ∑

j∈Jm,n(l)

c̃j ψ
( l
n

+ s̃j
)

= f̃l (l = −n/2, . . . , n/2− 1)

is sparse.

Remark 4.9 In some applications, one is interested in the reconstruction of a non-
negative function (1.2) with positive coefficients cj . Then we can use a nonnegative
least squares method in the steps 4 and 6 of Algorithm 4.7.

5. Stability of sums of translates. In this section, we discuss the stability of
linear combinations of translated window functions.

Lemma 5.1 (cf. [8, pp. 155− 156]). Let ϕ be a window function. Under the assump-
tion (4.1), the translates ϕ(x + sj) (j = 1, . . . ,M) are linearly independent. Further
for all c = (cj)Mj=1 ∈ CM

‖
M∑
j=1

cj ϕ(x+ sj)
∥∥

2
≤ ‖ϕ‖2 ‖c‖1 ≤

√
M ‖ϕ‖2 ‖c‖2 .

Proof. 1. Assume that for some complex coefficients aj (j = 1, . . . ,M),

g(x) =
M∑
j=1

aj ϕ(x+ sj) = 0 (x ∈ R).

Then the Fourier coefficients of g read as follows

ck(g) = ck(ϕ)
M∑
j=1

aj e2πisjk = 0 (k ∈ Z).

Since by assumption ck(ϕ) > 0 for all k = 0, . . . , N/2 and since N ≥ 2M + 1, we
obtain the homogeneous system of linear equations

M∑
j=1

aj e2πisjk = 0 (k = 0, . . . ,M − 1).

By (4.1), we conclude that for j 6= l (j, l = 1, . . .M), e2πisj 6= e2πisl . Thus the
Vandermonde matrix

(
e2πisjk

)M−1,M

k=0, j=1
is nonsingular and hence aj = 0 (j = 1, . . . ,M).

2. Using the uniformly convergent Fourier expansion

ϕ(x) =
∞∑

k=−∞

ck(ϕ) e2πikx ,

we receive that

M∑
j=1

cj ϕ(x+ sj) =
∞∑

k=−∞

ck(ϕ)h(k) e2πikx
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with

h(k) =
M∑
j=1

cj e2πiksj .

We estimate

|h(k)| ≤ ‖c‖1 ≤
√
M ‖c‖2 .

Applying the Parseval equation

‖ϕ‖22 =
∞∑

k=−∞

ck(ϕ)2 ,

we obtain that

∥∥ M∑
j=1

cj ϕ(x+ sj)
∥∥2

2
=

∞∑
k=−∞

ck(ϕ)2 |h(k)|2 ≤ ‖ϕ‖22 ‖c‖21.

This completes the proof.

Now we estimate the error ‖f − f̃‖2 between the original function (1.2) and the
reconstructed function

f̃(x) =
M∑
j=1

c̃j ϕ(x+ s̃j) (x ∈ R)

in the case
∑M
j=1 |cj − c̃j | ≤ ε� 1 and |sj − s̃j | ≤ δ � 1 (j = 1, . . . ,M) with respect

to the norm of L2[− 1
2 ,

1
2 ].

Lemma 5.2 Let ϕ be a window function. Further let M ∈ N. Let c = (cj)Mj=1 and
c̃ = (c̃j)Mj=1 be two complex vectors with ‖c − c̃‖1 ≤ ε � 1. Assume that N ∈ 2 N is
sufficiently large that ∑

|k|>N/2

ck(ϕ)2 < ε21

for given accuracy ε1 > 0. If (sj)Mj=1, (s̃j)Mj=1 ∈ [− 1
2 ,

1
2 ]M fulfill the conditions

sj+1 − sj ≥
q

2π
>

3
2N

(j = 1, . . . ,M − 1), (5.1)

|sj − s̃j | ≤
δ

2π
<

1
4N

(j = 1, . . . ,M), (5.2)

then

‖f − f̃‖2 ≤ ‖ϕ‖2
(
ε+ 2 ‖c‖1 sin

δN

4
)

+ (2 ‖c‖1 + ε) ε1.

in the square norm of L2[− 1
2 ,

1
2 ].
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Proof. 1. Firstly, we compute the Fourier coefficients of f and f̃ . By (4.3) – (4.4) we
obtain that

ck(f)− ck(f̃) = ck(ϕ) (h(k)− h̃(k)) (k ∈ Z)

with the exponential sum

h̃(x) :=
M∑
j=1

c̃j e2πis̃jx .

Using the Parseval equation, we receive for sufficiently large N that

‖f − f̃‖22 =
∞∑

k=−∞

|ck(f)− ck(f̃)|2 =
∞∑

k=−∞

ck(ϕ)2 |h(k)− h̃(k)|2

=
∑
|k|≤N/2

ck(ϕ)2 |h(k)− h̃(k)|2 +
∑
|k|>N/2

ck(ϕ)2 |h(k)− h̃(k)|2

≤ ‖ϕ‖22
(

max
|k|≤N/2

|h(k)− h̃(k)|
)2 +

(
‖c‖1 + ‖c̃‖1

)2
ε21 .

2. By Theorem 3.4 we know that for all x ∈ [−N/2, N/2]

|h(x)− h̃(x)| ≤ ‖c− c̃‖1 + 2 ‖c‖1 sin
δN

4
.

This completes the proof.

Theorem 5.3 Let ϕ be a window function. Further let M ∈ N. Let c = (cj)Mj=1 and
c̃ = (c̃j)Mj=1 be two complex vectors with ‖c − c̃‖1 ≤ ε � 1. Assume that N ∈ 2 N is
sufficiently large that ∑

|k|>N/2

ck(ϕ) < ε1

for given accuracy ε1 > 0. If further the assumptions (5.1) and (5.2) are fulfilled,
then

‖f − f̃‖∞ ≤
√
N + 1 ‖ϕ‖2

(
ε+ 2 ‖c‖1 sin

δN

4
)

+ (2 ‖c‖1 + ε) ε1

in the norm of C[− 1
2 ,

1
2 ].

Proof. Using first the triangle inequality and then the Cauchy–Schwarz inequality, we
obtain that

‖f − f̃‖∞ ≤
∞∑

k=−∞

|ck(f)− ck(f̃)| =
∞∑

k=−∞

ck(ϕ) |h(k)− h̃(k)|

=
∑
|k|≤N/2

ck(ϕ) |h(k)− h̃(k)|+
∑
|k|>N/2

ck(ϕ) |h(k)− h̃(k)|

≤
( ∑
|k|≤N/2

ck(ϕ)2
)1/2 ( ∑

|k|≤N/2

|h(k)− h̃(k)|2
)1/2 + (‖c‖1 + ‖c̃‖1) ε1 .
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From the Bessel inequality and Theorem 3.4 it follows that

‖f − f̃‖∞ ≤ ‖ϕ‖2
( ∑
|k|≤N/2

|h(k)− h̃(k)|2
)1/2 + (2 ‖c‖1 + ε) ε1

≤
√
N + 1 ‖ϕ‖2 max

|k|≤N/2
|h(k)− h̃(k)|+ (2 ‖c‖1 + ε) ε1

≤
√
N + 1 ‖ϕ‖2

(
ε+ 2 ‖c‖1 sin

δN

4
)

+ (2 ‖c‖1 + ε) ε1 .

This completes the proof.

6. APM for nonuniform sampling. In this section we generalize the APM to
nonuniformly sampled data. More precisely, as in Section 2 we recover all parameters
of a linear combination h of complex exponentials. But now we assume that the
sampled data h(xk) at the nonequispaced, pairwise different nodes xk ∈ (− 1

2 ,
1
2 )

(k = 1, . . . ,K) are given, i.e., Nxk ∈ (−N2 ,
N
2 ). We consider the exponential sum

h(x) :=
M∑
j=1

cj e2πixNsj , (6.1)

with complex coefficients cj 6= 0 and pairwise different parameters

−1
2
< s1 < . . . < sM <

1
2
.

Note that 2πNsj ∈ (−πN, πN) are the frequencies of h.
We regard the following nonlinear approximation problem for an exponential sum
(6.1): Recover the pairwise different parameters sj ∈ (− 1

2 ,
1
2 ) and the complex coef-

ficients cj in such a way that

∣∣h(xk)−
M∑
j=1

cj e2πixkNsj
∣∣ ≤ ε (k = 1, . . . ,K)

for very small accuracy ε > 0 and for minimal number M of nontrivial summands.
Note that all reconstructed values of the shift parameters sj , the coefficients cj , and
the number M of exponentials depend on ε and K. By the additional assumption
|cj | � ε (j = 1, . . . ,M), we will be able to recover the original integer M for a small
target accuracy ε.
The fast evaluation of the exponential sum (6.1) at the nodes xk (k = 1, . . . ,K) is
known as NFFT of type 3 [16]. A corresponding fast algorithm presented first by B.
Elbel and G. Steidl in [13] (see also [21, Section 4.3]) requires only O(N logN+K+M)
arithmetic operations. Here N is called the nonharmonic bandwith.
Note that a Prony–like method for nonuniform sampling was already proposed in [9].
There the unknown parameters were estimated by a linear regression equation which
uses filtered signals. We use the approximation schema of the NFFT of type 3 in
order to develop a new algorithm. As proven in [13], the exponential sum (6.1) can
be approximated with the help of a truncated window function ψ (see (4.8)) in the
form

h̃(x) =
L∑
l=1

hl ψ(x− l

L
) . (6.2)

with L > N . From this observation, we immediately obtain the following algorithm:
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Algorithm 6.1 (APM for nonuniform sampling)
Input: K, N, L ∈ N with K ≥ L > N , h(xk) ∈ C with nonequispaced, pairwise
different nodes xk ∈ (− 1

2 ,
1
2 ) (k = 1, . . . ,K), truncated window function ψ.

1. Solve the least squares problem

L∑
l=1

hl ψ(xk −
l

L
) = h(xk) (k = 1, . . . ,K)

to obtain the coefficients hl (l = 1, . . . , L).
2. Compute the values h̃(n/N) (n = −N/2, . . . , N/2− 1) of (6.2) and use Algorithm
2.4 in order to compute all parameters sj and all coefficients cj (j = 1, . . . ,M).

Output: M ∈ N, s̃j ∈ (− 1
2 ,

1
2 ), c̃j ∈ C (j = 1, . . . ,M).

See the Example 7.6 for a numerical test.

7. Numerical experiments. Finally, we apply the suggested algorithms to var-
ious examples. We have implemented our algorithms in MATLAB with IEEE double
precision arithmetic.

Example 7.1 We start with a short comparison between the Algorithm 2.4 and an
algorithm proposed in [6, Appendix A.1]. If noiseless data are given and if L = N ,
then the Algorithm 2.4 is very similar to the algorithm in [6]. The advantage of the
Algorithm 2.4 is the fact that it works for perturbed data and that its arithmetic cost
is very low for conveniently chosen L with M ≤ L� N .
We sample the trigonometric sum

h(x) := 14− 8 cos(0.453x) + 9 sin(0.453x) + 4 cos(0.979x) + 8 sin(0.979x) (7.1)
−2 cos(0.981x) + 2 cos(1.847x)− 3 sin(1.847x) + 0.1 cos(2.154x)− 0.3 sin(2.154x)

with M = 11 at the equidistant nodes x = k (k = 0, . . . , 2N). We set f := (fj)Mj=1,
c := (cj)Mj=1, and h := h(2Nj 10−4)10

4

j=0. Further we denote the computed values by
f̃ := (f̃j)Mj=1, c̃ := (c̃j)Mj=1, and h̃. Let σ̃ be the smallest singular value of the (quadratic
or rectangular) Hankel matrix (2.2). We emphasize that step 2 of Algorithm 2.4 leads
to a polynomial of low degree L � N instead of degree N , if one uses the full
(N + 1)× (N + 1) Hankel matrix as in the algorithm [6]. In both cases we apply the
singular value decomposition from MATLAB but remark that one can avoid the rather
expensive singular value decomposition for very large N and M by using an iterative
algorithm for the solution of the rectangular Hankel matrix, see [27, Algorithm 3.9].
The linear Vandermonde–type system can be solved by the inverse NFFT, see [21].
We get the following results, see Table 7.1.

Example 7.2 Next we confirm the uniform approximation property, see Theorem
3.4. We sample the trigonometric sum (7.1) at the equidistant nodes x = k/2
(k = 0, . . . , 120), where we add uniformly distributed pseudo–random numbers ek ∈
[−2.5, 2.5] to h(k/2). The points (k/2, h(k/2) + ek) (k = 0, . . . , 120) are the cen-
ters of the red circles in Figure 7.1. In Figure 7.1 we plot the functions h + 2.5 and
h − 2.5 by blue dashed lines. Finally the function h̃ reconstructed by Algorithm 2.4
is represented as a green line. We observe that ‖h− h̃‖∞ ≤ 2.5. Furthermore, we can
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N L σ̃ ‖f̃ − f‖2 ‖c̃− c‖2 ‖h̃− h‖∞
Alg. 2.4 50 20 1.2e–13 2.3e–11 2.5e–7 5.3e–7
Alg. [6] 50 50 1.1e–14 4.1e–11 1.3e–7 2.3e–8
Alg. 2.4 500 20 5.7e–12 2.3e–11 6.8e–7 2.1e–7
Alg. 2.4 500 100 1.6e–12 2.2e–12 4.8e–8 3.4e–8
Alg. 2.4 500 200 1.1e–12 3.9e–13 6.1e–9 2.2e–8
Alg. [6] 500 500 3.4e–15 5.8e–13 7.0e–9 9.1e–9
Alg. 2.4 1000 20 1.0e–11 1.5e–11 1.2e–7 3.1e–7
Alg. 2.4 1000 100 5.2e–12 1.4e–12 5.3e–8 4.5e–8
Alg. 2.4 1000 500 2.1e–12 6.7e–14 4.8e–9 7.6e–9
Alg. [6] 1000 1000 1.5e–15 4.1e–14 2.2e–9 1.8e–9

Table 7.1
Errors of Example 7.1.

improve the approximation results, if we choose only uniformly distributed pseudo–
random numbers ek ∈ [−0.5, 0.5] (k = 0, . . . , 120). Then we obtain ‖h− h̃‖∞ ≤ 0.68,
see Figure 7.2 (left). In Figure 7.2 (right), the derivative h′ is shown as a blue dashed
line. The derivative h̃′ of the reconstructed function is drawn as a green line, cf. The-
orem 3.4. We remark that further examples for the recovery of signal parameters in
(1.1) from noisy sampled data are given in [26], which support also the new stability
results in Section 3. In the Example 7.2 we have recovered the frequency 2.154 with
the corresponding coefficient 0.05+0.15 i of small absolute value 0.158114. By adding
much more noise, we cannot distinguish between frequencies of the noise and true
frequencies with small coefficients. In that case one can repeat the experiment and
average the results. These methods are behind the scope of this paper, but see [14]
for corresponding results.

Example 7.3 In the following, we test our Algorithm 2.4 for a relatively large number
M of exponentials. For this we consider the exponential sum (1.1) with M = 150,
fj = π cos(jπ/151), cj = π sin(jπ/151) + iπ cos(jπ/151) (j = 1, . . . , 150). We sample
this function at the equidistant nodes x = k (k = 0, . . . , 2N) and apply the Algorithm
2.4. The relative error of the frequencies is computed by

e(f) :=
( M∑
j=1

|fj − f̃j |2
)1/2 ( M∑

j=1

|fj |2
)−1/2

,

where f̃j are the frequencies computed by our Algorithm 2.4. Analogously, the relative
error of the coefficients is defined by

e(c) :=
( M∑
j=1

|cj − c̃j |2
)1/2 ( M∑

j=1

|cj |2
)−1/2

,

where c̃j are the coefficients computed by the Algorithm 2.4. Let h be the original
exponential sum (1.1) and let h̃ be the exponential sum (3.1) recovered by Algorithm
2.4. Then we determine the error ‖h− h̃‖∞ = max |h(x)− h̃(x)|, where the maximum
is built from 10000 equidistant points of [0, 2N ].
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Fig. 7.1. The functions h + 2.5 and h− 2.5 from Example 7.2 are shown as blue dashed lines.
The perturbed sampling points (k/2, h(k/2) + ek) with ek ∈ [−2.5, 2.5] (k = 0, . . . , 120) are the
centers of the red circles. The reconstructed function h̃ is shown as a green line.
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Fig. 7.2. Left: The functions h + 0.5 and h− 0.5 from Example 7.2 are shown as blue dashed
lines. The perturbed sampling points (k/2, h(k/2) + ek) with ek ∈ [−0.5, 0.5] (k = 0, . . . , 120) are
the centers of the red circles. The reconstructed function h̃ is shown as a green line. Right: The
function h′ from Example 7.2 is shown as a blue dashed line. The derivative h̃′ of the reconstructed
function is shown as a green line.

We present also the results of the modified Algorithm 2.4, if we replace the steps 1
and 2 by the ESPRIT method, see Remark 2.5. Note that q ≈ 0.00204. As pointed
out in [26, Lemma 4.1], then the Vandermonde–type matrix W̃ is left invertible for
all N > 2793. However for smaller N ∈ {500, 1000, 1500} we still get good results of
the parameter reconstruction, see Table 7.2.
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N L e(f) e(c) ‖h− h̃‖∞

Algorithm 2.4
500 150 9.5e–03 5.5e–01 1.2e–01
1000 150 2.5e–08 1.2e–04 2.4e–08
1500 150 6.4e–13 3.3e–09 2.2e–09

Algorithm 2.4 based on ESPRIT
500 150 2.5e–02 3.2e–01 2.2e–00
1000 150 6.8e–10 2.1e–06 8.2e–06
1500 150 1.3e–13 8.6e–10 6.8e–09

Table 7.2
Errors of Example 7.3.

Example 7.4 Let ϕ be the 1–periodized Gaussian function (4.1) with n = 128 and
b = 5. We consider the following sum of translates

f(x) =
12∑
j=1

ϕ(x+ sj) (7.2)

with the shift parameters

(sj)12j=1 = (−0.44,−0.411,−0.41,−0.4,−0.2,−0.01, 0.01, 0.02, 0.05, 0.15, 0.2, 0.215)T.

Note that all coefficients cj (j = 1, . . . , 12) are equal to 1. The separation distance of
the shift parameters is very small with 0.001. We work with exact sampled data f̃k =
f( k

128 ) (k = −64, . . . , 63). By Algorithm 4.7, we can compute the shift parameters s̃j
with high accuracy

max
j=1,...,12

|sj − s̃j | = 4.8 · 10−10 .

For the coefficients we observe an error of size

max
j=1,...,12

|1− c̃j | = 8.8 · 10−7 .

We determine the error ‖f − f̃‖∞ = 6.19 · 10−13 as the discretized uniform norm
max |f(x)− f̃(x)| on 8192 equidistant points x ∈ [− 1

2 ,
1
2 ] with

f̃(x) :=
12∑
j=1

c̃j ϕ(x+ s̃j) .

Example 7.5 Now we consider the function (7.2) with the shift parameters s7 =
−s6 = 0.09, s8 = −s5 = 0.11, s9 = −s4 = 0.21, s10 = −s3 = 0.31, s11 = −s2 = 0.38,
s12 = −s1 = 0.41. The 1–periodic function f and the 64 sampling points are shown in
Figure 7.3. The separation distance of the shift parameters is now 0.02. Using exact
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Fig. 7.3. The function f from Example 7.5 with exact sampled data.

sampled data f̃k = f( k
128 ) (k = −64, . . . , 63), we expect a more accurate solution,

see Section 5. By Algorithm 4.7, we can compute the shift parameters s̃j with high
accuracy

max
j=1,...,12

|sj − s̃j | = 2.81 · 10−14 .

For the coefficients we observe an error of size

max
j=1,...,12

|1− c̃j | = 1.71 · 10−13 .

Now we consider the same function f with perturbed sampled data f̃k = f( k
128 ) + ek

(k = −64, . . . , 63), where ek ∈ [0, 0.01] are uniformly distributed random error terms.
Then the computed shift parameters s̃j have an error of size

max
j=1,...,12

|sj − s̃j | ≈ 4.82 · 10−4 .

For the coefficients we obtain an error

max
j=1,...,12

|1− c̃j | ≈ 5.52 · 10−2 .

If the error ‖f − f̃‖∞ is defined as in the Example 7.4, then we receive ‖f − f̃‖∞ =
3.19 · 10−2.

Example 7.6 Finally we estimate the parameters of an exponential sum (6.1) from
nonuniform sampling points. We use the function (7.2) with the same shift parameters
sj (j = 1, . . . , 12) as in Example 7.5. The coefficients cj (j = 1, . . . , 12) are uniformly
distributed pseudo–random numbers in [0,1]. Then we choose 128 uniformly dis-
tributed pseudo–random numbers xk ∈ [−0.5, 0.5] as sampling nodes and set N = 32,
see Figure 7.4. Using Algorithm 6.1, we compute the coefficients hl (l = 1, . . . , 40) in
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(6.2) and then the values h̃(n/32) at the equidistant points n/32 (n = −16, . . . , 15).
By Algorithm 2.4 we compute the shift parameters s̃j with an error of size

max
j=1,...,12

|sj − s̃j | ≈ 8.24 · 10−3 .

For the coefficients we obtain an error of size

max
j=1,...,12

|cj − c̃j | ≈ 6.43 · 10−2 .

If the error ‖f − f̃‖∞ is defined as in the Example 7.4, then we receive ‖f − f̃‖∞ =
1.29 · 10−2.

−0.5 0 0.5
−2

−1

0

1

2

3

4

Fig. 7.4. The function f from Example 7.6 with 128 nonequispaced sampling points × and with
32 equidistant sampling points ◦ computed by Algorithm 6.1.

8. Conclusions. In this paper, we have presented nonlinear approximation tech-
niques in order to recover all significant parameters of a signal from given noisy sam-
pled data. Our first problem was devoted to the parameter reconstruction of a linear
combination h of complex exponentials with real frequencies, where finitely many
noisy uniformly sampled data of h are given. All parameters of h (i.e., all frequencies,
all coefficients, and the number of exponentials) are computed by an approximate
Prony method based on original ideas of G. Beylkin and L. Monzón [3, 4] and de-
veloped further by two of the authors [26, 27]. The emphasis of G. Beylkin and
L. Monzón is placed on an approximate compressed representation of a function, i.e.,
finding a minimal number of exponentials and convenient coefficients to fit a function
within a given accuracy. Our approach is mainly motivated by methods of signal
recovery. Our question reads as follows: What is the significant part (in the form
(1.1)) of a signal, where only finitely many perturbed sampled data of this signal are
given? In our approach, the perturbation of the signal is bounded by a small constant
and contains both the measurement error and the error of signal terms.
The nonlinear problem of finding all frequencies and coefficients of h was solved in
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two steps. First we have computed the smallest singular value of a rectangular Hankel
matrix formed by the sampled data. Then we have found the frequencies via zeros of
a convenient polynomial. In the second step, we have used the obtained frequencies to
solve an overdetermined linear Vandermonde–type system in a weighted least squares
sense. It is interesting that this second step is closely related to the nonequispaced
fast Fourier transform. In contrast to [3, 4], we have presented a new approach based
on the perturbation theory for the singular value decomposition of a rectangular Han-
kel matrix. Using the Ingham inequalities, we have investigated the stability of the
approximation by exponential sums with respect to the square and uniform norm.
An extension to a parameter reconstruction of an exponential sum from given noisy
nonuniformly sampled data is proposed too.
In a second problem, we have considered the parameter reconstruction of a linear
combination f of shifted versions of a 1–periodic window function. For given noisy
uniformly sampled data of f , we have recovered all parameters of f (i.e., all shift
parameters, all coefficients, and the number of translates). The second problem is
related to the first one by using Fourier technique such that this problem can be also
solved by the approximate Prony method. Several numerical experiments have shown
the performance of the algorithms proposed in this paper.

Acknowledgment. The second named author gratefully acknowledges the sup-
port by the German Research Foundation within the project KU 2557/1-1. The
authors thank the reviewers for their helpful comments to improve this paper.
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