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Abstract

In order to get an efficient image representation we introduce a new adaptive Haar wavelet trans-
form, called Tetrolet Transform. Tetrolets are Haar-type wavelets whose supports are tetromi-
noes which are shapes made by connecting four equal-sized squares. The corresponding fast filter
bank algorithm is simple but very effective. In every level of the filter bank algorithm we divide the
low-pass image into 4 × 4 blocks. Then in each block we determine a local tetrolet basis which is
adapted to the image geometry in this block. An analysis of the adaptivity costs leads to modified
versions of our method. Numerical results show the strong efficiency of the tetrolet transform for
image approximation.
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1. Introduction

The main task in every kind of image processing is finding an efficient image representation
that characterizes the significant image features in a compact form. Here, the 2D discrete wavelet
transform (DWT) is one of the most important tools. Conventionally, the 2D DWT is a separable
construction, based on the 1D wavelet transformation which is independently applied to the rows
and columns of an image. Therefore, the horizontal and vertical directions are preferred, and
the DWT fails to achieve optimal results with images that contain geometric structures in other
directions.

In the last years a lot of methods have been proposed to improve the treatment of orientated
geometric image structures. Curvelets [2], contourlets [6], shearlets [10], and directionlets [17] are
wavelet systems with more directional sensitivity.

Beside these non-adaptive function systems one may also consider adaptive image representation
schemes: Instead of choosing a priori a basis or a frame one may try to adapt the function system
depending on the local image structures. Wedgelets [5] and bandelets [15] are examples of such
adaptive methods which offer a wide field of further research. Very recent approaches are the
grouplets [14] or the easy path wavelet transform (EPWT) [16] which are based on an averaging
in adaptive neighborhoods of data points. While in the grouplet context neighborhood is defined
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by an association field, the EPWT uses neighborhoods on a path through all data points. Another
kind of promising adaptive approach is the usage of directional lifting-based wavelets [3], [4].

In this paper, we introduce a new adaptive algorithm whose underlying idea is simple but very
fast and effective. The proposed method is especially designed for sparse image approximation due
to the non-redundance of the basis functions. The construction is similar to the idea of digital
wedgelets [8], where Haar functions on wedge partitions are considered. We divide the image into
4× 4 blocks, then we determine in each block a tetromino partition which is adapted to the image
geometry in this block. Tetrominoes are shapes made by connecting four equal-sized squares,
each joined together with at least one other square along an edge. Originally, tetrominoes were
introduced by Golomb [9], and they became popular through the famous computer game classic
’Tetris’ [1]. On these geometric shapes we define Haar-type wavelets, called tetrolets, which form
a local orthonormal basis. The non-redundance leads to a critically sampled filter bank which
decomposes an image into a sparse representation. In order to obtain an image approximation, one
can apply a suitable shrinkage procedure to the tetrolet coefficients and reconstruct the image.

It should be mentioned that the tetrolet transform is not confined to image processing. Quite
the contrary, the method is very efficient for compression of real data arrays.

The paper is organized as follows. In Section 2 we present the rough idea of the tetrolet
transformation, in Section 3 a detailed description of the corresponding fast and adaptive algorithm
is given. Then in the next section, we show the important fact that the tetrolets form a local
orthonormal basis. Section 5 is devoted to the analysis of the adaptivity cost which results in
modified versions of the tetrolet transform. Finally, in the last section we present some numerical
results applying the tetrolet transform to image approximation.

2. The Tetrolet Transform: A New Locally Adaptive Algorithm

2.1. Definitions and Notations

In order to explain the idea of the tetrolet transform we first need some definitions and notations.
For simplicity we restrict our considerations to two-dimensional square data sets. Let I = {(i, j) :
i, j = 0, . . . , N − 1} ⊂ Z

2 be the index set of a digital image a = (a[i, j])(i,j)∈I with N = 2J , J ∈ N.
We determine a 4-neighborhood of an index (i, j) ∈ I by

N4(i, j) := {(i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1)}.

An index that lies at the boundary has three neighbors, an index at the vertex of the image has
two neighbors. For our analysis we use a one-dimensional index set J(I) by taking the bijective
mapping J : I → {0, 1, . . . , N2 − 1} with J((i, j)) := jN + i.

A set E = {I0, . . . , Ir}, r ∈ N, of subsets Iν ⊂ I is a disjoint partition of I if Iν ∩ Iµ = ∅ for
ν 6= µ and

⋃r
ν=0 Iν = I. In this paper we consider disjoint partitions E of the index set I that

satisfy two conditions:

1. each subset Iν contains four indices, i.e. |Iν | = 4, and

2. every index of Iν has a neighbor in Iν , i.e. ∀(i, j) ∈ Iν ∃(i′, j′) ∈ Iν : (i′, j′) ∈ N4(i, j).

2



Figure 1: The five free tetrominoes. O-I-T-S-L-tetromino.

Figure 2: The 22 fundamental forms tiling a 4× 4 board. Regarding additionally rotations and reflections there are
117 solutions.

We call such subsets Iν tetromino, since the tiling problem of the square [0, N)2 by shapes called
tetrominoes [9] is a well-known problem being closely related to our partitions of the index set
I = {0, 1, . . . , N − 1}2. We shortly recall this tetromino tiling problem in the next subsection.

For a simple one-dimensional indexing of the four elements in one tetromino subset Iν , we apply
the bijective mapping J as follows. For Iν = {(i1, j1), (i2, j2), (i3, j3), (i4, j4)} let L : Iν → {0, 1, 2, 3}
be given by the rule that we order the values J(i1, j1), . . . , J(i4, j4) by size and map them to
{0, 1, 2, 3} such that the smallest index is identified with 0 and the largest with 3.

2.2. Tilings by Tetrominoes

Tetrominoes were introduced by Golomb in [9]. They are shapes formed from a union of
four unit squares, each connected by edges, not merely at their corners. The tiling problem with
tetrominoes became popular through the famous computer game classic ’Tetris’ [1]. Disregarding
rotations and reflections there are five different shapes, the so called free tetrominoes, see Figure 1.

Taking the isometries into account, it is clear that every square [0, N)2 can be covered by
tetrominoes if and only if N is even. In 1937, Larsson showed that there are 117 solutions for
disjoint covering of a 4 × 4 board with four tetrominoes [13]. For an 8 × 8 board we compute
1174 > 108 as a rough lower bound of possible tilings. Thus, in order to handle the number of
solutions, it will be reasonable to restrict ourselves to an image partition into 4 × 4 squares.

As represented in Figure 2, we have 22 fundamental solutions in the 4× 4 board (disregarding
rotations and reflections). One solution (first line) is unaltered by rotations and reflections, four
solutions (second line) give a second version applying the isometries. Seven forms can occur in four
orientations (third line), and ten asymmetric cases in eight directions (last line). Further studies
with tetrominoes can be found in [11].
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2.3. The Idea of Tetrolets

The two-dimensional classical Haar wavelet decomposition leads to a special tetromino parti-
tion. Introducing the discrete tetrolet transformation, we recall the conventional Haar case in a
notation consistent to the following tetrolet idea.

In the Haar filter bank, the low-pass filter and the high-pass filters are just given by the
averaging sum and the averaging differences of each four pixel values which are arranged in a
2 × 2 square. More precisely, with Ii,j = {(2i, 2j), (2i + 1, 2j), (2i, 2j + 1), (2i + 1, 2j + 1)} for
i, j = 0, 1, . . . , N

2 − 1, we have a dyadic partition E = {I0,0, . . . , IN
2
−1, N

2
−1} of the image index set

I. Let L be the bijective mapping mentioned above which maps the four pixel pairs of Ii,j to the
set {0, 1, 2, 3}, i.e., it brings the pixels into a unique order.

Then we can determine the low-pass part

a1 = (a1[i, j])
N
2
−1

i,j=0 with a1[i, j] =
∑

(i′,j′)∈Ii,j

ǫ[0, L(i′, j′)] a[i′, j′] (2.1)

as well as the three high-pass parts for l = 1, 2, 3

w1
l = (w1

l [i, j])
N
2
−1

i,j=0 with w1
l [i, j] =

∑

(i′,j′)∈Ii,j

ǫ[l, L(i′, j′)] a[i′, j′], (2.2)

where the coefficients ǫ[l,m], l,m = 0, . . . , 3, are entries from the Haar wavelet transform matrix

W := (ǫ[l,m])3l,m=0 =
1

2









1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1









. (2.3)

Obviously, the fixed blocking by the dyadic squares Ii,j is very inefficient because the local structures
of an image are disregarded. Our idea is to allow more general partitions such that the local image
geometry is taken into account. Namely, we use tetromino partitions. As described in the previous
subsection, we divide the image index set into 4 × 4 blocks. Then instead of using the classical
Haar wavelet transform, which corresponds to a partition of the 4 × 4 block into squares (as in
the first line of Figure 2), we compute the ’optimal’ partition of the block into four tetrominoes
according to the geometry of the image. In the following detailed description of the algorithm, we
will explain more precisely what ’optimal’ means, namely that the wavelet coefficients defined on
the tetrominoes have minimal l1-norm.

3. Detailed Description of the Tetrolet Filter Bank Algorithm

The rough structure of the tetrolet filter bank algorithm is described in Table 1.
Let us now go into detail considering separately each step of the tetrolet decomposition algo-

rithm. Of course, our main attention shall be turned to step 2 of the algorithm. This is the step
where the adaptivity comes into play.

We start with the input image a0 = (a[i, j])N−1
i,j=0 with N = 2J , J ∈ N. Then we will be able to

apply J − 1 levels of the tetrolet transform. In the rth-level, r = 1, . . . , J − 1, we do the following
computations.
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Adaptive Tetrolet Decomposition Algorithm

Input: Image a = (a[i, j])N−1
i,j=0 with N = 2J , J ∈ N.

1. Divide the image into 4 × 4 blocks.
2. Find the sparsest tetrolet representation in each block.
3. Rearrange the low- and high-pass coefficients of each block into a 2 × 2 block.
4. Store the tetrolet coefficients (high-pass part).
5. Apply step 1 to 4 to the low-pass image.

Output: Decomposed image ã.

Table 1: Adaptive tetrolet decomposition algorithm.

1. Divide the low-pass image ar−1 into blocks Qi,j of size 4 × 4, i, j = 0, . . . , N
4r − 1.

2. In each block Qi,j we consider the 117 admissible tetromino coverings c = 1, . . . , 117. For each

tiling c we apply a Haar wavelet transform to the four tetromino subsets I
(c)
s , s = 0, 1, 2, 3.

In this way we obtain for each tiling c four low-pass coefficients and 12 tetrolet coefficients.
More precisely, in Qi,j we compute analogously to (2.1) and (2.2) the pixel averages for every
admissible tetromino configuration c = 1, . . . , 117 by

ar,(c) = (ar,(c)[s])3s=0 with ar,(c)[s] =
∑

(m,n)∈I
(c)
s

ǫ[0, L(m,n)] ar−1[m,n], (3.1)

as well as the three high-pass parts for l = 1, 2, 3

w
r,(c)
l = (w

r,(c)
l [s])3s=0 with w

r,(c)
l [s] =

∑

(m,n)∈I
(c)
s

ǫ[l, L(m,n)] ar−1[m,n], (3.2)

where the coefficients ǫ[l, L(m,n)] are given in (2.3) and where L is the bijective mapping

mentioned in subsection 2.1 relating the four index pairs (m,n) of I
(c)
s with the values 0, 1, 2,

and 3 in descending order. That means, by the one-dimensional indexing J(m,n) the smallest
index is identified with the value 0, while the largest with 3.
Then we choose the covering c∗ such that the l1-norm of the 12 tetrolet coefficients becomes
minimal

c∗ = arg min
c

3
∑

l=1

‖w
r,(c)
l ‖1 = arg min

c

3
∑

l=1

3
∑

s=0

|w
r,(c)
l [s]|. (3.3)

Hence, for every block Qi,j we get an optimal tetrolet decomposition

[ar,(c∗),w
r,(c∗)
1 ,w

r,(c∗)
2 ,w

r,(c∗)
3 ]. By doing this, the local structure of the image block is

adapted. The best covering c∗ is a covering whose tetrominoes do not intersect an important
structure like an edge in the image ar−1. Because the tetrolet coefficients become as
minimal as possible a sparse image representation will be obtained. For each block Qi,j we
have to store the covering c∗ that has been chosen, since this information is necessary for
reconstruction. If the optimal covering is not unique, then we take the tiling c∗ that has
already been chosen most frequently in the previous blocks. Thus, the coding of the used
coverings becomes cheaper.

3. In order to be able to apply further levels of the tetrolet decomposition algorithm, we rear-

range the entries of the vectors ar,(c∗) and w
r,(c∗)
l into 2×2 matrices using a reshape function
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Figure 3: Example of labeling tetrominoes with corresponding low-pass image block. (a) Bad order (ten deviations
from square case), (b) best order (eight deviations).

R,

ar
|Qi,j

= R(ar,(c∗))) =

(

ar,(c∗)[0] ar,(c∗)[2]

ar,(c∗)[1] ar,(c∗)[3]

)

,

and in the same way wr
l|Qi,j

= R(w
r,(c∗)
l ) for l = 1, 2, 3, see Figure 3. For an efficient

representation in the next level, a suitable arrangement of the low-pass values is essential.
That means, the order of labeling the tetrominoes of c∗ in each block Qi,j by s = 0, 1, 2,
and 3 is very important. The labeling should be done in a way, such that the geometry
of the tiling is suitably mapped to

(

0 2
1 3

)

. Therefore we label the four shapes of the chosen
partition c∗ by comparing with the square case. Among the 24 possibilities to label the four
tetrominoes, the numbering with the highest correlation with the Haar partition is preferred.
See an illustration in Figure 3: For comparison of different labeling of the four tetrominoes,
we have computed the number of deviations from the Haar wavelet tiling, i.e. we count the
number of small squares in a block Qi,j, where the label differs from the label of these squares
in the Haar wavelet tiling. We apply the order with minimal deviations. This optimal order
needs not to be unique. The labeling in Figure 3(a) would lead to a distorted low-pass image,
while 3(b) shows a reasonable order.

4. After finding a sparse representation in every block Qi,j for i, j = 0, . . . , N
4r − 1, we store

(as usually done) the low-pass matrix ar =
(

ar
|Qi,j

) N
4r −1

i,j=0
and the high-pass matrices wr

l =

(

wr
l|Qi,j

) N
4r −1

i,j=0
, l = 1, 2, 3, replacing the low-pass image ar−1 by the matrix

(

ar wr
2

wr
1 wr

3

)

.

After a suitable number of decomposition steps, we apply a shrinkage procedure to the tetrolet
coefficients in order to get a sparse image representation. In our experiments in Section 6, we shall
use the hard threshold function

Sλ(x) =

{

x, |x| ≥ λ,
0, |x| < λ.

For the reconstruction of the image, we need the low-pass coefficients from the coarsest level
and the tetrolet coefficients as usual. Additionally, the information about the respective covering
in each level and block is necessary.
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Remark 3.1. Note that we can understand the adaptive tetrolet filter bank as a Haar wavelet filter
bank with locally permuted pixel values. This interpretation leads to an efficient implementation.
More precisely, we put the 16 pixel values of each 4 × 4 image block Qi,j into a vector q =
(q1, . . . , q16)

T by stacking the columns of the image block into q. After applying a permutation
matrix Pc ∈ R

16×16, which rearranges the image values according to an optimal tetromino covering
c ∈ {1, . . . , 117}, we compute the low- and high-pass parts from (3.1) and (3.2) by

q̃ = (I4 ⊗W ) Pc q, (3.4)

where W is the Haar transformation matrix from (2.3), I4 is the unit matrix of size 4 × 4, and ⊗
is the Kronecker product, i.e. (I4 ⊗W ) = blockdiag(W,W,W,W ). The resulting vector q̃ ∈ R

16

has the form

q̃ = (ar,(c)[0], w
r,(c)
1 [0], w

r,(c)
2 [0], w

r,(c)
3 [0], . . . , ar,(c)[3], w

r,(c)
1 [3], w

r,(c)
2 [3], w

r,(c)
3 [3])T .

Example. Consider the 4 × 4 block of a synthetic image given by









20 20 20 20
20 160 160 20
20 160 160 20
20 20 20 20









, (3.5)

see Figure 4(a). The conventional Haar wavelet transform of the image function has maximal
number of non zero wavelet coefficients. Using (2.1) and (2.2) we obtain after one decomposition
step

[

a1 w1
2

w1
1 w1

3

]

=









110 110 −70 −70
110 110 70 70
−70 70 70 −70
−70 70 −70 70









.

All 12 wavelet coefficients do not vanish. By contrast, if we take the tetrolet transform, all pixel
differences will vanish according to the adaptive covering by tetrominoes in Figure 4(c). Note, that
regarding rotations there are four optimal partitions by tetrominoes.

We stack the columns of (3.5) into a vector

q = (20, 20, 20, 20, 20, 160, 160, 20, 20, 160, 160, 20, 20, 20, 20, 20)T

and apply a permutation matrix Pc corresponding to the tetromino covering in Figure 4(c). In our
case, it means, that Pc is given by

Pc (1, . . . , 16)T = (1, 5, 9, 13, 2, 3, 4, 8, 6, 7, 10, 11, 12, 14, 15, 16)T .

So, we get indeed a sparse representation q̃ = (40, 0, 0, 0, 40, 0, 0, 0, 320, 0, 0, 0, 40, 0, 0, 0)T by (3.4)
because all tetrolet coefficients are zero.
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Figure 4: Example of block covering by adaptive tetrominoes. (a) image function, (b) square supports of classical
Haar wavelets, (c) supports of adaptive tetrolets.

4. An Orthonormal Basis of Tetrolets

We describe the discrete basis functions which correspond to the above algorithm. Remember
that the digital image a = (a[i, j])(i,j)∈I is a subset of l2(Z

2). For any tetromino Iν of I we define
the discrete functions

φIν [m,n] :=

{

1/2, (m,n) ∈ Iν ,
0, otherwise,

and ψl
Iν

[m,n] :=

{

ǫ[l, L(m,n)], (m,n) ∈ Iν ,
0, otherwise.

Due to the underlying tetromino support, we call φIν and ψl
Iν

tetrolets. As a straightforward
consequence of the orthogonality of the standard 2D Haar basis functions and the partition of the
discrete space by the tetromino supports, we have the following essential statement.

Theorem 4.1. For every admissible covering {I0, I1, I2, I3} of a 4 × 4 square Q ⊂ Z
2 the tetrolet

system

{φIν : ν = 0, 1, 2, 3} ∪ {ψl
Iν

: ν = 0, 1, 2, 3; l = 1, 2, 3} (4.1)

is an orthonormal basis of l2(Q).

5. Cost of Adaptivity: Modified Tetrolet Transform

The tetrolet transform proposed in the previous sections reduces the number of wavelet coeffi-
cients compared with the classical tensor product wavelet transform. This improvement has to be
payed with the storage of additional information which is not negligible. In this section we shall
address this issue in detail. It will lead to some relaxed versions of the tetrolet transform in order
to reduce the costs of adaptivity.

In the rth decomposition level of the tetrolet transform we need to store N2

4r+1 covering values

c, and therefore after J levels one has N2

12 (1 − 1
4J ) values. For a complete decomposition, i.e. for

J = log2(N) − 1 we have to store (N2 − 4)/12 values additionally.
It is well-known that a vector of length N and with entropy E can be stored with N · E bits,

where the entropy

E = −
n

∑

i=1

p(xi) log2(p(xi)) (5.1)

describes the required bits per pixel (bpp) and is an appropriate measure for the quality of com-
pression. The entropy (5.1) can be interpreted as the expected length of a binary code over all the
symbols from the given alphabet A = {x1, . . . , xn}. Here, p(xi) describes the relative occurrence
of the symbol xi in the data set.
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Figure 5: The a priori selected 16 tilings with different directions.

In the following, we propose three methods of entropy reduction in order to reduce the adaptiv-
ity costs. An application of these modified transforms as well as of combinations of them is given
in the last section.

(a) The simplest approach of entropy reduction is a reduction of the alphabet A. The stan-
dard tetrolet transform selects the optimal covering in each image block from the alphabet
{1, . . . , 117}. Due to the similarity of some tetromino configurations (see Figure 2) we can
disregard certain tilings. We restrict ourselves to 16 suitable configurations. Of course, the
optimal choice of these configurations depends on the image. But we can choose a collec-
tion of tilings a priori by selecting configurations that feature different directions, see Figure
5. Furthermore, restricting to 16 configurations implicates an essential gain in computation
time.

(b) A second approach to reduce the entropy is to manipulate the propabilities p(xi) in (5.1) by
changing their distribution. Relaxing the tetrolet transform we can demand that only very
few tilings are preferred. Hence, we allow the choice of an almost optimal covering c∗ in (3.3)
in order to get a tiling which is already frequently choosen. More precisely, we replace (3.3)
by the two steps:

1. Find the set A′ ⊂ A of almost optimal configurations c that satisfy

3
∑

l=1

‖w
r,(c)
l ‖1 ≤ min

c∈A

3
∑

l=1

‖w
r,(c)
l ‖1 + θ

with a predetermined tolerance parameter θ.

2. Among these tilings take the covering c∗ ∈ A′ which is chosen most frequently in the
previous image blocks.

Using an appropriate relaxing parameter θ, we achieve a satisfactory balance between low
entropy (low adaptivity costs) and minimal tetrolet coefficients.

(c) The third method also reduces the entropy by optimization of the tiling distribution. After
an application of an edge detector we use the classical Haar wavelet transform inside flat
image regions. In image blocks that contain edges we make use of the strong adaptivity of
the proposed tetrolet transform. This method leads to a huge amount of the square tiling
corresponding to the Haar wavelet case.

6. Numerical experiments

As already mentioned in the beginning, our method is also very efficient for compression of real
data arrays, but in the following we consider digital images.
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Figure 6: Transform coefficients after the first two levels of the tetrolet decomposition filter bank.

While wavelet frames are useful for denoising (because redundancy information gives more hope
to reconstruct the origin data), for image compression a basis is desirable. The tetrolets form a
basis of a subspace of l2(Z2) and lead therefore to a sparse image representation using the efficient
filter bank algorithm described above. An example of the transform coefficients of the one low-
pass part and the three high-pass bands is displayed by the classical tree structure in Figure 6.
High-pass coefficients of large amplitude are shown in white.

6.1. Standard tetrolet transform

We apply a complete wavelet decomposition of an image and use a wavelet shrinkage with
global hard-thresholding choosing the threshold λ such that a certain number of largest wavelet
coefficients is retained.

The 256 × 256 synthetic image in Figure 7 shows that the tetrolet transformation gives ex-
cellent results for piecewise constant images. With only 512 coefficients after thresholding, the
reconstructed image achieves a remarkable PSNR of 38.47 dB because the orientated edges are
well adapted. Though the Haar-like tetrolets are not continuous the Figures 8–11 illustrate that
even for natural images the tetrolet filter bank outperforms the tensor product wavelets with the
biorthogonal 9-7 filter bank. This confirms the fact already noticed with wedgelets [5]: While
nonadaptive methods need smooth wavelets for excellent results, well constructed adaptive meth-
ods need not. For visual purposes the images are slightly smoothed with a bilateral filter in a
post-processing step.

We compare our method with the traditional tensor product Haar wavelet transform and the
9-7 biorthogonal filter. Furthermore, we consider two directional wavelet transforms, the contourlet
transform [6] and the discrete curvelet transform [2]. Both are based on directional wavelet frames
and their redundancy reduces the compact image representation. For the computation of the
contourlet and the curvelet transform we have used the MATLAB toolboxes from www.ifp.uiuc.

edu/~minhdo/software/ and www.curvelet.org. The detailed commented MATLAB codes of
the tetrolet transform are available at our homepage www.uni-due.de/mathematik/krommweh/.
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The approximation results are summarized in Table 2. The 256× 256 images ’cameraman’ and
’pepper’ were approximated with 2048 coefficients, the 128 × 128 ’barbara’ detail image with 512
coefficients, and the 64 × 64 ’monarch’ detail image with 256 coefficients. In particular, in the
monarch image, the enormous efficiency in handling with several directional edges due to the high
adaptivity can be well noticed. Even for the textures in Figure 11 the tetrolet transform offers
satisfactory results. Of course, this kind of texture is excellently approximated by contourlets.

synthetic cameraman pepper monarch barbara
(Fig. 7) (Fig. 8) (Fig. 9) (Fig. 10) (Fig. 11)

Coefficients after shrinkage 512 2048 2048 256 512

Tensor Haar 28.13 25.47 26.11 18.98 19.69
Tensor biorthogonal 9-7 30.23 27.26 28.96 21.78 20.49
Tetrolets 38.47 29.17 30.00 24.43 21.05
Contourlets 30.21 26.07 27.70 21.00 23.16
Curvelets 26.02 21.91 22.77 12.85 18.37

Table 2: PSNR values (in dB) with approximation.

6.2. Modified tetrolet transform

Considering the adaptivity costs we compare the standard tetrolet transform and the modi-
fied versions. A complete tetrolet decomposition of the 256 × 256 cameraman image yields 5461
adaptivity values c ∈ {1, . . . , 117}. The distribution of these values with the standard tetrolet
transformation is shown in Figure 12(a); the entropy (5.1) of the distribution vector is 0.56 bpp.
According to the second modification mentioned above we relax the tetrolet transform with θ = 25,
the resulting histogram is given in Figure 12(b), the corresponding entropy is reduced to 0.25 bpp.
This is a remarkable improvement under the small loss of quality (instead of 29.17 dB PSNR we
have only 28.91 dB PSNR). Of course, reduction of adaptivity cost produces a loss of approxima-
tion quality. Hence, a satisfactory balance is necessary. Table 3 presents some results applying the
modified versions of the tetrolet transform proposed in the previous section to the monarch detail
and the cameraman image. The three modifications (called ’Tetrolet 16’, ’Tetrolet rel’, ’Tetrolet
edge’) and a combination of them (’Tetrolet 16 rel edge’) are compared with the tensor product
wavelet transformation regarding to quality and storage costs. We have tried to balance the mod-
ified tetrolet transform such that the full costs are in the same scale as with the 9-7 filter. Then,
one can observe that the tetrolets lead to slightly higher PSNR values than the 9-7 filter. For the
relaxed versions we have used the global relaxation parameter θ = 25.

For a rough estimation of the complete storage costs of the compressed image with N2 pixels
we apply a simplified scheme

costfull = costW + costP + costA,

where costW = 16·M/N2 are the costs in bpp of storingM non-zero wavelet coefficients with 16 bits.
The term costP gives the cost for coding the position of these M coefficients by − M

N2 log2(
M
N2 ) −

N2−M
N2 log2(

N2−M
N2 ). The third component appearing only with the tetrolet transform contains

the cost of adaptivity, costA = E · R/N2, for R adaptivity values and the entropy E previously
discussed.
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Figure 7: Approximation of a synthetic image with 512 coefficients. See PSNR values in Table 2. (a) Input, (b)
classical Haar, (c) Biorthogonal 9-7, (d) Tetrolets, (e) Contourlets, (f) Curvelets.
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Figure 8: Approximation of the ’cameraman’ image with 2048 coefficients. See PSNR values in Table 2. (a) Input,
(b) classical Haar, (c) Biorthogonal 9-7, (d) Tetrolets, (e) Contourlets, (f) Curvelets.
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Figure 9: Approximation of the ’pepper’ image with 2048 coefficients. See PSNR values in Table 2. (a) Input, (b)
classical Haar, (c) Biorthogonal 9-7, (d) Tetrolets, (e) Contourlets, (f) Curvelets.
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Figure 10: Approximation of the 64× 64 ’monarch’ detail image with 256 coefficients. See PSNR values in Table 2.
(a) Input, (b) classical Haar, (c) Biorthogonal 9-7, (d) Tetrolets, (e) Contourlets, (f) Curvelets.
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Figure 11: Approximation of the 128 × 128 ’barbara’ detail image with 512 coefficients. See PSNR values in Table
2. See PSNR values in Table 2. (a) Input, (b) classical Haar, (c) Biorthogonal 9-7, (d) Tetrolets, (e) Contourlets, (f)
Curvelets.
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Figure 12: Distribution of the 5461 adaptivity values with the cameraman image. (a) Standard tetrolet transform,
entropy is 0.56 bpp, (b) relaxed tetrolet transform with θ = 25, entropy is 0.25 bpp.

An exemplary image comparison is given in Figure 13 for the cameraman image. The several
tetrolet approximations with 2048 coefficients are compared regarding PSNR value and the entropy
of the adaptivity values. This example illustrates that the three tetrolet modifications as well as
the combination of them essentially reduce the entropy under small loss of approximation quality.

monarch cameraman

coeff PSNR entropy costfull coeff PSNR entropy costfull

Tensor Haar 300 19.58 - 1.55 2500 26.29 - 0.84
Tensor 9-7 300 22.62 - 1.55 2500 28.14 - 0.84
Tetrolet 256 24.43 0.53 1.86 2048 29.17 0.56 1.26

Tetrolet 16 256 23.56 0.30 1.64 2048 28.44 0.32 1.02
Tetrolet rel 256 24.51 0.32 1.66 2048 28.91 0.25 0.95
Tetrolet edge 256 24.24 0.43 1.77 2048 28.94 0.32 1.02

Tetrolet 16 rel edge 256 23.48 0.21 1.55 2048 28.24 0.14 0.84

Table 3: Comparison of tensor wavelet transforms and modified tetrolet transforms regarding quality (PSNR in dB)
and storage cost (costfull in bpp). For an image comparison of the ’cameraman’ see Figure 13.

6.3. Computational efficiency

The rapidness of the filter bank algorithm is an important feature of the tetrolet transform
which makes it relevant for practical tasks. Our test was based on using a MacBook with a 2 GHz
Intel Core 2 Duo processor and 4 GB of RAM. The routines were tested in MATLAB (without
C routines), we have computed five decomposition levels for the ’pepper’ image as reference. We
have compared the computational efficiency of the decomposition and reconstruction of several
versions of the tetrolet transform with the contourlet and curvelet transform, see Table 4. Of
course, the directional contourlet and curvelet transforms achieve shorter computational time, but
note that these transforms are non-adaptive. Considering the computation times in Table 4, we
should also keep in mind that the fast computation of contourlet and curvelet transform is based
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Figure 13: Comparison of modified tetrolet transforms. (a) Input, (b) Tetrolet, PSNR 29.17 dB, E = 0.56, (c)
Tetrolet 16, PSNR 28.44 dB, E = 0.32, (d) Tetrolet rel, PSNR 28.91 dB, E = 0.25, (e) Tetrolet edge, PSNR 28.94
dB, E = 0.32, (f) Tetrolet 16 rel edge, PSNR 28.24 dB, E = 0.14.
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on the usage of C++ programms while our tetrolet transform only uses MATLAB features. For
adaptive methods, the measured CPU time of the tetrolet transform is exceeding fast. For an
image of 256× 256 the decomposition needs only a single second. The rapidness of our filter bank
is based on Remark 3.1, where the tetrolet transform is interpreted as a Haar wavelet transform
with locally permuted pixels. Other adaptive schemes like wedgelets or bandelets are much more
expensive, see [7].

Decomposition Reconstruction
image size 256 × 256 512 × 512 256 × 256 512 × 512

Tetrolet 1.0212 4.0259 0.4451 2.0324
Tetrolet 16 0.6592 2.6735 0.4125 1.7821
Tetrolet rel 1.1419 4.5773 0.4302 1.8668
Tetrolet edge 1.8096 5.5622 0.4150 1.8373
Tetrolet 16 rel edge 0.6548 2.8035 0.4188 1.8457
Contourlets 0.1536 0.4689 0.1539 0.4782
Curvelets 0.3490 1.9876 0.3741 1.5079

Table 4: Comparison of directional wavelet transforms and modified tetrolet transforms regarding computation time
(in sec).

The inverse tetrolet transform does not depend on the different modifications, thus the com-
putation time of the reconstruction filter bank algorithm is similar for all tetrolet versions. In
constrast, the decomposition time varies, because there the adaptivity comes into play. Notice
that the reduction of the number of admissible tetromino tiling to only 16 configurations (’Tetrolet
16’) almost halves the computation time.

7. Conclusion

In this paper, we have proposed a geometric adaptive transform which is especially designed
for sparse image representation. The basis functions have tetromino support and are able to adapt
different directions in images. The Haar-type tetrolets produce a fast filter bank algorithm which
offers good approximation results even for natural images.

In a further paper [12], we have shown that we can improve the tetrolet approximation quality
by a suitable post-processing step which increases the regularity of the piecewise constant approx-
imation.

A natural question is the application of the tetrolet transform to image denoising. As shown
in Section 4, our tetrolet system forms a basis and not a frame, and hence, it is non-redundant.
For sparse image representation non-redundancy is desirable, while for image denoising redundant
information is helpful. Therefore the tetrolet transform is not very effective in denoising application.
A second reason is the small support of the tetrolets, which leads to a small filtermask of length
four. But in image denoising an averaging over more than four image pixels would be advantageous.

However, in order to apply the tetrolet transform in image denoising, one may combine the
tetrolet transform with a pre-processing scheme which is suitable for denoising. Such a hybrid
method seems to be promising.
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