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Abstract. In order to get an efficient representation of images which contain
orientated edges we construct a directional wavelet basis for L

2(R2). The
wavelets basis consists of Haar wavelets with compact support on triangles.
In comparison with the classical wavelet transform our functions offer two
more directions (diagonal directions). Applying our simple wavelet system to
image denoising and approximation we observe suprisingly good results.
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1. Introduction

Traditional wavelets are not very effective in dealing with images that contain
orientated discontinuities (edges). To achieve a more efficient representation one
has to use basis elements with much higher directional sensitivity. In recent years
several approaches like curvelets [2], contourlets [3], and shearlets [5] have been
studied providing essentially optimal approximation properties for images that are
piecewise smooth and have discontinuities along C2-curves. While curvelets and
shearlets have compact support in frequency domain, in [8] we have constructed
directional wavelet frames generated by functions with compact support in time
domain. As in [7], our Haar wavelet constructions can be seen as special composite
dilation wavelets [6], being based on a generalized multiresolution analysis (MRA)
associated with a dilation matrix and a finite collection of ’shear’ matrices.
More precisely, the wavelet system in [8] is based on 16 mother scaling functions
that are characteristic functions on triangles in the square [−1, 1]2. Therefore the
non-separable wavelets are able to detect eight different directions. In this paper
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we consider a very similar multiwavelet construction, but based on 8 mother scal-
ing functions only. Thus, we get not only a wavelet frame but even an orthonormal
basis (ONB), which leads to fast and easy implementations. The price we have to
pay is the loss of 4 directions. But we will see that the wavelet basis with four
orientations gives good results in application. Our construction corresponds with
that in [7] but it has been developed independently. While the main construction
is similar an essential difference is the usage of another dilation matrix. Instead of
the Quincunx matrix we use the isotropic dilation matrix A = 2I.
The paper is organized as follows. Firstly, we construct with a geometrical ap-
proach the scaling functions and directional ONB wavelets with compact support
on triangles. In the second part of this paper we apply our basis functions to im-
age processing. We will see that the simple and fast implementation leads to quite
good results in denoising and approximation of images.

2. Construction of Haar-like scaling functions and corresponding
wavelets

We consider the domain Ω := [− 1
2 , 1

2 ]2 and divide it into 8 triangles with the same
area, see Figure 1(a). We want to introduce a vector of characteristic functions on
these 8 triangles. Let the first non-separable scaling function φ0 be a characteristic
function on the triangle

U0 = conv{
(0
0

)

,
(1/2
1/2

)

,
( 0
1/2

)

} := {x ∈ R2 : 0 ! x2 ! 1
2 , 0 ! x1 ! x2},

i.e.,
φ0(x) = φ0(x1, x2) := χU0

(x1, x2) = χ[0,1](
x1

x2
) · χ[0, 1

2
](x2).

Let us apply the group of isometries of the square,

B := {Bi : i = 0, . . . , 7} =
{

±
(

1 0

0 1

)

,±
(

0 1

1 0

)

,±
(

0 −1

1 0

)

,±
(

1 0

0 −1

)}

.

Then, for i = 0, . . . , 7 we have Ui := {B−1
i x : x ∈ U0} = B−1

i U0, and we define the
further scaling functions φi by

φi(x) := φ0(Bix) = χU0
(Bix) = χB−1

i U0
(x) = χUi

(x),

i = 0, . . . , 7. We consider now the sequence of spaces {Vj}j∈Z given by

Vj := closL2(R2)span{φi,j,k : i = 0, . . . , 7; k ∈ Z
2}

with
φi,j,k(x) := 2j+1

√
2 φ0(Bi(2

jx − k)), i = 0, . . . , 7, k ∈ Z
2,

where the factor 2j+1
√

2 normalizes the scaling functions such that
〈φi,j,k, φi′,j′,k′〉 = δi,i′δj,j′δk,k′ . Note that these functions can be understood as
scaling functions with composite dilations (see [6, 10]). It is obvious that by con-
struction {Vj}j∈Z forms a stationary MRA of L2(R2), that can also be interpreted
as a so-called ONB AB-MRA with A = 2I and B ∈ B as introduced in [6, 10].
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Figure 1. Scaling functions. (a) level V0, (b) refinements of U0.

Particularly, the scaling functions satisfy refinement equations. Using a vector no-
tation Φ := (φ0, . . . , φ7)T the two-scale equation is given for every i = 0, . . . , 7,
j ∈ Z, and k ∈ Z2 by

Φ(x) = 2
∑

k∈Z2

M0
k Φ(2x − k), x ∈ R

2,

where M0
k are 8 × 8-matrices containing only the entries 0 or 1/2. For instance,

the two-scale relation of φ0 at the level j = 0 is given by

φ0(x) = φ0(2x) + φ2(2x −
(0
1

)

) + φ3(2x −
(0
1

)

) + φ5(2x −
(1
1

)

)

=
1

4
√

2

(

φ0,1,(0

0)
(x) + φ2,1,(0

1)
(x) + φ3,1,(0

1)
(x) + φ5,1,(1

1)
(x)

)

,

see Figure 1(b). Now, we define multiwavelet vectors Ψl := (ψl
0, . . . , ψ

l
7)

T of mul-
tiplicity 8 by

Ψl(x) = 2
∑

k∈Z2

M l
k Φ(2x − k), x ∈ R

2, l = 1, 2, 3, (2.1)

where the wavelet mask matrices M l
k contain entries equal to 0, 1/2 and −1/2.

Again we restrict ourselves to i = 0, where we get the wavelets

ψ1
0 :=

1

4
√

2

(

φ0,1,(0

0)
+ φ2,1,(0

1)
− φ3,1,(0

1)
− φ5,1,(1

1)

)

,

ψ2
0 :=

1

4
√

2

(

φ0,1,(0

0)
− φ2,1,(0

1)
+ φ3,1,(0

1)
− φ5,1,(1

1)

)

,

ψ3
0 :=

1

4
√

2

(

φ0,1,(0

0)
− φ2,1,(0

1)
− φ3,1,(0

1)
+ φ5,1,(1

1)

)

,

according to Figure 2. Note, that it is possible to choose other coefficients in
M l

k instead of 1/2 and −1/2, but Roşca has shown in [11] that these wavelets
are optimal with respect to image compression. More precisely, using a wavelet
shrinkage to get an image approximation f̃ for an image f our wavelets lead to a
minimal approximation error ‖f − f̃‖.
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Figure 2. Wavelets.

Analogously to the scaling functions, the non-separable, directional wavelets can
be represented as rotated resp. reflected versions of ψl

0 for every i = 0, . . . , 7, j ∈ Z

and k ∈ Z2 through

ψl
i,j,k := 2j+1

√
2 ψl

0(Bi(2
j · −k)), l = 1, 2, 3.

Thus, we have for j ∈ Z the wavelet spaces

Wj := closL2(R2)span{ψl
i,j,k : l = 1, 2, 3; i = 0, . . . , 7; k ∈ Z

2}.

Due to the refinement equation (2.1) we have Wj ⊂ Vj+1. Reconstruction formulas
can now be derived as follows,

φ0,j+1,2k =
1

2

(

φ0,j,k + ψ1
0,j,k + ψ2

0,j,k + ψ3
0,j,k

)

,

φ0,j+1,2k−(1

0)
=

1

2

(

φ6,j,k + ψ1
6,j,k − ψ2

6,j,k − ψ3
6,j,k

)

,

φ0,j+1,2k−(0

1)
=

1

2

(

φ3,j,k − ψ1
3,j,k + ψ2

3,j,k − ψ3
3,j,k

)

,

φ0,j+1,2k−(1

1)
=

1

2

(

φ5,j,k − ψ1
5,j,k − ψ2

5,j,k + ψ3
5,j,k

)

.

The reconstruction formulas for the rotated and reflected functions follow analo-
gously. Hence, we indeed have

Vj ⊕ Wj = Vj+1,

where the sum is orthogonal because the wavelet functions ψl
i,j,k, l = 1, 2, 3, possess

obviously the same compact support as the corresponding scaling functions φi,j,k

for all i, j, k. Thus, the entire system of directional wavelets

{2j+1
√

2 ψl
i(2

j · −k) : i = 0, . . . , 7, j ∈ Z, k ∈ Z
2, l = 1, 2, 3} (2.2)

generates an ONB for L2(R2), i.e.
⊕

j∈Z
Wj = L2(R2). Alternatively, one can also

show the ONB property by arguments in the Fourier domain using the unitarity
of the corresponding modulation matrix [1, Theorem 4.11] as well as the unitarity
of the polyphase matrix [9].
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3. Applications to image processing

In this section, we use our directional Haar wavelets on triangulations for denoising
and approximation of images. Both methods are based on an efficient multiscale
decomposition of images and a suitable wavelet shrinkage. Using our directional
wavelet basis (2.2) we can represent an arbitrary function f ∈ L2(R2) by f =
∑

i,j,k cl
i,j,k ψl

i,j,k, where cl
i,j,k = 〈f, ψl

i,j,k〉 for i = 0, . . . , 7, j ∈ Z, k ∈ Z2, and
l = 1, 2, 3. Most of the information of the function f is carried by a small number
of significantly large coefficients. These coefficients are typically concentrated near
discontinuities of f . Therefore we get a good non-linear approximation fλ of f by
reconstructing from coefficients cl

i,j,k above some threshold λ

fλ =
∑

|cl
i,j,k

|!λ

cl
i,j,k ψl

i,j,k.

The approximation error ‖f − fλ‖ measures the quality of the approximation.
Let now a := (ai,j)

N−1
i,j=0 be a discrete image with N × N pixels. Its corresponding

’L2-version’ can be understood as

f(x1, x2) =
N−1
∑

k1=0

N−1
∑

k2=0

ak1,k2
· χ[0,1)2(x1 − k1, x2 − k2) =

∑

k∈J

ak · χ[0,1)2(x − k),

where χ[0,1)2 denotes the characteristic function on [0, 1)2 and J := {0, . . . , N−1}2.
Here, we assume that N = 2j0 with a fixed j0 ∈ N.
In order to compute the multilevel representation of the image f from the fine
to coarse scales, we propose as starting point for the decomposition algorithm an
orthogonal projection f−1 of the image f into the space V−1,

f−1(x) =
∑

k∈J1

cT
k

√
2 Φ(

1

2
x − k), (3.1)

preferring the vector notation with ck := 〈f,
√

2 Φ(1
2 · −k)〉 ∈ R8 and J1 :=

{0, . . . , N
2 − 1}2. In particular, the coefficient vectors are given by

ck := 〈f,
√

2 Φ(
1

2
· −k)〉 =

∑

l∈J

√
2 al 〈χ[0,1)2(x − l),Φ(

1

2
· −k)〉,

where we can simply compute

〈χ[0,1)2(x − l),Φ(
1

2
· −k)〉 =

∫

[0,1)2
Φ(

y + l

2
− k) dy

=



























1
2 (1, 1, 0, 0, 0, 0, 0, 0), l = 2k
1
2 (0, 0, 1, 1, 0, 0, 0, 0), l = 2k +

(

0
1

)

1
2 (0, 0, 0, 0, 1, 1, 0, 0), l = 2k +

(

1
1

)

1
2 (0, 0, 0, 0, 0, 0, 1, 1), l = 2k +

(

1
0

)

0, elsewhere

.
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Thus, the coefficient vector ck in (3.1) is given by the pixels ak of the image,

cT
k =

1√
2

(a2k, a2k, a2k+(0

1)
, a2k+(0

1)
, a2k+(1

1)
, a2k+(1

1)
, a2k+(1

0)
, a2k+(1

0)
). (3.2)

Having the projection f−1 ∈ V−1 we continue in a natural manner applying the
filter bank algorithm, see [8] for details. According to our above remarks we com-
pletely decompose f−1 into wavelet coefficients and reconstruct it after a suitable
shrinkage.

3.1. Image denoising

The coefficient vector in (3.2) contains eight entries which come from four pixel
values. This double information is advantageous in image denoising. We consider
a Gaussian noise with standard deviation σ = 15 that is added to the 256 × 256
synthetic image shown in Figure 3(a). We apply the directional Haar wavelet filter
bank for decomposing the image. For the global hard-thresholding we choose the
shrinkage parameter λ = σ

√

log(N2)/2, where N2 denotes the number of pixels.
The complete decomposition of the image is given for j = 7. In comparison with
the classical Haar filter (3(c)) we obtain good denoising results (see 3(d)) because
the directional edges of the geometrical figures are well detected.

3.2. Image approximation

We decompose the image completely in its wavelet coefficients. Again, we use
wavelet shrinkage with global hard-thresholding to get a sparse image represen-
tation. Here we choose the threshold λ such that only the five percent largest
wavelet coefficients remain. In Figure 4 the approximations with 3277 coefficients
of the 256× 256 ’Elaine’ detail image are displayed, comparing the classical Haar
and Daubechies wavelet filter bank with our directional Haar filter bank. There
are two reasons for the comparative low PSNR value. Firstly, there exists double
redundancy (what is not desirable regarding sparse representation), and secondly,
our Haar-type wavelets are not continuous.
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Figure 3. Denoising. (a) Original image, (b) noisy image, PSNR
24.58, (c) classical Haar, PSNR 30.31, (d) directional Haar, PSNR
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