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Abstract

In this paper we present a new, simple, global method to derive invertible integer-to-
integer mappings from given linear mappings F:R™— R™ If Fis given by F( )= H,x
and H, is an invertible matrix, then one can always find a suitable factor a such that the
condition [—1, 1) C off,((%, 1]") is satisfied. An invertible mapping F' : Z" — Z" can
now simply be defined by F/(x) = rd (H,x), and obviously, this nonlinear integer mapping
is close to the linear mapping of". We apply this idea in order to derive a new invertible
integer DCT-II transform of radix-2 length and new integer wavelet algorithms. It turns

out, that the expansion factors « can be chosen very small.
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1 Introduction

The discrete cosine transform of type II (DCT-II) as well as biorthogonal wavelet trans-
forms have found a wide range of applications in signal processing, especially in image
compression. But for lossless coding, all of the transform coefficient bits must be coded
to ensure perfect reconstruction of the original signal. Thus, if the input data consist of
integer vectors or integer matrices, it is highly desirable to be able to characterize the
output again with integers. In other words, one is interested in invertible transforms,
which map integers to integers and well approximate their linear counterparts.

Such transforms are called integer transforms, or more precisely, integer-to integer trans-
forms. These integer transforms are not fundamentally integer in nature. They can be
based on floating point arithmetic or fixed point arithmetic (involving only integer addi-
tions, integer multiplications and binary shifts) in conjunction with rounding operations.

Integer wavelet transforms are usually based on the lifting realization of a linear wavelet
transform (see e.g. [1, 2, 4, 6, 12, 15]) and rounding off after each lifting step. Earlier
approaches like the S-transform [25] and the S + P transform [27] can be seen as special
cases of the lifting scheme approach. Alternative methods for constructing reversible
integer wavelet transforms are based on the overlapping rounding transform [14] or use
ladder networks with IIR filters [17].

Most biorthogonal wavelet filter banks use (after appropriate scaling) only filter coeffi-
cients which are dyadic rationals. These filter banks are especially suitable for fixed-point
arithmetic. However, also filters with irrational coefficients (like Daubechies orthogonal
filters) may lead to integer transforms, either using floating point arithmetic in the lifting
steps and rounding off (see [4]) or using fixed point arithmetic after rounding of filter
coefficients to dyadic rationals.

The performance of integer wavelet transforms has been compared to their conventional
counterparts for lossy compression in a number of experiments (see [1, 2]). But up to now,
no exact comparisons with the linear wavelet transform (in terms of error estimates for the
coefficients) are known. Clearly, since each lifting step further causes the approximation
error to increase, transforms with fewer lifting steps tend to perform better. An important
source of error is caused by rounding the intermediate results to integers.

Integer DCT algorithms are usually based on a factorization of the (scaled) cosine matrix
C!linto a product of simple matrices (containing only integers or dyadic rationals) and so-
called lifting matrices, whose diagonal elements are 1, and only one nondiagonal element
in nonzero. Then, applying the lifting technique (similarly as in the wavelet case) and
rounding off, the reversible integer DCT is derived (see e.g. [7, 16, 23]). Analogously, also
integer DFT transforms can be found [20].

For fixed-point arithmetic DCT transforms, the real entries in the lifting matrices are
replaced by suitable dyadic rationals, thereby reducing the arithmetical complexity of
the corresponding algorithms (see e.g. [5, 7, 8, 16, 18, 21, 31]). A statistical approach
to find optimal approximants for the real entries in the lifting matrices using the mean
square error minimization is proposed in [7, 18]. Observe, that in different papers on
integer DCT, the lifting technique is used without roundoff, resulting in a vector of dyadic
rationals instead of integers (see e.g. [8, 18, 21, 31]). These are in fact no integer-to integer
transforms that we have in mind.



For integer transforms still working in floating point arithmetic, the arithmetical com-
plexity is comparable with those of their underlying linear transforms (see e.g. [23]).

For detailed analysis of the error, when the exact DCT-II transform is compared with
integer DCT algorithms (based on floating point arithmetic), we refer to [23]. Replacing
the floating point arithmetic by fixed point arithmetic (rounding the cosine values ap-
propriately), one can obtain similarly small worst case errors, if the range for the input
vectors is limited (see [24]).

In [13], a general approach for deriving reversible integer mappings from given invertible
transforms is presented. The idea can be described as follows. First, the transformation
matrix is factorized into triangular matrices, where only integers occur in the diagonals.
Then a generalized lifting method and rounding off (N-point reversible transform, see
also [16]) is applied in order to obtain the integer transform.

In this paper we want to present a new global approach to derive integer transforms from
given linear transforms. The main idea can be seen as a generalization of the expansion
factor method in [23] (see also [4]). For a linear transform ' : R” — R™ given by
F(X) = H,x, where H, € R"*" is an invertible matrix, one can find an invertible integer
transform F': Z"™ — Z"™ approximating I3 by

F(x)=rd(H,x),
if H, satisfies the expansion condition [, )" C H, ((—%, %]"). But usually, the trans-
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form matrix H, does not satisfy this condition. In this case one can blow up the matrix
H,, with a suitable expansion factor o, > 1 such that o, [,,((—1,1]") completely covers

the unit cube [—%, )", Then, an invertible integer transform is simply given by
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F(x) = rd (o, H,X).

This nonlinear integer transform is clearly very close to the exact (scaled) transform
o, H,x.

In Section 2, we describe the approach for arbitrary invertible linear mappings.

In Section 3, we apply the idea in order to derive a new integer DCT-II algorithm. It
appears, that we just need to apply a usual fast DCT-II algorithm to the input data to
compute a, C!x, where a, is a relatively small constant depending on the DCT length
n. Afterwards, we just round each component of the resulting vector to the next integer.
In Section 4, we apply the approach to the periodic biorthogonal wavelet transform
through L levels. Again, we obtain a simple integer wavelet transform by using the
fast wavelet transform with a scaling factor oy, and rounding off. The invertibility is kept
if ay, is chosen suitably. It turns out the oy, only depends on the number of levels L but
not on the length of the input vector n. The method is described for various examples of
biorthogonal filter banks.

The proposed integer transform has two advantages. Firstly, the fast algorithms being
already implemented for the DCT-II and for wavelet transforms can be directly applied.
Secondly, the difference between the integer transform and the exact (scaled) linear trans-
form is exactly controlled.

Observe, that the lifting method can be applied as before in order to obtain a fast algo-
rithm for the wavelet transform, but the rounding off of intermediate results is dropped.
Further, one can work in fixed-point arithmetic (by appropriate scaling and/or approx-
imating of coefficients by dyadic rationals. Still, the resulting integer transform will be
very close to the corresponding linear mapping.



2 Integer transforms from linear transforms

Let n > 2 be a given integer. Let H,, € R™*" be an invertible matrix and let F:R" > R"
be the corresponding linear mapping

F(x):= H,x, x = (2;)"2 € R™

If the input vector x is in Z", we look for a nonlinear, invertible transform F': Z" — 7",
such that £ is well approximated by F'. More precisely, we want to find F' in a way that
the error

e(x) := I'(x) — F(x)

is controlled and remains to be small in each component.

The global method, which we want to propose to solve this problem, can be seen as an
extension of the integer transform with expansion factors given in [23].

We use the following notations. For a € R let

la] :=max{k < a; k€ Z}, rd(a):=]a+1/2], {a}:=a—rd(a)e€[-33).

We apply these operations to vectors a = (ag,...,a,_1)7 € R" componentwisely, i.e.
rd (a) := (rd (ao),...,rd (a,_1))T € Z"™ and so on.
Further, let [, (=1, 3]") := {H,r: r € (—3, 3]"} the image of (—3, 1]” under the linear

mapping Ia generated by H,.
Theorem 2.1 Let H, € R™"*™ be an invertible matriz satisfying the expansion condition

(=3 2" € U (Hal(=3, 3]") + k) (2.1)

and let I be given by F(X) = H,x. Then, a nonlinear transform F : Z" — 7" approzi-
mating I can be found as follows:
For arbitrary fired x € Z" choose a vector ky € Z™ such that {H,x} € H,((—3, 5]") +kx,
and define

F(x):=1d (H,x) + kx.

Then the nonlinear mapping F' is invertible, and we obtain

Moreover, the error estimates

. 1/2 )
1E(x) = F(x)]|2 < (;0(% + I(kx)j|2)> s ) = F(x)]le < Og?san%l(% + [ (kx)il)

hold, where ky = ((kx);)"Z; -

J

Proof. The expansion condition (2.1) ensures, that for arbitrary x € Z” there exists (at

least) one vector kyx € Z" and a vector r € (—1, 1]" with

{H,x} = H,r + ky.
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Now, putting F(x) :=rd (H,x) + kx, we find

F(x)=rd(H,x)+ kx =rd (H,x)+ {H,x} — H,r = H,(x — ).

Hence,

rd (H7'F(x))=rd (H;' Hy(x—1)) =rd (x — 1) = x
since r € (—%, %]” and x € Z", and the mapping F' is invertible. The error estimates
directly follow from the definition of F'. a

The vector kyx in Theorem 2.1 may be not uniquely determined. Considering the error
estimates, we are naturally interested in vectors ky with small norm.

If an invertible matrix does not satisfy the expansion condition (2.1) then one can apply an
expansion factor a > 0 such that a H,, (instead of H,) satisfies the expansion condition.
Since H,((—2%, 3]*) is an n-dimensional parallelepiped with volume [det H,|, a suitable
expansion factor o can always be found.

We are especially interested in trigonometric transforms and in wavelet transforms, where
the transform matrices are orthogonal or they are invertible and have a small matrix norm.
Especially, orthogonal matrices do not satisfy the expansion condition (2.1) and need to
be multiplied with a suitable expansion factor. Further, in order to find a simple nonlinear
mapping, we would like to have the same vector k = ky for all x. Since H,((—%, 3)) is
an symmetric area around zero, k should be the zero vector.

Applying Theorem 2.1, we can restate our problem as follows: For a given matrix (trigono-
metric matrix or wavelet matrix) H, generating the linear mapping Foixe H,x, we

want to find a minimal expansion factor o > 0, such that

For a given matrix A = (ai7j)Z;:10 € R™" let

n—1
[Allco == max Y ag|
0<i<n—1 £
J=0
be the maximum row sum norm of A. Then we have

Theorem 2.2 Let H, € R™ " be an invertible matriz and F : R® — R" with F(X) =
H,x the linear mapping generated by H,. Then the nonlinear mapping F : 7" — 7.",

F(x):=1rd(a H, x)
with o > «a,, := ||H Y|« is an invertible mapping, and we have
x=1d (£ H;' F(x)).

Moreover, it follows )
[l F(x) = F(x) |0 <

1
27

i.e., I is close to the linear mapping .



Proof. By Theorem 2.1 we only need to show that o H,, satisfies the expansion condition

[_%7 %)” C OéHn((_%7 %]n)

This condition is equivalent with

HrC (-39 Vre[-L )

n

For a > || H!|| this relation is obviously satisfied and the assertions follow from Theorem
2.1. O

In the next sections, we want to solve the problem for the trigonometric matrix
and for matrices corresponding to periodic biorthogonal wavelet transforms, and derive
simple nonlinear transforms F' mapping integers to integers and keeping all features of
the corresponding linear mapping F.

3 Integer DCT-II of radix-2 length

Let n > 2 be a given integer. We consider the cosine matrices of type Il with order n,

n—1

(3.1)

n 2n

o= /2 <€n(]) cos ]%(2k+1)7r>

. 9
J,k=0

where ¢,(0) := v/2/2 and ¢,(j) := 1 for j € {1,...,n—1}. Observe that C'!” is orthogonal,
i.e., (CIH=1 = (CINHT (see e.g. [30], pp. 13-14). The discrete cosine transform of type
IT (DCT-II) is a linear mapping generated by CII. For n := 2!, ¢+ € N, there are fast
algorithms for this transform with less than 2nlogn arithmetical operations (see e.g.
[19, 30, 22]). We want to present a simple nonlinear invertible mapping F' : Z" — Z"
which approximates the DCT-II suitably.

Theorem 3.1 Let n:=2', ¢t € N, be given. Then the nonlinear mapping F : Z" — 7",
F(x) =rd(a C'Tx)
with

is invertible, and we have

x=1d (L(CHT F(x)).

Moreover, comparing X := a Cllx and y = F(x) componentwisely, we find
|y]‘—§}]‘|<%, j:(),...,n—l,

i.e., in all components, the nonlinear mapping F' rounds the exact (scaled) DCT-value to
the next integer.

Proof. We show that
I(CZD) ™ oo = IC oo = J= + = (cot () — 1).
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With [(CIH)T] we denote the the cosine matrix, where each component is replaced by its
absolute value.

Observe that for the matrix [(CI1)T|, the sum of all entries in each row is the same, i.e.,
with 1:=(1,...,1)T € Z" we have

n—1 .
=,/ (i +5 o —) 1 (5.2
]:

This can be seen as follows. In the k-th row (k € {0,...,n — 1}) of |(CI)T| we have the

J(2k+1)7
2n

J€40,....,n—1} thereis an jo € {0,...,n — 1}, namely jo := (2k + 1)j mod n, such that

values \/% cos l, 7=0,...,n— 1. Let k be fixed for a moment. Then for every

1(2k+1
SBkIE] _ o i

| cos T

Moreover, if there were two integers ji, j2 € {0,...,n — 1} with (2k + 1)j; modn =
(2k 4 1)j2 mod n, then (2k 4+ 1)(j1 — j2) = 0modn implies j; — j2 = 0 since (2k + 1) and
n = 2' have no common divisor greater than 1.

Hence, by
cos & gin (=0T

n—1
T 4 n 1 o
E COS 2n sin - - Q(COt 4n 1)
]‘:1 4n

it follows that

n—1 .
al(CIT [l = 32 (i +3 cos —) Sty (otso1). O
]:

From Theorem 3.1 we obtain the following constants for «,, for radix-2 length DCT-II

algorithms.
ay ~ 1.414213562, oy A 1.923879532

og ~ 2.641845989, o6~ 3.671595601
sz~ 5143712179, oes A2 7.238780613
o128~ 10.21167688, ogse ~ 14.42332168
o512~ 20.38476090, o024~ 28.81926938

In particular, the constants «,, satisfy «a, < \/_t = /n, i.e., we can replace the normal-
ization factor \/2/n in the definition of C,, by v/2 and apply a fast DCT algorithm to this
scaled DCT. Based on the above observations we propose the following Algorithm for an
integer DCT-II.

Algorithm 3.2 [Integer DCT-II algorithm)]
Input: x € Z™ where n := 2"

1. Compute % := a Clx by a fast DCT-II algorithm, where o > a,, is chosen suitably.
For example, take o := \/n.

2. Compute y := rd(%).

Output: y € Z" approximating aC!’x.



The above algorithm simply uses the well-known fast DCT-algorithms, being implemented
already. For example, for n = 8§ one can just take the factor o = 2/2 > a,, and use a fast
algorithm for 2¢/2 C{’x, which can be done e.g. by 11 multiplications and 29 additions
(see [19]).

The inverse algorithm is equivalently simple.

Algorithm 3.3 [Inverse Integer DCT-II algorithm]
Input: y € Z" where n := 2.

1. Compute y := é (CINTy by a fast inverse DCT-II algorithm, where « is chosen as
in Algorithm 3.2.

2. Compute x :=1d (y) .
Output:  x € Z" original input vector of Algorithm 3.2.

Remarks.

1. If one wants to use fixed point arithmetic, the irrational coefficients used in the fast
DCT-IT algorithm need to be replaced by dyadic rationals (see e.g. [29]). For example,
using the fast split-radix algorithm for the DCT-II of length n = 8 proposed in [22] and
lifting, the values

bis 37 bis s L s 37 T L
\/5, tan 53, tan 53, tan {5, tan g, sin {5, sin 3¢, sin g, sin

need to be approximated (see e.g. [24]). For the obtained transformation matrix €'/,
Theorem 2.2 can be applied as before.

2. For the two-dimensional DCT-II, which is frequently used in image compression, one
can use the row-column method. In this way one obtains results which are very close
to the usual method of image compression, where the entries of the resulting matrix
X =8CIT X (CIN7T are rounded to the next integers.

3. Using Theorem 2.2, integer algorithms can be derived for other trigonometric trans-
forms analogously.

4 Integer wavelet algorithms

Biorthogonal wavelets are given by two dual sets of coefficients, the analysis filters {/y},
{gr} and the synthesis filters {hr}, {gx}. We assume that these sequences are real and
have finite length. Let us further assume that the low-pass filters satisfy

Ehk:a, E;Lk = %, (41)
ke ke

where @ € R, 0 > F is a normalization constant. For given low-pass filters i = {h;} and
h = {hy}, the filters ¢ = {gx } and § = {g} are given by

gr:=a (—l)k_lih—ka Ok = % (_1)k_1h1—k (4'2)

with «’ € R. For a = /2, a’ = 1, we say that the filters h, &, g, and § are normalized. For
applications, one often likes to have filter coefficients which are dyadic rationals in order
to use fixed-point arithmetic. For a lot of biorthogonal wavelet filter banks this can be
obtained indeed by taking dyadic numbers for ¢ and @’ (see the examples in Subsection

4.2).



4.1 Periodic wavelet transform

One of the simplest techniques for handling finite-extent signals is the periodic extension.
Note that the periodic extension transform can be viewed as a linear transform on R".
For implementations, it is conceptually simpler to apply a fixed wavelet filter bank to the
periodically extended signal. This perspective is taken in the applications (see Subsection
4.2).

For the theoretical treatment, in this subsection we shall use the other perspective, namely
the periodization of the filters, which are then applied to a finite length signal.

Let us consider the periodic wavelet transform. Let Ny € N and j9 € N be fixed and let
n = 2Ny and n; :=27n for j =0,...,j. We form the periodic filters

hj,k = Z hk-l—n]la ilj,k = Z iLk-I-n]lv (4-3)

l:—oo l:—OO
o0 o0

9ik = E Gk+njly  Gik = E Gh+n;jl-
l:—oo l:—OO

If n; is greater than the length of the filters h, h, then these series contain only one
nontrivial summand. Let

n;—1mn,;/2—1 ad 7 n;—1m,;/2-1
Hy = (hiean)img ™™ Hy = () g™
n;—1m,;/2-1 X ~ n;—1mn,;/2—1
Gio= (gjr—2k)p im0 S G = (=25 ) h=o !
be the corresponding matrices, such that
T o AT
HiH: +G;G; =1,

where I,,; denotes the identity matrix of length n;.
For a given vector s € R", the periodic discrete wavelet transform (or wavelet decomposi-

tion) of s through L levels (L < jo) is given by wl := ((s1)T, (d1)T, (dL-H)T, ... (d1)T)T,
where we compute iteratively

s™t .= g g™ dm .= Gt 5™, m=20,...,L—1.

Here the vectors s”™ and d™ have length n,, = 27"n for m = 1,..., L. The matrix
multiplications are equivalent with computing the (periodic) convolutions

Nm—1 Nm—1

m+1 __ m m—+1 __ m
S - E hm,r—?k Sy dk - E Im,r—2k Sy
r=0 r=0

— +1 . [ mtl\nm—1 +1 . m+1\nm—1
for k=0,...,n,_y — 1, where s”%! := (57" )i, A7 = (A7)

The periodic inverse discrete wavelet transform (or wavelet reconstruction) is based on
s = H, s"t + G, d"t

or equivalently,

m+1 ~ m+1 _
mr—2k Sk —I'gm,r—Qk dk 5 r = 07---7nm — L

%CIJS
i
]
o>



We define the direct sum of two matrices A and B as a block matrix A@ B := diag (A, B).

Further, let
HT)
M, = ( o] € RW*,
J G}“

Then the matrix representation of the periodic discrete wavelet transform has the form
wh = (M @ Loy V(Mp—o @ Ly ) oo (My @ Ly ) Mo s°.

That is, setting for fixed n := 29Ny and L € {1,...,j0},
Hop:=Mp1 &Ly, Y Mpo® Lien, ). (M1 & L—p,) Mo,

the periodic discrete wavelet transform through L levels can be written as the linear
mapping
wh = H, 1, s.

As for the DCT, we now use Theorem 2.2 to obtain an integer wavelet transform. Hence
we need to compute ay, 1, := ||H}||. Observe that

Hop =My (M7 & L) (MY & L, )

Wlth Mj_l = (]:]]‘, é]‘)T.

The algorithms for the integer wavelet transform now work formally as before.

Algorithm 4.1 [Integer wavelet algorithm]
Input: s° € Z" where n = Ny 27,
L (number of levels for wavelet decomposition)

1. Compute w’

suitably.

:= a H, 1, s by the fast wavelet transform, where o > «,, 1, is chosen

2. Compute the integer approximation y := rd (w’).

Output: y € Z" approximating w’.

Algorithm 4.2 [Inverse Integer wavelet algorithm]
Input: y € Z" where where n = Ny 27,
L (number of levels for wavelet reconstruction, as in Algorithm 4.1)

1. Compute v := é H~}y by the inverse fast wavelet transform, where « is chosen as
in Algorithm 4.1.

2. Put s° :=rd (v).

Output: s € Z" original input vector of Algorithm 4.1.
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For the realization of the fast wavelet transform (and the inverse wavelet transform) we
can apply periodic extension of the signal and the lifting method (see Subsection 4.2).
In order to determine «v, 1, let us consider the structure of Hn_}: in more detail. Obviously,

Hn_& == (ﬁo, Go) Let
= ZiLlZlv 9(z) = Zngl
le le
be the z-transforms of the synthesis filters & and §. We introduce the filters i*, §* by

()= b b=, 5ME) = h(2) 3.

Further, let ib(l), ds be the n-periodizations of iL(l) and gy as in (4.3). Then a comparison of
matrix entries leads to

Hn_% = (1{]01{]17 ]:[0(?17 é0) = (]:[57 é(l)aéo),

where
I n—1,n/4—1 ~ ~ n—1,n/4—1
Hl' (h0r 4k)rk:0/ ) Gl (QOr 4k>rk 0/ .

Generally, with

h"(z) = ZL(Z) iL(Zz) . ;L(sz), g (z) = iL(Z) . %(22’"_1)@(22’") (4.4)

form=1,...,L — 1, and their n-periodizations A%, G (defined analogously as in (4.3))
we find
Hyp=(H7', GEYL L Gy, Go),
where
[:[(gn = (Ngjr—zm+1k)f,;ig_m_ln_lv ng (QOr 2m+1k)?k1g—m e

We obtain the following

Theorem 4.3 Let finite biorthogonal pairs of analysis filters h, g and synthesis filters
h, G be given. Let the filters k™ and §™ be defined as in (4.4) and n := 290 Ny. Then, the
periodic integer wavelet transform through L (L < jo) levels F : 2™ — 7",

F(s%) :=rd(a H, 1 %),
with the expansion factor

-1
a> o, = LHOO = ma2XL . (Z |hoLk41.2L |+ Z Z |§S,k+2v+1r|>

v=0 r¢g

is invertible, and we have

s =rd(LH ] F(s%)).

Proof. Considering the matrix |H_}|, which contains only the absolute values of the
entries of H_}, we see that the sum of the entries in the k-th row, 0 <k <n —1,is

Z |h0 2Ly | + Z Z |go ovtly

v=0 re

11



Further, the structure of Hn_}: implies that the sum of entries in the (k + j2L)-th row
coincides with the sum in the k-th row for j € Z and 0 < k + 52 < n — 1. Hence, we
find o, 1 = ||H LHOO and the assertions follow from Theorem 2.2. a

Remarks.
1. Observe that ho epols = h£+21L and §g . gvt1, = Gfygun, for v =10,.... L — 1 if we
GL—1

assume that n is greater than the number of nonzero coefficients in hL Vand in g
Indeed, one simply observes that the constant «y given by

ag, = ma2XL X (Z |h£_|_21L | + ZZ |gk+2l’+1 ) ) (4.5)

v=0 re

either coincides with «,, 1 in Theorem 4.3 (if n is great enough) or may be (slightly)
greater than o, 1. For the computation of «j,, we need not to consider the periodizations
of the filter. In the examples in Subsection 3.2 we will compute the constants «y, which
are independent of n.

2. Simple periodization of a signal often leads to large jumps at the splice points between
periods and may introduce additional high frequency content. In order to moderate these
effects, the symmetric extension is used frequently. With this technique, a signal is
extended, so that it is both, symmetric and periodic. There are different ways to extend
a signal symmetrically (see e.g. [3, 28]). Symmetric extension is usually employed with
biorthogonal filter banks which preserve symmetry, in order to be nonexpansive. Observe
that the kind of extension must be chosen carefully depending on the filter bank in order
to obtain symmetric subbands again.

Taking a suitable symmetric extension of %, all observations in this section can be applied
as before.

4.2 Application to biorthogonal filter banks

In this subsection we will apply the method to different orthogonal and biorthogonal
filter banks. In particular, we shall compute the expansion factors «j needed for the
integer wavelet transformation through L levels. Further, we study the relevance of the
normalization factors a and @’ in (4.1) and (4.2).

For biorthogonal filter banks we shall consider the normalized case a = /2, a’ = 1, the
downward normalization a« = 1, «’ = 1 taken in all decomposition levels analogously
as in [4], and the alternating normalization, where we take the normalization factors
a = 2,a = 2 in odd decomposition levels and a = 1, a’ = % in even decomposition
levels. Observe, that for different normalizations we obtain different expansion factors
ag. Assume that the transformation matrix H, ; is computed from the filters in the
normalized case. Then the downward normalization corresponds to the transformation

matrix
(V2L & (WD, & (VDL 6 (VO 8 L, 5 VL) H

with n; := 27n, i.e., compared with the linear normalized wavelet transform through L
levels, s* will be multiplied with ap, (\/5)_]: and d7 with 2 o, (\/5) ~7 in the integer wavelet
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algorithm before rounding off. This downward normalization may be especially interesting
for the application to signals with small content in the high frequency subbands.
Alternating normalization corresponds to the transformation matrix

<[7’LL_1 @ \/§[nL_1 @ [nL_2 @ @ [n2 @ \/_[n1> 7’LL
for odd L and
<\/§ [nL—l S, [nL—l S, \/§[nL_2 . D [n2 S, \/_[n1> n,L

for even L. Hence, compared with the normalized linear wavelet transform through L
levels, d’ will be multiplied with az /2 for odd j and with ay, for even j in the integer
wavelet algorithm, and s” has the same factor as d*. Naturally, the constants oy are
much smaller for alternating normalization then for downward normalization. In our
examples, the alternating and the downward normalization lead to filter coefficients which
are dyadic rationals in each step, such that we can apply fixed point arithmetic, while in
the normalized case the computations involve irrational filter coefficients.

In the examples below, we want to show, that again the lifting method can be used to
perform the fast wavelet transform, but compared with the the known integer wavelet
transforms based on lifting steps and rounding off, the intermediate rounding operations
are dropped, such that we stay to be very close to the linear wavelet transform (scaled by
the expansion factor ay).

Biorthogonal (2,2) interpolation transform.

We want to explain the procedure extensively for the biorthogonal (2,2) mterpolatmg
transform (see e.g. [9]). The normalized coefficients of this filter bank (¢ = /2, a’ = 1)
are given by the analysis filters

h_g = g/_, g1 = %, ho = GSﬁ, hl = 28ﬁ7 hg = _Tﬁ (46)
go = = gii= 22 g= 22

and the synthesis filters follow from (4.2).
First we consider the periodic discrete wavelet transform through 1 level for this normal-
ized filters and obtain by Theorem 4.3 that

o = max{|ho| + [gol + |Ga], [ho1| + [R] + [goa ] + 1gu] + |3s]} = 22,

For the computation of a; H,, ; s° (normalized case) we use the lifting method:
Compute

0

1 . 1 0 _
dk i <S(2k—|—1 mod n 2(82km0d n + S(Zk—l—?)mod n)) ’ k= 07 sy

|
w RO W

Sllc = gkmod n + §(d(1k—1)mod n/2 + dllcmod n/2)7 k= Yt

and put y!' := rd(wh)T = rd((s")7, (dl)T)T E 7", where s := (Sk)z/% Ldli= (dl)n/2_1.

The inverse integer wavelet transform o H Ly! with oy = % can be computed by
Sgk = Sllcmod nf2 1(d11§ 1mod n/2 + dllcmod n/2)7 k= 07 Tt % 1
SQk-I—l =2 dllcmod n/2 + ( S$9kmod n + S%k—l—?mod n) k= 07 . 9 % L.
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After rounding off we obtain the original vector s® = rd(3 §°).

If one wants avoid the division by 3, one can take o = 2v/2 instead of o = %\/5 (enlarging
the resulting coefficients further).

For the downward normalization a = 1, ¢’ = 1, the filter coefficients A in (4.6) are divided
by v/2 and the g;, are multiplied with v/2. In this case we find the expansion factor oy = 2,
and

1. 0 1/.0 0 _
dk =y <S(2k—|—1)mod n 2(82km0d n + S(Zk—l—?)mod n)) ) k= 07 R

Sllc = Sgkmod n + i(d(lk—l)mod n/2 + dllcmod n/2)7 k= 07 ERI)

!
21,
followed by rounding off. Here, the coefficients in s' and d' are multiplied with v/2 and
2v/2, respectively (compared with the linear normalized transform). Observe, that this
procedure is similar to the integer lifting transform in [4], formula (4.1), but not the same.
Here, we have no rounding off after the first step and have to pay for being closer to the
linear transform with the expansion factor ay = 2.

Alternating normalization leads for I, = 1 in this example to the same algorithm as the
normalized case.

Let us now consider the periodic discrete wavelet transform through L levels with L > 2.
1. Normalized case. In the case of normalized filters (a = V2, d = 1), we find for L =2
with

;Ll(Z) = iL(Z)iL(ZQ):
J'(z) = h(=)a(=*) =

the expansion factor

(272 +2:72 4327 44 4 32 4 227 + 27)
(—5 -2 —2—4+424+1222 +42° — 42" — 325 — 225 - 27)

23 22

0=

sl

az = max {3 |hjul + 13l + |Gl = 1+ V2
jE{0,1,2,3} 42
For I > 2, the expansion factors «j are given numerically in Table 1. One obtains now
the following algorithm. Let s® € Z", n; := n/2/ and choose a > ay,.

For j from 1 to L do

i V2 [ -l _1(d-1 j—1 - o
dk T2 <S(2k—|—1)mod nj_1 2(8(2k—l—2)mod nj—1 + S2kmod nj_1)> ’ k= 07 cees Ny 17
Jo_ J-1 171 i — )
St T 2 S$9kmod nj_1 + f(d(k—l)mod ny + dkmod nj)7 k= 07 ceey g — 17

and put y' :==rda ((sH)T, (dH)T, ... (dHT)T.

Compared with the normalized linear wavelet transform, the coefficients in s”, and d’
and are multiplied with & > «. Unfortunately, the above algorithm is not appropriate
for fixed-point arithmetic, and rational coefficients can not be obtained just by a suitable
choice of a.. The inverse algorithm works as before, going back step by step and rounding
off at last.

2. Downward normalization. We consider the downward normalization (¢ = 1, ' = 1)
used in [4]. For L = 2 this corresponds to the transformation matrix (%[n/4 @ Lna @

ﬂ[n/z) H, ;. In this case we obtain the expansion factor oy, = % For L > 2 the exact
constants are given in Table 1. The algorithm reads for given s € Z" and o > ay:

14



For 5 from 1 to L do

Y o | 1.1 -1 _ L
dk T S(21€—|—1)m0d nj_1 2(8(2k—l—2)m0d nj_1 + S2kmod n]—1)7 k= 07 RN 17
Y L 1771 7 _ )
St = S9kmod nj—1 + 4(d(k—1)mod n; + dkmod nj)7 k= 07 ceey g — 17

and put y' :==rda ((sH)T, (dH)T, ... (dHT)T.
Comparing with the normalized linear wavelet transform, we find in the case L. = 2 the
factors % for s?, % for d? and % for d! .

3. Alternating normalization. The alternating normalization is also suitable for fixed-
point arithmetic. In the first transformation level, we take the normalization factors a =
2, =2in (4.1) and (4.2), i.e., the filter coefficients hy and g in (4.6) are multiplied with
V2. In the second transformation level, we use the normalization factors a = 1, ¢’ = %
in (4.1) and (4.2). In this case, we obtain for L = 2 the expansion factor ay = 2. For
L > 2 the exact expansion factors ay are in Table 1. For even L = 2[, & > ay, and given
s’ € Z" the algorithm reads as follows:

For j from 1 to [ do

2j-1  _ 2j-2 C1,.2j-2 252 _ o
dk T 7(2k+1)mod noj_o 2(8(2k—l—2)m0d n2j—2 + S9kmod n2]_2)7 k= 07 sy 251 17
27—1 L 27—2 1 27—1 27—1 _ )
Sp T 2Skaod n2j—2 + f(d(k—l)mod ngj_1 + dkmod 712]_1)7 k= gy 251 — 17
25 1 {251 17 251 2j-1 _ o
dk T2 <S(2k—|—1)mod ngj_1 2(8(2k—l—2)m0d ngj_1 + S2kmod n2j—1 )> ’ k= RERERLP 17
25 21 17,727 25 _ )
Sg ‘= Sokmod noj—1 + §(d(k—1)mod nojy + dkmod 712])7 k= ooy oy — 17

and put wt :=rda ((s¥)T, (d9)T, ..., (dHT)T.

For odd L the procedure follows analogously.

Compared with the normalized linear wavelet transform, in the case . = 2 the coefficients
in d' are multiplied with 2v/2, and the coefficients in d? and s? with 2. In the table, we
give also the size n for which n (divisible by 2¥) is greater that the filter length of hL—1
and g!.

level L | normalized case | alternating case downward case | n

aj, aj, aj,
1 2.1213203 1.5 2.0 n>6
2 2.4142136 2.0 2.5 n>12
3 2.7980970 2.125 3.25 n > 24
4 3.0070436 2.4375 3.875 n > 48
5 3.1768883 2.484375 4.5625 n > 96
6 3.2891741 2.6484375 5.21875 n > 192
7 3.3713343 2.669921875 5.890625 n > 384
8 3.4284538 2.7529296875 6.5546875 n > 768
9 3.4691886 2.763427734375 7.222656625 n > 1536
10 3.4978704 2.8050537109375 | 7.888671875 n > 3072

Table 1. Constants oy, for biorthogonal (2,2) interpolatory filter bank
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Let us consider some further examples shortly.

Biorthogonal (4, 2) interpolating wavelet transform (see [4, 9]).
With the coeflicients

R
hy = =52 ha =0, hy = L2,
g-a = %79—33:079—23:—%79—1 3:%7903:—%791 =0, g2 := %2

we obtain the constants oy, in Table 2. Further, n in the last column of the table indicates
for which n the filter lengths of A*~! and ¢*~! are smaller than n. For downward nor-
malization, the lifting scheme is analogous to that in [4], formula (4.2). For alternating

normalization we find in the even decomposition step

27—1
+ S(216—4)m0d 712]_1)

).

25 .1 . 25-1 1 251
dk -2 S(21€—l)mod ngj_1 + 32 <(S(2k—|—2)mod ngj_1
27—1 27—1
_9(82kmod ngj_1 + S(Qk 2)mod npj_1
27 o 25-1 27 27
S = S2kmod noj—1 —I_ (dkmod n2; + d(k—|—1)mod TLQJ)
both for £ =10,...,ny; — 1.

In the odd decomposition step a multiplication with 2 is necessary. In the downward case

and the alternating case the constants ay in Table 2 are exact for L < 3.

level L | normalized case | alternating case downward case n
o, ay, ar

1 2.2980970 1.625 2.25 n > 10
2 2.6446823 2.23046875 2.8359375 n > 24
3 3.0987516 2.37420654296875 3.7467041015625 n > 56
4 3.3467352 2.751277923583984375 | 4.49417877197265625 | n > 112
5 3.5481054 2.803365826606750488 | 5.32304525375366211 | n > 224
6 3.6813222 3.000839076993624496 | 6.11113217473030090 | n > 448
7 3.7787692 3.024440605426207185 | 6.91959074698388577 | n > 896
8 3.8948449 3.124281642769346945 | 7.71785897866357118 | n > 1792
9 3.9288674 3.135778127831599704 | 8.52122122266882798 | n > 3584
10 3.9288674 3.185836284569944610 | 9.32203617065579238 | n > 7168

Table 2. Constants oy, for the biorthogonal (4,2) interpolatory transform.

Biorthogonal (4,4) interpolating wavelet transform (see [9]).
With the normalized coefficients

E\){;,h5._0h4§: 512,h3.— 39
3482 _ 92 632 V2
512 hy = 32 7 hy = 512 ° hs = 327
%7 g-3 ‘= 07 g-2 ‘= _%7 g-1 = 16\2/_790 =

182
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we obtain the constants ay in Table 3 by numerical evaluation. For downward and alter-
nating normalizations, the constants ay, are exact for L < 3. For downward normalization
with ¢ = 1 and ' = 1 the lifting scheme is analogous to [4], formula (4.5). For alternating

normalization we find with « = 1, o’ = % in the even decomposition step,
2 1 .2j-1 1 271 271
dk T2 S(21€—l)mod ngj_1 + 32 <(S(2k—|—2)mod ngj_1 + S(216—4)m0d 712]_1)
201 271
9(82km0d ngj_1 + S(Zk—?)mod noj— 1)) ’
27 L 25-1 27 27 27 27
Sp = S2kmod noj—1 —I_ 16 <9(dkmod N2 + d(k—|—1)mod nQJ) (d(k—I—Z)mod n2; + d(k—l)mod n2; )> ’

both for k£ =0,...,ny; — 1. In the odd decomposition step, again a multiplication with 2
1S necessary.

level L | normalized case | alternating case | downward case n

ary, ary, ary,
1 2.2980970 1.625 2.25 n > 14
2 2.6446823 2.25 2.875 n > 32
3 3.0986707 2.3741493225 3.74658966064453125 | n > 64
4 3.3465789 2.7511579990 4.49393892288208008 | n > 128
5 3.5479124 2.8032060782 5.32267948985099792 | n > 256
6 3.6810877 3.0006566071 6.11064214445650578 | n > 512
7 3.7785195 3.0242370584 6.91897304530721158 | n > 1024
8 3.8462564 3.1240677539 7.71711759639583761 | n > 2048
9 3.8945669 3.1355537412 8.52035180566917916 | n > 4096
10 3.9285788 3.1856066737 9.32104323659601164 | n > 8192

Table 3. Constants oy, for the biorthogonal (4,4) interpolatory transform.

Biorthogonal (2 + 2, 2) transform (see [4], formula (4.6)). For the normalized analysis
filter coefficients

g6 = —%, g-5 = %7 g_4 = %7 g_3 = ()7 g_o 1= —%7 g—1 1= %7
go ‘= _%7 g1 = 0792 = %7 gs = %794 = _£

we give the constants «, in Table 4. For downward normalization with ¢ = 1 and ¢’ =1
the lifting scheme is analogous to [4], formula (4.6), where o = 3 = § and v = 0. For
alternating normalization we find in the even decomposition step:

Compute all for £ =0,...,ng; — 1,

(1) 1 25-1 1 27—1 27—1
dk ) S(21€—|—1)m0d ngj_1 o (S(2k+2)mod noj—1 +s S9kmod noj— 1)
27 . 2j-1 (1 ) (1)
S ‘= S9kmod noj—1 —I_ (dkmod n2; + d(k 1)mod 712])7
23 (1) 1 25 2 2j
dk - d(k 1)mod ng; —I_ 32 < k—2)mod ngy; S(k—l)mod n2; S kmod n2; +s (k—l—l)mod ngy | °
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level L | normalized case | alternating case downward case n

ar, Qay, ar,
1 2.2760000 1.609375 2.21875 n>12
2 2.5807785 2.16656494140625 2.7374267578125 n > 20
3 2.9904653 2.2890557050704956 | 3.56502103805542 | n > 48
4 3.2135462 2.6327996477484703 | 4.24502405524254 | n > 112
5 3.3946980 2.6766678149942891 | 4.9991885156487 n > 224
6 3.5145021 2.8563973457742691 | 5.7162510034054 n > 448
7 3.6021457 2.8761328739465390 | 6.4518820033799 n > 896
8 3.6630830 2.9669840192730337 | 7.1782317553346 n > 1792
9 3.7065384 2.9765761919642828 | 7.9092225548303 n > 3584
10 3.7371365 3.0221252555286941 | 8.6378929721518 n > 7168

Table 4. Constants «ay, for the biorthogonal (2 + 2,2) transform.

Daubechies D4-transform (see [10]).
Let the normalized coefficients be given by

— 143 — 3+V3 V3 — 1=V3
ho.—4\/§,h —4\/§,h —4\/5,h.—4\/5
and g_p 1= h3, g-1 1= —h2, go := h1,g1 := —ho. By orthonormality, we have that g = ¢

and h = h. For the periodic discrete wavelet transform through 1 level we find

a1 = ho + ha + go + |go] = ZE2 ~ 1.673032607,

One possible algorithm for the first decomposition level based on lifting is then of the
form:

Compute

A = S med v — 2 kmod - k=0,...,2 -1,
SS) ::Sgkmodn—l_%dggn)qodn/Q? k=0,...,5 -1,
dgf) = dgod nj2 ?Skmod w2 T +(V3-v2)(V2-1) SEllc)—l)mod n/2 k=0,....,5 -1,
sp= qu)qod n/2 \f/‘l Ei:—l)mod n/2 k=0,....5 -1,
di =+ (VB=V2I(VZ = D) st od e k=0,....5-1

and put y!' :=rda, (s, d")7.

Note that this lifting method produces the normalized wavelet transform through one
level for the D4 filter bank. Another method (see [4], Example 4.3), where the analysis
filters h and ¢ are multiplied with the factors \/\_/"5'1 and \/\5’/%1 (e, a=+3+1,d =1),is
given by:

Compute
1 n
dgc) = S?Qk—l—l)modn _\/gsgkmod no k = 07“‘75 _17
1 — 1 n
Sllc = Sgkmodn—l_@dgcn)qod n/2+ \/54 2dgk)—l)mod n/2’ kzO""75_17
(1) _ n
dllc T dkmod n/2—|—8(1k—|—1)m0d n/2’ - 07"'75 _17
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and put y' :=rda (st, d")7T.

Here, one needs to choose @ > «; with

on 1= X5 (ot ) + X (ol +lg2]) = 5 4+ V3.

Application of this last algorithm for I > 1 leads to a special "upward normalization”,

where, compared with the normalized linear wavelet transform, d’ is multiplied with

or, (%)j_l (%) and s” with o (%)L For L > 1 the numerically evaluated con-

stants ay, can be found in Table 5.

level L | normalized case | upward case | n

ar ar
1 1.6730326 2.232050807 | n >4
2 2.1646385 3.293231463 > 12
3 2.5178072 3.419382798 > 24
4 2.7694977 3.401977285 | n > 48
5 2.9481636 3.381568411 | n > 96
6 3.0747447 3.369532292 | n > 192
7 3.1643379 3.362061609 | n > 384
8 3.2277205 3.357187157 | n > 768
9 3.2725496 3.354487871 | n > 1536
10 3.3042523 3.353066838 | n > 3072

Table 5. Constants oy for Daubechies D4 filter bank in the normalized case and the
special "upward normalization” with a = 1 4+ /3 and ¢’ = v/3 — 1 in each level.
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