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Abstract. Considering the set of closed shift-invariant subspaces V;
(j € Z) of L*(R) generated by a refinable function vector ®, we give
necessary and sufficient conditions for the refinement mask of ® ensur-
ing controlled approximation order m. In particular, algebraic poly-
nomials can be exactly reproduced in Vj if and only if the refinement
mask of ® can be factorized. The results are illustrated by B—splines
with multiple knots.

¢1 Introduction

The idea of considering a ladder of imbedded subspaces V; of a Hilbert
space for approximating functions has extensively been used in many ap-
plications. In the case of multiresolution analysis of L?(IR), the subspaces
V; are usually generated by a single function ¢ € L*(R),

V; := closz2 span {¢(27 - —1) : I € Z}.

In order to ensure the condition V; C Vj41 (j € Z), we need a refinable
scaling function, i.e., ¢ has to satisfy a functional equation of the type

6=> mo2 —1) (phezel. (1.1)

leZ

A lot of papers have been delt with solutions of (1.1) and with their proper-
ties. Functions satisfying (1.1) not only arise in the context of multiresolu-
tion analysis and wavelets. They also play an important role in subdivision
schemes. By convenient choice of the refinement mask

P .= Zpl e~
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one is able to influence properties of ¢ like regularity or support and, at the
same time, properties of the generated set of subspaces V; of L?(R). The
close connection between the refinement mask of ¢ and the structure of the
shift-invariant subspaces generated by ¢ is the clue for many successful
applications of the theory of multiresolution and corresponding wavelets.
For example, V| provides controlled approximation order m if and only if
the refinement mask P factorizes

Plu) = (#)m S(u) (1.2)

with an appropriate chosen 27-periodic function S (cf. [2-4]).

In the last time, also the generalized multiresolution analysis of multici-
plicity v (r € IN) of L?(IR) has been considered in more detail (cf. [5-8]).
Now the set of imbedded closed subspaces V; of L?(R) is generated by a
function vector ® := (¢,)"_} with ¢, € L%(R) (v =0,...,r — 1),

V; := clospe span{¢,(2/ - =1): 1€ Z, v =0,...,r — 1}.

The vector of scaling functions ® has to be refinable, i.e., ® has to satisfy
a functional equation of the type

=) P ®2--1) (PeR™),
l€Z

where the sequences of entries of coefficient matrices P; (I € Z) are in [2.
The purpose of this paper is an investigation of the structure of the refine-

ment mask '
P.= ZPZ e (1.3)
lEZ

if the corresponding shift—invariant subspace Vj is assumed to provide con-
trolled approximation order m. It turns out that, under some mild condi-
tions on @, algebraic polynomials of degree < m can be exactly reproduced
in Vy if and only if P can be factorized in a certain manner. This result is
a natural generalization of the result (1.2) for a single scaling function.

In Section 2, we will introduce some notations and present the main theo-
rem on the factorization of the refinement mask. The example of B—splines
with multiple knots is used to illustrate this result in Section 3.

§2 Factorization of the refinement mask

Let us introduce some notations. Consider the Hilbert space L? = L?(R) of
all square integrable functions on R. The Fourier transform of f € L?(RR)
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is defined by f := ffooo f(x)e~*® dz. Further, let BV (R) be the set of all
functions which are of bounded variation over IR and normalized by

f(=o0) = f(-004+0)=0,  f(oc)= f(oo—0)=0,

f(2) = 3(fe+0) + f(z ~0)) (~00 <z < o0)

If f € L?*(R) N BV(R), then the Poisson Summation Formula

S e ™ =% flut2nj) (ueR)

I€Z JEZ

is satisfied. For a measurable function f on IR and m € IN let

1l = ( / F(@)2 de)'/?,
Flmz = 1Dl [ fllmz = S 1D .
k=0

Here and in the following, D denotes the differential operator D := d/d -.
Let WJ"(R) be the usual Sobolev space with the norm || - ||, 2. The 1?~
norm of a sequence ¢ := {c;};¢z is defined by ||c[|;2 1= (3,7 lar|?)'/2.

The set B(®) :={¢,(-—1): l€Z, v=0,...,r—1} forms a Riesz basis of
V0 if there exist constants 0 < A < B < oo with

r—1 r—1 r—1
AY el < 1YY cidu(- = DIz < B el
v=0 v=0

v=0 l€Z
for any sequences ¢, = {c, 1 }iez (v =0,...,7 —1).
We say that Vj, generated by the function vector ®, provides controlled

approximation order m if for each f € Wi*(R) there are sequences ¢! =

{C’,f,l}lez (v=20,...,7 —1;h > 0) such that for a constant ¢ independent
of h the following three conditions are satisfied:

r—1
(1) If =R 52 e gu(-/h=Dll2 < ch™ |flm,2.
v=01€eZ

(2) We have
leglie <cllflz (v=0,...,7—1).

(3) There is a constant ¢ independent of h such that for [ € Z
dist (Ilh,suppf) >6 = ;=0 (v=0,...,7—1).

Now we want to generalize the known result (1.2) for the principal
space Vj and consider the connections between the refinement mask (1.3)
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and the structure of the finitely generated closed subspace Vj of L%(IR).
First, let us define the (r X r)-matrix C := (C’j,k);;clzo by the vector y =
(yo,.--,yr—1)T € R", y # 0. Here and in the following o denotes the zero
vector. Let jo := min{j; y; # 0} and j; := max{j; y; # 0}. Further, let
for all j with y; # 0 be d; := min{k > j,yx # 0}. Then for j, < ji, the
entries of C are defined for j,k =0,...,7r — 1 by

yj_l y; #0 and j =k,
1 y; =0 and j=k,
Cin(w):i=4q —y;° 9 #0 and d;=Fk, (2.1)
—e "/y;, Jj=s1 and k= jo,
0 otherwise.

For jo = j1, C is a diagonal matrix of the form

C(u) = diag(1,...,1,(1 —e™™)/yj,, 1,...,1). (2.2)
N—— ——
Jo r—1—jo

In particular, for 7 = 1 we have C(u) := (1 — e~**)/yo. Now we can show:

Theorem 2.1 Let m € IN be fixed, and let ® := (¢,)"_{ be a refinable
vector of functions ¢, € L?(R) N BV (R) satisfying the decay properties
|6, (x)| = O(Jz| "™ 17¢) (x — o0) for v =0,...,7 — 1 and € > 0. Further,
let B(®) form a Riesz basis of V. Then the following assertions are equiv-
alent:

(a) The finitely generated subspace Vi provides controlled approximation
order m.

(b) Algebraic polynomials of degree < m can be exactly reproduced in Vj.
(c) The refinement mask P of ® satisfies the following conditions: The
elements of P are (m — 1)—times continuously differentiable functions in
L3 _(R), and there are vectors y;,, € R"; ¥y, # o (k = 0,...,m — 1) such
that forn =0,...,m — 1 we have

NE

() )" i (0 P)(0) = 27 (5,7,

>
[l

0

. (2.3)
> (1) i R ) = o
k=0
(d) There are vectors Xg, . ..,%X,_1 € R" such that P factorizes
1

P(u) = — Cpu_1(2) ... Co(2u) S(u) Co(w) ! ... Cru_i(w)™t,  (2.4)

om
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where the (r x r)—-matrices Cy, are defined by xi, (k =0,...,m — 1) as in
(2.1)—(2.2) and S(u) is an (r x r)—matrix with (m — 1)—times continuously
differentiable entries in L2 _(R). In particular, for the determinant of P we

have o
1 —u
det P(u) = <+276> det S(u).

In order to prove Theorem 2.1, we extensively use the assertion that
a shift-invariant closed finitely generated subspace of L?(IR) provides con-
trolled approximation order m if and only if the generating function vector
® satisfies the Strang-Fix conditions of order m, i.e., there is a finitely
supported sequence of vectors {a;}icz such that f := >, ,af (- —1)
satisfies

~

F0O)#£0; D'f(2rl)=0 (1€Z\{0}n=0,...,m—1).

This equivalence is already shown in [9]. For a complete proof of Theorem
2.1 we refer to [11,12].
Note that the known results for the principle space Vy (cf. [2—4]) are ob-
tained from Theorem 2.1 in the special case r = 1. In particular, (2.3)
simplifies to
D"P(r)=0 (n=0,...,m—1),
P(0)=1.

Further, for » = 1, it follows from (d) that the refinement mask is of
the form (1.2) with S(0) = 1, where S is a 2m—periodic (m — 1)-times
continuously differentiable function.

It can be shown that the coefficient vectors y, € R" (k = 0,...,m — 1)
occuring in Theorem 2.1 (c) satisfy the equalities

lez

(cf. [11], Theorem 3.2).

3 Example: B—splines with multiple knots

We are going to illustrate the results of Theorem 2.1. Let r € IN and
m € INg be given integers. We consider equidistant knots with multiplicity
r, z; = [l/r] (I € Z), where |z] means the integer part of z € R. Let
NJ»" (v € Z) denote the cardinal B-splines of order m and defect r with
respect to the knots z,,...,x,4+m. For x, 4, > z,, we have the recursion
formulas

(@yim — )N (2) = (2 — 2,) NI (2) + (2y4m — ) N2V (2)
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and

(@4 tm = 2,) (DNJT) = m (NJ07 = N, (3.1)
For z, = z,4,, = 0, we define N]*" according to the distribution theory
by
Drfmflfué

r—1—v
where 6 denotes the Dirac distribution. Further, note that
N = NBT(-—1) (leZ).

m,r ,__
N =

Y

v+ir
For m > r, we have N»" € C™~""1(R). We put N := (N™")"_{ and
ﬁ:n := (N7»7)"—L In particular, we obtain
: : T
o7 (u)m—1 (fu)?
N = e 1 .
= (U ) wew

The spline functions N)""(- —1)(l € Z; v =0,...7 — 1) form a Riesz basis
of the spline space

Vo :=closg, span{N,""(-=1): l€ Z,v=0,...,r — 1}
(cf. [1]). It is well-known that Vj provides controlled approximation order

m. We want to compute the vectors x; and y, (k=0,...,7 — 1) occuring
in Theorem 2.1. First we observe the following recursion relation:

Lemma 3.1 Let r € IN be fixed. Then we have for m > 1

(iw) N, (1) = m Cr_1 (w) N,,,_1(u) (u € R) (3.2)

m

with C,,_1 defined by the vector of spline knots

Xm—1 = (xma ce axm—l—'r—l)T
as in (2.1)—(2.2).

Proof: Applying Fourier transform to formula (3.1), we find for v € R

(i) NI (u) = —— (NP1 () — NS ().

v+m v
Thus, by N/~ (u) = e~ NJ*~ 1" the assertion follows for m > r. For
m = r, the B—splines NJ*™ (v =0,...,m —1) coincide with the Bernstein
polynomials of degree m — 1 satisfying
DN"™ = m(N~bm — N2Y™) (v =0,...,m— 1)

with NJ*~"™ := §/m, N?~b™ .= §(- —1)/m and N*~Lm .= N7 B!
(v =1,...,m —1). Hence, by Fourier transform, the assertion is true for
m = r. Finally, for m < r, the proof follows analogously, observing that

N (u) = <(“‘)r_m_1,..., (i“)o,ﬁm(u))T. -

r—1 m m

Now the following recursion for the refinement mask P,, of N] can be
shown.



Factorization of refinement masks 7

Theorem 3.2 Let r € IN be fixed. Then for m > 1, the refinement mask
P,, of N, satisfies the recursion formula

P, (u) = % Cor1(2u) Pyy 1 (1) Cop 1 (w)

with C,,_, defined by X1 := (T, .-+, Tmyr_1)T asin (2.1)-(2.2) and

Py(u) := diag (2" 1,...,2%).

The proof of Theorem 3.2 is similar to that of Theorem 3.1 in [10].
Repeated application of Theorem 3.2 yields

1

P, (u)= om Cr_1(2u)...Co(2u) Py (u) Co(u) *...Cry(u)?

with Cj defined by the vector of spline knots Xz = (Tgi1,...,Thir)T
(k=0,...,m—1). Hence, the refinement mask factorizes in the form (2.4)
with S(u) := Py(u).

For the computation of the coefficient vectors y, (k = 0,...,m — 1)
we use the relation (2.5). Introducing the polynomial vector

Q(u) := (xm+v 1:[ (u— xu+V)) )

p=1 v=0

we have by [13], Theorem 4.21,

z" :Z(a?)TNTm(m—l) (n=0,...,m—1)

leZ

with
n!

a = (-1)" tm—1)! (D™ Q) (1)

=3 (3) v o))
k=0

Hence, for the coefficient vectors in Theorem 2.1 (c) it follows that

i im 2 = (-} =S (O™ 1QU0) (k=0 m— 1)
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