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Abstract� Considering the set of closed shift�invariant subspaces Vj

�j � ZZ� of L��lR� generated by a re�nable function vector �� we give
necessary and su�cient conditions for the re�nement mask of � ensur�
ing controlled approximation order m	 In particular� algebraic poly�
nomials can be exactly reproduced in V� if and only if the re�nement
mask of � can be factorized	 The results are illustrated by B�splines
with multiple knots	

x� Introduction

The idea of considering a ladder of imbedded subspaces Vj of a Hilbert
space for approximating functions has extensively been used in many ap�
plications� In the case of multiresolution analysis of L��lR�� the subspaces
Vj are usually generated by a single function � � L��lR��

Vj 	
 closL� span f���j � �l� 	 l � ZZg�

In order to ensure the condition Vj � Vj�� �j � ZZ�� we need a re�nable

scaling function� i�e�� � has to satisfy a functional equation of the type

� 

X
l�ZZ

pl ��� � �l� �fplgl�ZZ � l��� �����

A lot of papers have been delt with solutions of ����� and with their proper�
ties� Functions satisfying ����� not only arise in the context of multiresolu�
tion analysis and wavelets� They also play an important role in subdivision
schemes� By convenient choice of the re�nement mask

P 	

X
l�ZZ

pl e
�il�
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one is able to inuence properties of � like regularity or support and� at the
same time� properties of the generated set of subspaces Vj of L

��lR�� The
close connection between the re�nement mask of � and the structure of the
shift�invariant subspaces generated by � is the clue for many successful
applications of the theory of multiresolution and corresponding wavelets�
For example� V� provides controlled approximation order m if and only if
the re�nement mask P factorizes

P �u� 


�
� � e�iu

�

�m

S�u� �����

with an appropriate chosen ���periodic function S �cf� �������
In the last time� also the generalized multiresolution analysis of multici�

plicity r �r � lN� of L��lR� has been considered in more detail �cf� �������
Now the set of imbedded closed subspaces Vj of L

��lR� is generated by a
function vector � 	
 ����

r��
��� with �� � L��lR� �� 
 �� � � � � r � ���

Vj 	
 closL� span f����
j � �l� 	 l � ZZ� � 
 �� � � � � r � �g�

The vector of scaling functions � has to be re�nable� i�e�� � has to satisfy
a functional equation of the type

� 

X
l�ZZ

PPPl��� � �l� �PPPl � lR
r�r��

where the sequences of entries of coe�cient matrices PPPl �l � ZZ� are in l
��

The purpose of this paper is an investigation of the structure of the re�ne�
ment mask

PPP 	

X
l�ZZ

PPPl e
�il�� �����

if the corresponding shift�invariant subspace V� is assumed to provide con�
trolled approximation order m� It turns out that� under some mild condi�
tions on �� algebraic polynomials of degree � m can be exactly reproduced
in V� if and only if PPP can be factorized in a certain manner� This result is
a natural generalization of the result ����� for a single scaling function�
In Section �� we will introduce some notations and present the main theo�
rem on the factorization of the re�nement mask� The example of B�splines
with multiple knots is used to illustrate this result in Section ��

x� Factorization of the re�nement mask

Let us introduce some notations� Consider the Hilbert space L� 
 L��lR� of
all square integrable functions on lR� The Fourier transform of f � L��lR�
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is de�ned by �f 	

R
�

��
f�x�e�ix� dx� Further� let BV �lR� be the set of all

functions which are of bounded variation over lR and normalized by

f���� 
 f���� �� 
 �� f��� 
 f��� �� 
 ��

f�x� 

�

�
�f�x� �� � f�x� ��� ��� � x ����

If f � L��lR� �BV �lR�� then the Poisson Summation FormulaX
l�ZZ

f�l� e�iul 

X
j�ZZ

�f�u� ��j� �u � lR�

is satis�ed� For a measurable function f on lR and m � lN let

kfk� 	
 �

Z
�

��

jf�x�j� dx�����

jf jm�� 	
 kDmfk�� kfkm�� 	


mX
k��

kDkfk��

Here and in the following� D denotes the di�erential operator D 	
 d�d ��
Let Wm

� �lR� be the usual Sobolev space with the norm k � km��� The l
��

norm of a sequence ccc 	
 fclgl�ZZ is de�ned by kccckl� 	
 �
P

l�ZZ jclj
������

The set B��� 	
 f���� � l� 	 l � ZZ� � 
 �� � � � � r� �g forms a Riesz basis of
V� if there exist constants � � A � B �� with

A
r��X
���

kccc�k
�
l� � k

r��X
���

X
l�ZZ

c��l ���� � l�k�L� � B
r��X
���

kccc�k
�
l�

for any sequences ccc� 
 fc��lgl�ZZ �� 
 �� � � � � r � ���
We say that V�� generated by the function vector �� provides controlled
approximation order m if for each f � Wm

� �lR� there are sequences ccc
h
� 


fch��lgl�ZZ �� 
 �� � � � � r � ��h 	 �� such that for a constant c independent
of h the following three conditions are satis�ed	

��� kf � h����
r��P
���

P
l�ZZ

ch��l �����h� l�k� � c hm jf jm���

��� We have
kccch�kl� � c kfk� �� 
 �� � � � � r � ���

��� There is a constant 
 independent of h such that for l � ZZ

dist �lh� supp f� 	 
 	 ch��l 
 � �� 
 �� � � � � r � ���

Now we want to generalize the known result ����� for the principal
space V� and consider the connections between the re�nement mask �����
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and the structure of the �nitely generated closed subspace V� of L
��lR��

First� let us de�ne the �r 
 r��matrix CCC 	
 �Cj�k�
r��
j�k�� by the vector yyy 


�y�� � � � � yr���
T � lRr� yyy �
 ooo� Here and in the following ooo denotes the zero

vector� Let j� 	
 minfj� yj �
 �g and j� 	
 maxfj� yj �
 �g� Further� let
for all j with yj �
 � be dj 	
 minfk 	 j� yk �
 �g� Then for j� � j�� the
entries of CCC are de�ned for j� k 
 �� � � � � r � � by

Cj�k�u� 	


������
�����

y��j yj �
 � and j 
 k�
� yj 
 � and j 
 k�

�y��j yj �
 � and dj 
 k�

�e�iu�yj� j 
 j� and k 
 j��
� otherwise�

�����

For j� 
 j�� CCC is a diagonal matrix of the form

CCC�u� 
 diag��� � � � � �� 	z 

j�

� ��� e�iu��yj� � �� � � � � �� 	z 

r���j�

�� �����

In particular� for r 
 � we have CCC�u� 	
 ��� e�iu��y�� Now we can show	

Theorem ��� Let m � lN be �xed� and let � 	
 ����
r��
��� be a re�nable

vector of functions �� � L��lR� � BV �lR� satisfying the decay properties

j���x�j 
 O�jxj�m����� �x ��� for � 
 �� � � � � r � � and � 	 �� Further�
let B��� form a Riesz basis of V�� Then the following assertions are equiv�

alent�

�a� The �nitely generated subspace V� provides controlled approximation

order m�

�b� Algebraic polynomials of degree � m can be exactly reproduced in V��
�c� The re�nement mask PPP of � satis�es the following conditions� The

elements of PPP are �m � ���times continuously di�erentiable functions in

L����lR�� and there are vectors yyyk � lR
r� yyy� �
 ooo �k 
 �� � � � �m � �� such

that for n 
 �� � � � �m� � we have

nX
k��

�
n

k

�
�yyyk�

T ��i�k�n �Dn�kPPP���� 
 ��n �yyyn�
T�

nX
k��

�
n

k

�
�yyyk�

T ��i�k�n �Dn�kPPP���� 
 oooT�

�����

�d� There are vectors xxx�� � � � �xxxm�� � lR
r such that PPP factorizes

PPP�u� 

�

�m
CCCm����u� � � � CCC���u�SSS�u�CCC��u�

�� � � � CCCm���u�
��� �����
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where the �r 
 r��matrices CCCk are de�ned by xxxk �k 
 �� � � � �m � �� as in
����������� and SSS�u� is an �r
 r��matrix with �m� ���times continuously

di�erentiable entries in L����lR�� In particular� for the determinant of PPP we

have

det PPP�u� 


�
� � e�iu

�r

�m

det SSS�u��

In order to prove Theorem ���� we extensively use the assertion that
a shift�invariant closed �nitely generated subspace of L��lR� provides con�
trolled approximation order m if and only if the generating function vector
� satis�es the Strang�Fix conditions of order m� i�e�� there is a �nitely
supported sequence of vectors faaalgl�ZZ such that f 	


P
l�ZZ aaa

T
l ��� � l�

satis�es

�f��� �
 �� Dn �f���l� 
 � �l � ZZ n f�g� n 
 �� � � � �m� ���

This equivalence is already shown in ���� For a complete proof of Theorem
��� we refer to ��������
Note that the known results for the principle space V� �cf� ������ are ob�
tained from Theorem ��� in the special case r 
 �� In particular� �����
simpli�es to

DnP ��� 
 � �n 
 �� � � � �m� ���

P ��� 
 ��

Further� for r 
 �� it follows from �d� that the re�nement mask is of
the form ����� with S��� 
 �� where S is a ���periodic �m � ���times
continuously di�erentiable function�
It can be shown that the coe�cient vectors yyyk � lR

r �k 
 �� � � � �m � ��
occuring in Theorem ��� �c� satisfy the equalities

X
l�ZZ

�
nX

k��

�
n

k

�
ln�k yyyTk

�
��x� l� 
 xn �x � lR� n 
 �� � � � �m� �� �����

�cf� ����� Theorem �����

x� Example� B�splines with multiple knots

We are going to illustrate the results of Theorem ���� Let r � lN and
m � lN� be given integers� We consider equidistant knots with multiplicity
r� xl 	
 bl�rc �l � ZZ�� where bxc means the integer part of x � lR� Let
Nm�r
� �� � ZZ� denote the cardinal B�splines of order m and defect r with

respect to the knots x� � � � � � x��m� For x��m 	 x� � we have the recursion
formulas

�x��m � x��N
m�r
� �x� 
 �x� x��N

m���r
� �x� � �x��m � x�Nm���r

��� �x�
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and
�x��m � x�� �DN

m�r
� � 
 m �Nm���r

� �Nm���r
��� �� �����

For x� 
 x��m 
 �� we de�ne Nm�r
� according to the distribution theory

by

Nm�r
� 	


Dr�m����


r � �� �
�

where 
 denotes the Dirac distribution� Further� note that

Nm�r
��lr 
 Nm�r

� �� � l� �l � ZZ��

For m  r� we have Nm�r
� � Cm�r���lR�� We put NNNr

m 	
 �Nm�r
� �r����� and

�NNN
r

m 	
 �
�Nm�r
� �r������ In particular� we obtain

�NNN
r

��u� 	


�
�iu�r��

r � �
� � � � �

�iu��

�
� �

�T
�u � lR��

The spline functions Nm�r
� �� � l� �l � ZZ� � 
 �� � � � r� �� form a Riesz basis

of the spline space

V� 	
 closL�
span fNm�r

� �� � l� 	 l � ZZ� � 
 �� � � � � r � �g

�cf� ����� It is well�known that V� provides controlled approximation order
m� We want to compute the vectors xxxk and yyyk �k 
 �� � � � � r � �� occuring
in Theorem ���� First we observe the following recursion relation	

Lemma ��� Let r � lN be �xed� Then we have for m  �

�iu� �NNN
r

m�u� 
 mCCCm���u� �NNN
r

m���u� �u � lR� �����

with CCCm�� de�ned by the vector of spline knots

xxxm�� 	
 �xm� � � � � xm�r���
T

as in ������������

Proof� Applying Fourier transform to formula ������ we �nd for u � lR

�iu� �Nm�r
� �u� 


m

x��m � x�
� �Nm���r

� �u�� �Nm���r
��� �u���

Thus� by �Nm���r
r �u� 
 e�iu �Nm���r

� the assertion follows for m 	 r� For
m 
 r� the B�splines Nm�m

� �� 
 �� � � � �m� �� coincide with the Bernstein
polynomials of degree m� � satisfying

DNm�m
� 
 m�Nm���m

� �Nm���m
��� � �� 
 �� � � � �m� ��

with Nm���m
� 	
 
�m� Nm���m

m 	
 
�� � ���m and Nm���m
� 	
 Nm���m��

���

�� 
 �� � � � �m � ��� Hence� by Fourier transform� the assertion is true for
m 
 r� Finally� for m � r� the proof follows analogously� observing that

�NNN
r

m�u� 


�
�iu�r�m��

r � �
� � � � �

�iu��

m
� �NNN

m

m�u�

�T
�

Now the following recursion for the re�nement mask PPPm of NNNr
m can be

shown�
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Theorem ��� Let r � lN be �xed� Then for m  �� the re�nement mask

PPPm of NNN
r
m satis�es the recursion formula

PPPm�u� 

�

�
CCCm����u�PPPm���u�CCCm���u�

��

with CCCm�� de�ned by xxxm�� 	
 �xm� � � � � xm�r���
T as in ����������� and

PPP��u� 	
 diag ��
r��� � � � � ����

The proof of Theorem ��� is similar to that of Theorem ��� in �����
Repeated application of Theorem ��� yields

PPPm�u� 

�

�m
CCCm����u� � � �CCC���u�PPP��u�CCC��u�

�� � � �CCCm���u�
��

with CCCk de�ned by the vector of spline knots xxxk 	
 �xk��� � � � � xk�r�
T

�k 
 �� � � � �m���� Hence� the re�nement mask factorizes in the form �����
with SSS�u� 	
 PPP��u��

For the computation of the coe�cient vectors yyyk �k 
 �� � � � �m � ��
we use the relation ������ Introducing the polynomial vector

QQQ�u� 	


�
xm��

m��Y
���

�u� x����

�r��

���

�

we have by ����� Theorem �����

xn 

X
l�ZZ

�aaanl �
TNNNr

m�x� l� �n 
 �� � � � �m� ��

with

aaanl 
 ����
n n�

�m� ���
�Dm�n��QQQ���l�




nX
k��

�
n

k

�
ln�k ����k

k�

�m� ���
�Dm�k��QQQ�����

Hence� for the coe�cient vectors in Theorem ��� �c� it follows that

yyyk 	
 aaa
k
� 
 ����

k k�

�m� ���
�Dm�k��QQQ���� �k 
 �� � � � �m� ���
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