Fast and Numerically Stable Algorithms

for Discrete Cosine Transforms

GERLIND PLONKA AND MANFRED TASCHE

Abstract

In this paper, we derive fast and numerically stable algorithms for discrete cosine trans-
forms (DCT) of radix—2 length which are based on real factorizations of the corresponding
cosine matrices into products of sparse, (almost) orthogonal matrices of simple structure.
These algorithms are completely recursive, are simple to implement and use only permuta-
tions, scaling with v/2, butterfly operations, and plane rotations/rotation-reflections. Our
algorithms have low arithmetic costs which compare with known fast DCT algorithms.
Further, a detailed analysis of the roundoff errors for the presented DCT algorithms shows
their excellent numerical stability which outperforms a real fast DCT algorithm based on
polynomial arithmetic.

Mathematics Subject Classification 2000. 65T50, 65G50, 15A23.

Key words. Discrete cosine transform, fast algorithm, stable algorithm, fast cosine
transform, arithmetic cost, numerical stability, factorization of cosine matrix, direct sum
decomposition, sparse orthogonal matrix factors.

1 Introduction

Discrete trigonometric transforms are widely used in processing and compression of signals
and images (see [15]). Examples of such transforms are discrete cosine transforms (DCT)
and discrete sine transforms (DST) of types I — IV. These transforms are represented by
orthogonal cosine and sine matrices, respectively. Especially, the DCT-II and its inverse
DCT-III have been shown to be well applicable for image compression. The roots of
these transforms go back to trigonometric approximation in the eighteenth century (see
[9]). Discrete trigonometric transforms have also found important applications in numer-
ical Fourier methods, approximation via Chebyshev polynomials, quadrature methods of
Clenshaw—Curtis type, numerical solution of partial differential equations (fast Poisson
solvers), singular integral equations, and Toeplitz—plus—Hankel systems. In this paper, we
shall concentrate on the construction of real, fast, and recursive DCT algorithms having
excellent numerical stability in floating point arithmetic.

There is a close connection between fast DCT algorithms and factorizations of the cor-
responding transform matrix. Let () € R"*" be an orthogonal cosine matrix of large
radix—2 order n where radix-2 means n = 2° with some positive integer . Assume that
we know a factorization of (', into a product of sparse matrices

Co=MmY M9 1l<m<n, (1.1)
Then the transformed vector C,x with arbitrary x € R™ can be computed iteratively by

x(HD = M) (x(© = x)
for s = 0,...,m — 1 such that x(™ = C,x. Since all matrix factors in (1.1) are sparse,
the arithmetical cost of this method will be low such that the factorization (1.1) of C,
generates a fast DCT algorithm. For an algebraic approach to fast algorithms for discrete
trigonometric transforms we refer to [14].

An important result in [17] (see also [23]) says that a fast DCT algorithm possesses
an excellent numerical stability, if the algorithm is based on a factorization of), into
sparse, (almost) orthogonal matrices. Here a matrix is called almost orthogonal, if it is
orthogonal up to a positive factor. Therefore, in order to get real, fast, and numerically
stable DCT algorithms, one should be especially interested in a factorization (1.1) with
sparse, (almost) orthogonal matrix factors of simple structure.

We may distinguish the following two methods to obtain real, fast DCT algorithms:

1. Fast DCT algorithms via polynomial arithmetic: All components of C,x can be inter-
preted as values of one polynomial at n nodes. Reducing the degree of this polynomial by
divide—and—conquer technique, one can get a real fast DCT algorithm with low arithmeti-

cal cost (see [7, 8,19, 20, 14]). Efficient algorithms for DCT of radix—2 length n require
about 2n log, n flops. Such a DCT algorithm generates a factorization (1.1) of €, with
sparse, non—orthogonal matrix factors Més), i.e., the factorization (1.1) does not preserve

the orthogonality of C), (see e.g. [17, 2, 23]). This fact leads to an inferior numerical
stability of these DCT algorithms [17, 2, 23].

2. Fast DCT algorithms via direct matriz factorization: Using simple properties of trigono-
metric functions, one may find direct factorizations of the transform matrix C,, into a
product of real, sparse matrices. The trigonometric approximation algorithm of Runge

(see [16], pp. 211 — 218) can be considered as a first example of this approach. Results on
direct matrix factorizations of ', into orthogonal, sparse matrices are due to Chen et al.
[4] and Wang [25, 26]. An “orthogonal” factorization of the cosine matrix of type Il and
of order 8 was given by Loeffler et al. [13] and is used even today in JPEG standard (cf.
Example 2.9). Improving the earlier results in [4, 25], Schreiber has given a constructive
proof of a factorization of some cosine matrices of order n = 2" into a product of sparse,
orthogonal matrices in [17]. The orthogonal matrix factorizations in [4, 25, 17] are not
completely recursive and hence lead not to simple recursive algorithms. However taking
the results of Wang [25, 26] together, one finds an orthogonal factorization of the cosine
matrix of type II and order n = 2 yielding a recursive DCT-II algorithm (see Section 2).
Note that various direct factorizations of €, use non—orthogonal matrix factors (see [15],
pp. 53-62, [3, 11, 12, 18]). Many results were published without proofs.

In this paper, we shall derive fast, completely recursive DCT algorithms of radix—2 length.
As usual, all algorithms use divide—and—conquer techniques. Further, we shall present the
complete real factorizations of the cosine/sine matrices into products of sparse, (almost)
orthogonal matrices. Here a matrix factor is said to be sparse if each row and column
contains at most 2 nonzero entries. The DCT algorithms require only permutations, scal-
ing (with v/2), butterfly operations, and plane rotations/rotation-reflections with small
rotation angles. These matrix factorizations can also be used for an iterative (instead of
recursive) implementation of the algorithms. Finally, a comprehensive analysis of the ma-
trix factorization will show that the presented algorithms possess an excellent numerical
stability. Using the Wilkinson model for binary floating point arithmetic which is true for
the IEEE standard, we shall give new, explicit worst case estimates for the error caused
by the application of our algorithms in floating point arithmetic. The arithmetical costs
of the presented algorithms are only unessentially higher than those for the known DCT
algorithms based on polynomial arithmetic. However, regarding the numerical stability,
polynomial algorithms are clearly outperformed.

Let us remark that the split-radix DCT-II introduced in [5] seems to be very close to
our approach to the DCT-II in spirit, but unfortunately the matrix factorization for the
cosine matrix of type Il is not correct (see Remark 2.6). In [22], a split-radix approach
for the computation of the unnormalized DCT-I and DST-I is presented. However, the
corresponding matrix factorizations, given explicitly for n = 16, are not correct (see
Remark 2.6). But the idea of Sun and Yip [22] to split a DCT-I of length n + 1 into a
DCT-I of length n/2 + 1 as well as a DCT-I of length n/4 4+ 1 and a DST-I of length
n/4 — 1 leads us to a new approach to factorize the cosine matrix of type I1I (see Lemma
2.5). In this way we can give also a new fast and stable DCT-I algorithm in Section 3.

The paper is organized as follows: In Section 2 we introduce different types of cosine
and sine matrices and derive factorizations of the cosine matrices of types I — IV. All
proofs are based on divide-and-conquer technique applied directly to a matrix. That is, a
given trigonometric matrix can be represented as a direct sum of trigonometric matrices
of half order (and maybe of different type). While similar factorizations as in Lemmas
2.2 and 2.4 have already been used before (see e.g. [16, 4, 25, 26]), the factorizations
of the cosine and sine matrices of type III in Lemma 2.5 are new. They enable us to
derive the corresponding fast DCT algorithms as recursive procedures in Section 3. We
also compute the arithmetic costs of the new algorithms. Corresponding factorizations
of cosine matrices of type I, IV, and I into sparse, (almost) orthogonal matrix factors of

simple structure are given in Theorems 4.2, 4.4, and 4.6. Using this matrix factorizations,
we give a comprehensive analysis of the numerical stability of these fast DCT algorithms in
Section 5. Finally we show that the new algorithms have an excellent numerical stability.

2 Trigonometric matrices

2.1 Definitions and Notations

Let n > 2 be a given integer. In the following, we consider cosine and sine matrices of

types I — IV which are defined by

cly, = \/% (€n(7) €a(k) cos %);‘ik:o ’
. n—1
01 im 2 (05 con Y

2
J,k=0

OV 2 (s @itDEED)T (2.1)
n n an j,k:07
st o= ﬂ(sini(ﬁl)ff“h)n_za
7,k=0
S = \/g <en(j+1) sini(f“)gik“)”y_l ,
7,k=0

, -1
C (2541 (2k+)\
SV .= \/z <sm Qi+1)@kt)m)”>)
n 4n .
J,k=0

Here we set €,(0) = €,(n) := v/2/2 and ¢,(j) := 1 for 5 € {1,...,n — 1}. In our notation
a subscript of a matrix denotes the corresponding order, while a superscript signifies
the “type” of the matrix. First cosine and sine matrices appeared in connection with
trigonometric approximation (see [9, 16]). In signal processing, cosine matrices of type
IT and III were introduced in [1]. The above classification was given in [25] (cf. [15], pp.
12-21).

The cosine and sine matrices of type I — IV are orthogonal (see e.g. [15], pp. 13-14,
[21, 17]). Strang [21] pointed out that the column vectors of each cosine matrix are
eigenvectors of a symmetric second difference matrix and therefore orthogonal.

A diserete trigonometric transform of length m is a linear mapping which maps any vector
x € R™ onto Mx, where M € R”*™ is a cosine or sine matrix of (2.1). Especially, the
discrete cosine transform of type II (DCT-IT) with length n is represented by M = CII.
The discrete sine transform of type I (DST—-I) with length n — 1 is represented by M =
SI

n1 €bc..

In the following, we give a collection of all auxiliary matrices frequently used in this paper
for matrix factorizations for an easy lookup.

Let I, denote the identity matrix of order n and .J, the counteridentity matrix which is
defined by J,x := (7,1, Tp_2, ..., To)! for any x = (:I;j)?:_(}. Blanks in a matrix indicate

zeros or blocks of zeros. The direct sum of two matrices A, B is defined to be the block
diagonal matrix A& B := diag (A, B).
Let
D, := diag ((—=1)"){Z
be the diagonal sign matrix.
For n > 4, P, denotes the even—odd permutation matriz (or 2—stride permutation matriz)

defined by

T
Py (X0, T2y ey Xpeg, 1,83y vy Tyet) for even n,
X T for odd
(X0, T2y ey X1, L1, T3y vy Tyez) or odd n

with x = (z;)7Z;. Note that P7* = P! is the [n/2]-stride permutation matrix.
Further for even n > 4, we introduce

ny =g
and the orthogonal matrices
I, _ I, _
“o— L n 1 n 1 _
An(l) T (1 b V2 (Inl—l _[n1_1> b (1)) ([nl D Dnl Jnl)?
- [nl—l Jnl—l
An(o) = ([nl D Jnl) (1 D % \/5)([n1+1 D (_1)n1 Dn1—1)7
n1—1 _[nl—l
Apoi(=1) == Dy, @ Iy,
1 J,
1 1 n1
Tn(O) L (Inl _‘]711>7
- [nl Jnl
Tn-l-l(l) = % \/5 ’
I, I,
Tn—l(_l) = (Jnl b [nl 1 T (1)
o diag ¢, (diag sn,) Jn,
Tn(@) = (I & Dny) (Sy, diag s,, diag (Jo, cny))’
N dlag énl—l (dlag énl—l) Jnl—l
Tn(o) = ([n1+1 D Dnl—l) (1 b 1)7
_Jnl—l dlag énl—l dlag (Jnl—l énl—l)
where . .
Cp, ‘= <C0s _(2k;|-1)7r>n1_ S = <sin —(2]:"1)”>n1_
n k=0 ’ e n k=0 ’
and
Cpy—1 = (cos kl):1 11 , Spy—1 1= (sm kl):1 11 .

The modified identity matrices are denoted by 1/ : = V2@ I, , and I":=1,1@ V2.
Finally, let V), be the forward shift matrix. Note that for arbitrary x = (l'])n e R™ we
have

Vix = (0,20, 21,...,2,_2)7, VIx = (21, 22, .., 201, 0)7.

In the following lemma we recall the intertwining relations of above cosine and sine ma-
trices.

Lemma 2.1 Let n > 2 be an integer. The cosine and sine matrices in (2.1) satisfy the
intertwining relations

Ci—l—l Jn_|_1 — Dn_|_1 Ci—l—h Si—l Jn—l — Dn—l Si—l?
cly, = D,cH sy =D, S, (2.2)
(-y~tcVy,p, = J,D,CLV, (-1~ tsV,bD,=J,D,SY"

and

J,clt = sHp, vy, =D,SV, (2.3)

The proof is straightforward and is omitted here (see [17]). The corresponding properties
of CI and SHI follow from (2.2) — (2.3) by transposing.

2.2 Recursions for trigonometric matrices

In this paper, we are interested in fast and numerically stable algorithms for discrete
trigonometric transforms. As an immediate consequence of Lemma 2.1, we only need to

construct algorithms for DCT-I, DCT-II, DCT-IV, and DST-I.

Let us now recall the following orthogonal factorizations for C'11, C7£+17 and SI_| which
are similar to those presented in [25].

Lemma 2.2 Let n >4 be an even integer and ny = n/2.
(i) The matriz C can be factorized in the form

C,l =P, (Cof & CL) T0(0). (2.4)
(ii) The matriz CL | can be factorized in the form

Ci-u = PnT+1 (0114—1 D Ciln) Tn-l—l(l)- (2-5)

n

(iii) The matriz S1_, can be factorized in the form

S, = PL (ST e Sl _)T,i(1)
Pl A (-1)(CH g S)Ty (1), (2.6)

n

Proof. We show (2.4) by divide—and—conquer technique. First we permute the rows of
CIT by multiplying with P, and write the result as a block matrix:

. n;—1) 1 —1
(cal2) cos 22s0)" - (cn(24) cos Hlrt2Et1m)
P, CII - L J,k=0 k=0
ST\ (i D s W)m_l (en(2j +1) cos wyﬂ
7,k=0 7,k=0
By (2.1) and
cos LD (o in=tkml)r i)kt o (i) (0= 2k= 1)
" " ’ 2n 2n

it follows immediately that the four blocks of P, C'II can be represented by Cﬁ and Cﬂ/:

CII CIIJ I J
7 _ 1 ni ny Y N1 _ II vy 1 n1 n1
Pn Cn - ﬁ (Civ _Cév Jn1> - (Cnl @Cnl)E ([nl _Jn1>
= (O3l © O3 T(0).

Since P~ = PT and T,(0) T,,(0)T = I,,, the matrices P, and T,(0) are orthogonal.
The proofs of (2.5) and (2.6) follow similar lines. O

Remark 2.3 The trigonometric approximation algorithm of Runge (see [16], pp.211-218)
is equivalent to (2.5) and (2.6). Note that similar factorizations of CH!, CI. and SI_,
in [25] use modified even—odd permutation matrices Q,, := (I, & J,,) Py and Q41 1=
(In,31 ® Jn,) Poy1. From (2.4) we obtain the following factorization of C'I11:

I T,(0YT (C1 & 01V P 2.7)
The next lemma provides an orthogonal factorization of C'!V for even n > 4 and will be

the key for our new fast algorithms for the DCT-II and DCT-IV in Section 3. In [26],

one can find the following factorization of CIV, if n > 4 is a power of 2.
Lemma 2.4 For even n > 4, the matriz CIV can be factorized in the form
IV _ pT 11 11

Proof. We show (2.8) again by divide—and—conquer technique. Therefore we permute
the rows of C'IV by multiplying with P, and write the result as block matrix:

. -1 . ni—1
4541)(2k+1)7m \ ! 4541 2k+1 !
<COS<J+)(2hy >7r> <COS<J+ 42k >7r>

p v - 1 3,k=0 3,k=0
e - —_ —
" VI (14543)(2k4+1)r \ ™1 71 (1543)(n42k+ 1) " L
cos cos R
" 5,k=0 5,k=0

Now we consider the single blocks of P, C'I" and represent every block by /! and S}I.
1. By (2.2) and

COS (4j—l—1)4(2k—|—1)7r — oS j(2k7;|—1)7r COS (2k;|;11)7r _sin j(2k7;|—1)7r sin (2k;|;11)7r
it follows that
. Et1)r np—1 . .
\/% <cos 7(4”1)4(2 +1) >jk:0 = % (1., CHdiag ¢, — V;,, SH diag sy,)
= 5 (I, Cll diag ¢, — Vo, Dy, 36Ty diag s,y) . (2.9)
2. By (2.2) and
cos BHACEEDT _ o GENCRT Ok | a GE)CET o (k)T
4n n 4n n 4n
we obtain that
. k - n1—1 . .
ﬁ <COS (4]+3)4(2 +1) >],k:0 = <Vn7; 0751[dlag Cn, + [7/1/1 Sill dlag Sn1>

S-S

(VECldiag ¢,y + I} Dy, S J,, diag s,) . (2.10)

7

3. By (2.2) and

oS (4j+1)(Z:2k+1)w _ (_1)j oS <j(2k7;|—1)7r i (n—|—24];—|—1)7r>

= (=1} cos 1@kt 0m) (n=2h=D)m (—1) sin 1@kt 0T o (n=2k= 1)
n 4n n 4n

it follows that

. n1—1
474+1)(n+2k+1)7
\/11_1 <COS =)(4” : >j,k:0
= % (Dn1 I Cﬁ diag (Jn, Sny) — Duy Vi Sﬁ diag (J,, cn1)>
= % ([7’11 Cﬁ Jn diag (Ju, Sny) + Vi, Diy Sﬁ diag (J,, cn1)>) (2.11)

Here we have used that D,, I} =1, D, and =D, V, =V, D,,.
4. By (2.2) and

(4543) (n42k+)7 _ (_1)]‘+1 cos <(j+1)(2k-|—1)7r _ (n—|—2k+1)7r>

COS 4n n 4n

— (_1)j+1 COS (J’+1)(§k+1)7r <in (71—241;—1)7r + (_1)j+1 sin (J’+1)(§k+1)7r COS (71—241;—1)7r

we obtain that

. n1—1
4743)(n+2k+1)7
ﬁ <COS -)(4”) >j,k:0
= — 5 (Du, VIOl diag (J, 80,) + Doy I, S31 diag (Jny €4y))
= 5 (VI Du, Cildiag (Jo, 8,) = I, Doy SE diag (J, €0y)) (2.12)
= 5 (Vi Ol diag (i, s0,) = 17, Dy Sif diag (Jy, €0))) -

Using the relations (2.9) — (2.12) we get the following factorization

1’ V.. D, diag ¢, (diag s,,) J,
Pn CIV _ 1 ni 1 1 CH SH 1 1 1
Yen (i i) cresn (L e, e

where

]/ Vn Dn [n -1 [n -1
mo TP (2 : : —V2)) (L, & D).
(an; _[7/1/1 Dnl) (\/_@ (Inl—l _[n1—1> @(\/_))(' v 1)

Thus (2.8) follows by the intertwining relation (2.3), namely S} = J,, CI'D, . The

orthogonality of A,(1) and T,(1) can be shown by simple calculation. Note that T,,(1)
consists only of n; plane rotations/rotation-reflections. a

Next, we give new orthogonal factorizations for C'I?I and SII. These factorizations
together with those of Lemma 2.2 will give rise to a fast DCT-I algorithm (see Section
3).

Lemma 2.5 Let n > 4 be an even integer.
(i) The matriz CHT can be factorized in the form

Cill = P?? An(o) (Cll-l-l @ 5751—1) Tn(o) (213)

n

(ii) The matriz SHT can be factorized in the form

St = Pl (L ® (= 10,)) Au(0) (O 4y @ Sy

n ny—1

) T (0) J,. (2.14)

Proof. The proof of (2.13) follows similar lines as the proof of Lemma 2.4 and is therefore
omitted. Using (2.3), we obtain C'!1 J, = D,, S/ and hence S = D, C111], By (2.13)
and P, D,, = (I, ® (—1,,)) P, it follows the factorization (2.14) of SII. a

Remark 2.6 The Lemmas 2.2 and 2.4 imply that
Col = Pl (Lo ® P A (1) (Crf & CFL @ CF)) (L, @ Ty (1)) T (0)

which is similar to the formula (2) given in [5]. In fact, that formula also contains the
matrices T,(0) and C!' @ C!T' @ CII. However, the factorization (2) given in [5] is not
correct.

The formula
Clyy=Phy (L ® PLAL(0)(Ch oy @ CLyy @S, 0) (s @ 10, (0)) T (1)

following from (2.5) and (2.13) is the corrected and general version of the factorization
for Cl,, given for n = 16 in [22]. Observe that the orthogonal matrix C},, considered
here differs from the non-orthogonal matrix in [22]. However, the splitting formulas (2.5)
and (2.13) and the connection between DCT-I and DCT-III have not been recognized in
[22].

2.3 Examples for n =4 and n =8

Now we give a detailed description of the structures of CI, CIV CH and CIV. Here, we
want to assume that a matrix—vector product of the form

o a1 T
—day Ao €1

is realized by 2 additions and 4 multiplications (see Remark 2.11). As we shall see, the
factorization of C'!7 in Remark 2.6 for n = 8 can be used to construct a fast algorithm
which needs only 10 butterfly operations and 3 rotations/rotation-reflections.

Example 2.7 For n = 4 we obtain by Lemma 2.2 that
Cil = PGy & ;") Tu(0)
with

1 1 cos T sin = Iy Jy
ol = L clV = 8 8 T.(0) = L .
2 V2 (1 —1)7 2 (simE —COS£>7 1(0) 2(]2 —J2>

8 8

Note that Pl = P,. This yields

1 1 cos T sin = T J
il —1p 2 8 8 2 2
* 2 4((1 —1)69\/_<sing —COS%)) <[2 —J>

such that Cl'x with x € R* can be computed with 8 additions and 4 multiplications.
The final scaling with 1/2 is not counted. We see that only 3 butterfly operations and 1
scaled rotation-reflection are required.

Example 2.8 For n = 4 we obtain by Lemma 2.4 that
Ci¥ o= PYA(G @ G (L)
5 PI A1) (VRO @ VaC]) T(1)

with
v M v
V2 Cos {g , , sin 7g
v M v
A1) = L 1 1 Tu(1) — cos 75 sin %
4() -2 1 1) 4() - s 3r 3r
- —sin g oS g
2 S _ sl
V2 sin < Cos 1g

Hence, we can compute C'IVx with x € R* with 10 additions and 10 multiplications. We
see that only 3 butterfly operations, 1 rotation, and 1 rotation—reflection are required.

Example 2.9 For n = 8 we obtain by Lemma 2.2 and Lemma 2.4 that
Cs' = P (Py @ Py) (I Ay(1)) (G @ O3 @ Gy C17) (T4(0) & Tu(1)) T5(0)

with
I J.
_ 1 ({14 4
Ty(0) = L (14 _J4>.
Note that Bg := PI(Py @& Py) coincides with the bit reversal matrix (see [24], pp. 36 —
43). This yields the factorization

O3 = 2 Bs(L A1) (V206 V201 620 an/201N (V2TY(0)8v2T4(1)) (i‘ _ﬁ)

which coincides with that of Loeffler et al. [13]. Note that
NeYe = (1 1)

1 -1

is a butterfly matrix. If we compute C{x for arbitrary x € R® then the algorithm based
on the above factorization requires only 26 additions and 14 multiplications (not including
the final scaling by v/2/4). Further we see that only 10 (scaled) butterfly operations, 1
scaled rotation, and 2 scaled rotation-reflections are used.

Example 2.10 For n = 8 we obtain by Lemma 2.2 and Lemma 2.4 that
ClV = PIAs()(Pya Py (CHaclV ool oclV)(Ty0) o T4(0)) Ts(1)
= 2RI VBAs(1) (P& Pi) (V2OH & V30T @20 & VaclY)
(V2T4(0) @ V2T4(0)) Tx(1)
with the cross—shaped twiddle matrix

cos = sin =

32 5 5 32
v M v
cos 37 i i sin 37
v M v
cos 27]] sin 27
cos £ sin ==
T (1) — 32 32
s —sinZE cos &
. 32 32 .
M v v
, sin 27 — cos 37 ,
M i i
— Sin 39 COS 39
sin 37r—2 — COS 37r—2

10

and the modified addition matrix

Is Ds

As(1) = 5 (V2@ <13 D,

) B V) (16).

Remark 2.11 In [8, 13] one can find the identity

Qo aiy s . 1 -1 0 o + “ a 1 _(1) s
—ay1 Qo L1 - 0 —1 1 ! 0 1 L1 '

o — ay

If the terms ag+ ay and ag — ay are precomputed, then this formula suggests an algorithm
with 3 additions and 3 multiplications. Using this method, the scaled DCT-II of length
8 in Example 2.9 needs only 11 multiplications and 29 additions. However, the numerical
stability of this method is worse than the usual algorithm with 2 additions and 4 multi-
plications (see [27]).

For a rotation matrix

(cos Siﬂ99> (¢ € (—m, m)),

—s8iny cosy

there is a second way to realize the matrix vector multiplication with only 3 multiplications
and 3 additions. Namely, using 3 lifting steps [6], one finds the factorization

(g)= ™) (s 1) (0 ™57).

The above matrix factors are not orthogonal. However, it has been shown (see [27]) that
for small rotation angle ¢ the roundoff error is less than for classical rotation. The same
method is also applicable to the rotation-reflection matrix

(cosc,o Sif“P) (¢ € (—=m, 7))

sing —cos

3 Fast DCT algorithms

In this section we present some new fast DCT algorithms. Using the Lemmas 2.2 and
2.4, we are able to present fast DCT-II and DCT-IV algorithms in the form of recursive
procedures. In order to reduce the number of multiplications, we move the factor 1/y/2
in the matrices 7,,(0) and T,(1) to the end of the calculation such that for given x € R"
we compute y = /n Clx and y = /n C1Vx, respectively. The corresponding recursive
procedures are called cos—II(x, n) and cos—IV(x, n).

Algorithm 3.1 [cos—II(x, n)]
Input: n=2"(t>1), ny =n/2, x € R",

(1 1y,

11

1. If n =2, then

2. Ifn >4, then
(u)i% = V2Tu(0)x,

vio= cos—II((u]);“Ol, 1),
v’ = cos— IV((u])] Zas 1),

y = P/ (V) (v
Output: 'y = /nClx.

Algorithm 3.2 [cos—IV(x, n)]
Input: n=2"(t>1), ny =n/2, x € R",
1. If n =2, then
y =20V x

2. Ifn >4, then

(u))izo = V2T.(1)x,
vl = cos— I((u]);“ol, 1),
v’ = cos—II((u;)iZ)),
wo= AL (V) (VO
y = Plw

Output: y = /nCHVx,

Observe that the two algorithms depend on each other. For the DCT-II algorithm this
can be easily overcome by inserting Algorithm 3.2 into Algorithm 3.1. The corresponding
recursive algorithm is then based on the matrix factorization

VGl = P (L, @ P A (1) (Vin Ol & (Ve Cry @ v/naCol) V215, (1)) V2T,(0), (3.1)
which is directly derived from (2.4) and (2.8). This factorization is almost orthogonal.

The number of arithmetic operations required to carry out a computation is called the
arithmetic cost. Note that multiplications with 1 or 2* for some k € Z and permutations
are not counted. Now we determine the arithmetic costs of these fast DCT-II and DCT-
IV algorithms. For an arbitrary real matrix M, of order n, let a(M,,) and (M,) denote
the number of additions and multiplications for computing M, x with arbitrary x € R".
Analogously, the number of additions and multiplications of a fast DCT-II algorithm of
length n is denoted by a(DCT-II, n) and u(DCT-II, n), respectively.

Theorem 3.3 Let n = 2" (¢ > 2) be given. Using the Algorithms 3.1 and 3.2, the
arithmetic cost of the fast DCT-II algorithm of length n is given by

o(DCT-II, n) = int—Sn—L(-1)+1,
w(DCT-IL, n) = nt— 5n—|— 5(—1)t+1.
Further, the arithmetic cost of the fast DCT-IV algorithm of length n is determined by
a(DCT-IV, n) = 2nt—32n+ 2(-1),
p(DCT-IV, n) = nt+2n—2(-1).

12

Proof. We compute only a(DCT-II, n) and a(DCT-IV,n). The results for u(DCT-II, n)
and u(DCT-IV,n) can be derived analogously. From Examples 2.7 and 2.8 it follows that

a(DCT-11,2) = 2, o(DCT-II, 4) =8, (3.2)
a(DCT-1V,2) = 2, o(DCT-1V, 4) = 10.

For n = 2' (¢ > 3) we obtain by Algorithms 3.1 and 3.2 that

o(DCT 11, 1) = a(vV2Tu(0) + o(DCTIL, ny) + o(DCTIV, ny), (3.3)
a(DCT-1V, n) = a(\/ﬁTn(l)) + 2a(DCT-II, ny) + a(AL(1)). (3.4)

Using the definitions of the matrices T,,(0), T},(1) and A, (1) in beginning of Section 2, we
see immediately that

a(ﬂTn(O)) = a(\/ﬁTn(l)) =n, a(An(l))=n—2.

Thus by (3.3) and (3.4) we obtain the linear difference equation of order 2 (with respect
tot > 3)

a(DCT-II, 2') = o(DCT-II, 27') + 2a(DCT-1I, 2°72) 4 2!+ — 2,
Solving it under the initial conditions (3.2), we obtain that

a(DCT-II, Zt) = %nt — gn — %(—1)75 +1
and hence by (3.4)

a(DCT-1V, Zt) = %nt — %n + %(—1)75,
This completes the proof. a
Compared with the best known algorithms for DCT-II of length n, which need only
2n log, n arithmetic operations (see e.g. [8, 19, 20, 14]), the obtained algorithms are not
the fastest. But, as we will see in Section 5, they possess an excellent numerical stability,
which outperforms the faster algorithms.
In order to delight this fact, we shall give here a slightly modified recursive algorithm
for the DCT-II having (almost) slowest arithmetic costs, but the orthogonality of the

matrix factors in the underlying factorization is given up. Instead of (3.1) consider now
the matrix factorization for n > 8

VOl = Pl (L, & V2P AL (1) (VG @ (VG & G,) T, (1)) V2T,(0).

Here the matrix factors [,,, & \/§PnT1 A, (1) and | /nquf@ (y /ng(Cg@ \ /ngcg) T,,(1) are
not longer (almost) orthogonal. The corresponding recursive procedure of this modified

DCT-II (MDCT-II) reads as follows:

Algorithm 3.4 [mcos—II(x, n)]
Input: n=2"(t>1), ny =n/2, ng =n/4, x € R™.

1. If n =2, then

2. Ifn =4, then

n 1 1 V2cosZ \2sinZ L
y'_P4(<1 —1>@<ﬂsing V2 cos T W —n)x

3. Ifn>8, then
(w)mh = VAT.(0)x

v = mcos— II(uj)?églanl)v
(Mymst = Tm(1>(uj>?‘;,

w o= mcos—II(()?201,712)7

w' = mcos—II((v;);“n;, na),

Vo= \/_PnT1 A (D) (W), (W) DT,

y = P ()N

Output: 'y = /nClx.
For this MDCT-II algorithm we obtain

a(MDCT-1I,n) = a(\/ﬁTn(O)) + a(MDCT-I1,ny) + (T, (1)) + 20(MDCT-II, n3)

+a(vV24,, (1)),
p(MDCT-1Ln) = u(v27,(0)) + p(MDCT-IL,ny) + (T, (1)) + 2u(MDCT-11, n,)
+ (V24 (1))
and by
S(VEL(0) = n. (T, (1) =m. a(V2A, (1) = 2
p(V2L,(0)) = 0, w(Tw (1) =n, u(V2A4,(1)) =2
we find

o(MDCT-II,n) = 3int—Sn—3(=1)"+1,

9 9

p(MDCT-II,n) = %nt — %n + %(—1)75 —1.

Remark 3.5 For comparison, the algorithm presented by Wang [25] (which already out-
performs the algorithm in [4]) for the DCT-II of length n = 2" needs 2 nt —n+ 3 multipli-
cations and % nt—2n+3 additions. The arithmetic cost of our MDCT-II algorithm is even
comparable with fast DCT-II algorithms based on polynomial arithmetic which need % nt
multiplications and 3nt —n+1 additions (see e.g. [7, 11, 12, 19, 20]). Namely, using the
method of Remark 2.11 computing a (scaled) rotation matrix/rotation—reflection matrix
with only 3 multiplications and 3 additions, we obtain for the MDCT-II Algorithm 3.4

o(MDCT-II,n) = 3nt —n+1, p(MDCT-II,n) = int —1.

The idea of the MDCT-II Algorithm 3.4 can also be used to compute the DCT-IV of
length n with only 2nlog,n + n + 1 arithmetical operations. However, as we will see in
Section 5, this MDCT-II algorithm does not have a very good numerical stability.

14

Now, using the Lemmas 2.2 and 2.5, we obtain fast DCT-I, DCT-III and DST-I algo-

rithms in recursive form:

Algorithm 3.6 [cos—I(x, n + 1)]
Input: n=2"(t>1), ny =n/2, x € R".

1. If n =2, then

1 1 0 10 1
y=:+0 0 v2][0 v2 0 |x
1 -1 0 10 -1
2. Ifn >4, then
(W) = VETuni(1)x
V= cosT{(u) g, ni + 1),
v = cos—TII((u;)i_, 11, M),
y = DL (V) (v
Output: 'y = /ng Céﬂx.
Algorithm 3.7 [cos—III(x, n)]
Input: n=2"(t>1), ny =n/2, x € R",
1. If n =2, then
1 1 1
2. Ifn >4, then
(s = VB0
vl = cos—I((u;)iLy, na +1),
v’ = sin- I((u])] =n 410 11— 1)7
w o= A 0) (V) (v,
y = Plw

Output: y = /n; CHlx,

Algorithm 3.8 [sin—I(x, n — 1)]
Input: n=2"(t>1), ny =n/2, x e R"L

1. Ifn =2, theny :=x.

15

2. Ifn >4, then
(wmh = VaTua(—1)x,

V/ = COS—III((uj)?;D n1)7

v o= sin=I((u))j2s, s — 1),
w o= A (=) (V)T (v
y = P??—l Ww.

Output: 'y = /ny S£—1X-
Note that these three recursive algorithms can not be simply decoupled.

Theorem 3.9 Let n = 2' (¢t > 2) be given. Using the Algorithms 3.6, 3.7 and 3.8, the
arithmetic costs of the fast algorithms for DCT-1, DCT-III and DST-I are given by

a(DCT-I, n+1) = %nt—%n—l—t—l—%—l—f—g(—l)t,
w(DCT-I, n+1) = nt— %n—l— g— é(—l)t,
o(DCT-II, n) = fnt—3Sn+1—3(-1),
p(DCT-IIL, n) = nt+ %n -1+ % (—1),
a(DST-I,n —1) = %nt—%n—t—l—%—l—%(—l)t,
u(DST-I, n —1) = nt— %n + % — é(—l)t.

Proof. We only compute the number of additions for the three algorithms. The number
of multiplications can be derived analogously. We observe that by

o(V2Tni(1)) = n, a(V21,(0) =n—2, a(V2I(-1)) =n -2,
a(A,(0) = n—2, a(A,_4(~1))=0,

it follows that

a(DCT-I,n+1) = o(DCT-I,ny + 1) + a(DCT-III, ny) + n,
a(DCT-III,n) = o(DCT-I,ny + 1)+ «(DST-1,ny — 1) + 2n — 4,
a(DST-I,n—1) = «(DST-I,n; — 1) + a(DCT-I11,n4) + n — 2,

and hence

a(DCT-I,n + 1)+a(DST-I,n — 1) = a(DCT-I,ny + 1) + «(DST-1,ny — 1)
+2(a(DCT-I,n2 + 1) + a(DST-I,ny — 1))
+4n — 10,

a(DCT-I,n + 1)—a(DST-I,n — 1) = a(DCT-I,n; + 1) — a(DST-I,ny — 1) 4+ 2
a(DCT-1,3) — a(DST-1, 1) + 2(¢t — 1)

= 2(t+1).
This leads to the linear difference equation (with respect to t)
a(DCT-1,2" + 1) = a(DCT-1,27" + 1) + 2a(DCT-1,277% + 1) + 2" — 2t — 2

16

which under the initial conditions o(DCT-I, 3) = 4 and a(DCT-I,5) = 10 has the solution
aDCT-Ln+ 1) =2nt —Yn 44 T4 (1)
Further, we now simply obtain
a(DST-ILn—1) = a(DCT-I,n+1) —2(t+ 1) =2nt — Ypn—t 4 2 4 L (1)
and

a(DCT-11I,n) = o(DCT-I,n+1) 4+ a(DST-I,n —1)+2n —4

= Int—Sn+1-3(-1)"

This completes the proof. a

Remark 3.10 As before, one can modify these algorithms slightly in order to reduce the
arithmetic costs to 2nlog, n flops, but then giving up the orthogonality of the underlying
matrix factorization and destroying the excellent numerical stability (see Section 5).

4 Factorizations of cosine matrices

A fast DCT algorithm is best understood by interpreting it as the application of a fac-
torization of the corresponding cosine matrix. In this section, we present factorizations
of the orthogonal cosine matrices of type I, II and IV into products of sparse and orthog-
onal matrices. These factorizations directly lead to iterative algorithms, which may be
preferred on special platforms. Note that the following iterative DCT algorithms coincide
with the ones of Section 3 and that they arise by resolving the recursions.

Let us start with the cosine matrix C'IZ. Recursive application of (2.4) and (2.8) provides
the wanted factorization of Cél. Let n = 2° (¢ > 2) be given. Further, let ng := 2/7°
(s = 0,...,t —1). In the first factorization step, C! is splitted into CI/ ¢ CLV by
(2.4). Then in the second step, we use (2.4) and (2.8) in order to split C'!T' @ CIV into
Cg@CQ/@Cg@Cg. In the case ny > 2 we continue this procedure. Finally, we obtain a
factorization of C'IZ. The first factorization steps are illustrated by the following diagram:

step s =0
step s =1
step s = 2
step s = 3

Note that the factorization tree of C'I contains a factorization tree of CIV. Now we use
binary vectors B, = (8s(1),...,0:(2°)) for s € {0,...,t — 1} as introduced in [24], pp.
115 — 119. We put B,(k) := 0 if C! stands at position k& € {1,...,2°} in step s, and
By(k) :=1if C!V stands at position k in step s. By Lemma 2.2, from 3,(k) = 0 it follows
immediately that 8,41(2k — 1) = 0 and (,41(2k) = 1. Further, from §4(k) = 1 it follows
that Bs41(2k — 1) = G541(2k) = 0. Now, our diagram looks as follows:

17

By = (07 1)

62 = (07 17070)

63 = (07 17070707 1707 1)

For a simple computation of vectors 3, we need

Lemma 4.1 Lett € N with t > 2 be given and 3, := (0). Then

654—1 :(65735)7 5:07"'7t_27 (41)

where BS equals B, with the exception that the last bit position is reversed. Further,

S

95
18,1l = ;55(’6) =3 (2°=(=1)") (4.2)
is the number of ones in the binary vector 3,.

Proof. Formula (4.1) follows by induction. Formula (4.2) is a result of classical difference
equation theory, taking into account that ||3,|[1 + ||B41]1 = 2° and || B[= 0. 0

For each pointer 3, we define the modified addition matrix
An(By) = An (Bs(1) & ... A, (5:(2%)), s=0,...,t =2

with A, (0) :=1,,, and A, (1) as in Lemma 2.4, further the modified twiddle matrix

To(8,) = T (A1) 0. @ T (Bl2), s=0,..,t—2

with T,,,(0) and T,.(1) as in Lemma 2.2 and Lemma 2.4, and finally the block cosine
matrix

Co(By) = Cn (Bs(1)) B ... B Co(85(2%)), s§=0,...,t—1
with €, (0) := Cl and C,, (1) := CIV. Additionally, we set T,(8,_,) := C,.(8,_,). Note

that C.(By) = Céf. Further we introduce the permutation matrices
Pn(s)::PgS@...@PnTS, s=0,...,t—2.

We shall see in the following that the block cosine matrix C),(3,) appears as intermediate
result in our recursive factorization of C'II. By construction, all matrices P,(s), A,(3,)
and T,,(8,) are sparse and orthogonal.

Theorem 4.2 Let n =2 (t > 2). Then CI can be factorized into the following product
of sparse orthogonal matrices

CI = (Py(0)An(Bo)) . (Pt —2)An(B,_)) Tu(Bi_y) - TulBo). (4.3)

18

Proof. The factorization (4.3) follows immediately from

Cn(B,) = Po(s)An(B,)Cu(B11)10(B,), s=0,...,t—2. (4.4)
By definition of P,(s), A,(83,), Cu(B,) and T,(8,), these formulas (4.4) are direct conse-
quences of Lemmas 2.2 and 2.4. a

The same technique can be applied to the cosine matrix of type IV with radix—2 order. Let
n = 2" (t > 2) be given. In the first step we can split CIV into C!T ¢ C!I by (2.8). Then
in the second step, we use (2.4) in order to split C7 @ C into CH @ CV & CHaCLY . In
the case ny > 4, we continue the procedure. This method is illustrated by the following
diagram:

step s =0
step s =1
step s = 2

CHEREREIEDEHEDED step s = 3

We introduce binary vectors 7, := (v5(1),...,7s(2%)), s € {0,...,t—1}. We put ~,(k) :=0
if CI7 stands at position k € {1,...,2°} of step s, and v,(k) := 1 if CIV stands at position
k of step s. These pointers possess different properties as those in Lemma 4.1.

Lemma 4.3 Let t € N (¢t > 2) and ~, := (1). Then

75+1:(:y$7:y$)7 SZO?"'vt_Qv

where 7, equals v, with the exception that the last bit position is reversed. Further,

Il = k) = 32+ 2(-1"),

The proof is similar to that of Lemma 4.1 and is omitted here. Now, for each pointer =,
we define A, (v,) and T,,(7,) (or their modified versions) in the same way as A, (83,) and

T,.(8,)-

Theorem 4.4 Let n = 2! (t > 2). Then the matriz C!V can be factorized into the
following product of sparse orthogonal matrices

Civ = (Pa(0)An(v0)) - (Pt = 2)An(ve22)) Ta(Yeor) - Tal(o)-

The proof directly follows from Lemma 2.2 and Lemma 2.4.

We now want to derive a matrix factorization for the MDCT-II Algorithm 3.4. We
slightly change the derived orthogonal matrix product (4.3) in the following way. Instead
of A,(B,), consider the modified addition matrices

ALB) = A (B) & AL (B2)), s =002

19

with A7 (0) := A,,(0) = [,, and A (1) := \/§Ans(1). Hence A, (B,) and A/ (3,) are

connected by
AL(B,) = Du(B,) Au(B,), s =0,...,1 =2

with a diagonal matrix
D,(8,) =2V, ... o2+, s=0,...,t—2
Further, consider the modified twiddle matrices
Su(B,) == 5, (Bs(1)) ... 5, (Bs(2%), s=0,...,1—2
with 57 (0) :=v2T,.(0) and S’ (1) := T,.(1) such that
Su(B,) = (Da(B,)) ™" Su(By), 5=0,...,t—2.

As before, the matrices A/ (3,) and S/ (8,) are sparse matrices with at most 2 nonzero
entries in each row. More precisely, after suitable permutations, A/ (83,), s =1,...,t — 2,
contain only butterfly matrices (with entries 1) and diagonal matrices (with entries 1 and
4+1/2). The matrices S’ (8,), s = 0,...,t —2 only contain butterfly matrices (with entries
+1), rotation matrices, and rotation-reflection matrices. Note that A/ (8,) = A,(0) = [,
and S1(8) = V2T,(0).

With the changed matrices we find from (4.3) the factorization

Cil = (ﬁl)t—lp ()A/ (50) (t - 2)‘4/ (57& 2) n(ﬁt—1)57/z(5t—2) SR 57/1(50)7

since for each s = 0,...,¢ — 2 the product of diagonal matrices D,(8,)™' ... D,.(By)"
commutes with T,,(8,,) and with A, (8,). Observe that the inner matrix 7,,(8,_,) is not
changed. For the algorithm, we multiply this matrix with v/2 and finally obtain

Cil = ﬁ Pr(0) AL (Bo) - .- Pall = 2) AL(B122)5(By—1) 53 (Bi—z) - - S(Bo)- (4.5)
This factorization leads to the MDCT—II Algorithm 3.4.

Our factorization of the cosine matrix of type I is based on the factorizations (2.5), (2.6),
and (2.13). Let n = 2' (¢ > 2) be given. Further, let ny =2'° (s =0,...,¢t —1). In the
first factorization step, CI_H is split into O 11 P CHI by (2.5). Then in the second step,
we use (2.5) and (2.13) in order to split CI 41D CHI into CL e ClgCl oS,
In the case t > 3 we continue this procedure For 512_1 we use the second factorization

2.6). Finally, we obtain a factorization of C'!, . Note that (2.5) is in some sense also
n+1
true for n = 2:

cl =PIl a1)T501).
The first factorization steps can be illustrated by the following diagram:

step s =0

step s =1

step s = 2

ClLa)(CI L)L) CL) (Gl steps =3

20

Note that the factorization tree of Ci_l_l contains factorization trees of Ciln and S£2_1.

Now we have to indicate on which position k& € {1,...,2*} instep s € {0,...,¢—1} stands
CL .., CHI and S! _|, respectively. We introduce triadic vectors 8, = (8,(1),...,8,(2°))
for s € {0,...,1— 1} as pointers, where &,(k) := 1, if C'! ., stands at position k in step s,
where §,(k) := 0, if CI!T stands at position k in step s, and where &,(k) := —1, if 51 _;

stands at position & in step s.

do = (1)
0, = (170)
é,=(1,0,1,-1)

é;=(1,0,1,-1,1,0,0,—1)
These pointers d, have similar properties as 3, in Lemma 4.1.

Lemma 4.5 Lett € N with t > 2 be given and 8o := (1). Then

8o = (8,,8,), s=0,...,t—2 (4.6)
where 8 1= (0) and for s > 1 the vector 5, = (85(1), ...,55(25)) is defined by
Sk o RN L TR =2 = (D)
ds(k) otherwise.

For s > 1, the vectors 8, consists of £ (2° — (=1)°) zeros, £2° + L 4+ 1 (—1)° ones, and
%25 — % + é (—1)® minus ones.

The proof is omitted here for shortness. For each pointer §; we define the following

matrices
Pn_|_1(55) = P73;+5s(1)@ "'@Pg;-l-(gs(?S)’
Ap1(6s) = A 5.)(0:(1) & - B Anrs.29(05(27)),
n+1(65) = ns+55(1)(55(1)) @ tee @ Tns+55(2s)(55(25))7

where z{lnﬁ_l(l) = Lhy1, Ans—1(—1), and Tnsil(:lzl) are introduced in Lemma 2.2, and
where A, (0), and Tns(()) are defined in Lemma 2.5. The matrix Trt1(d:-1) is a block
matrix with blocks T5(1) := C3, 15(0) := 3" and T1(—1) := S{ = (1). By construction,

all matrices A, 11(d5) and T},41(d5) are sparse and orthogonal.

Theorem 4.6 Let n = 2' (t > 2). Then the matriz Cl, can be factorized into the
following product of sparse orthogonal matrices

Clyy = (Payi(80) Any1(80)) - - (Pagr(8:-2) Ang1 (81-2)) Tog1 (8e1) .. Trga (o). (4.7)

The proof directly follows from Lemma 2.2 and Lemma 2.5. The factorization of €'/ in
Theorem 4.6 implies a fast DCT-I algorithm which uses only permutations, scaled but-
terfly operations, and plane rotations/rotation-reflections and works without additional
scaling. Factorizations for CIf and SI can now be derived analogously.

21

5 Numerical stability of fast DCT algorithms

In the following we use Wilkinson’s standard method for the binary floating point arith-
metic for real numbers (see [10], p. 44). If @ € R is represented by the floating point
number & = fl(x), then
fiz) =w(1+4d) (|6l <u),

where u denotes the unit roundoff or machine precision as long as we disregard underflow
and overflow. For arbitrary floating point numbers z¢, 1 and any arithmetical operation
o € {4+, —, x, /}, the exact value y = xg 0 2y and the computed value § = fl(x¢ 0 1) are
related by

fi(zoo0x1) = (xgoar)(1l +6°) (16°] < w). (5.1)
In the IEEE arithmetic of single precision (24 bits for the mantissa including 1 sign
bit, 8 bits for the exponent), we have u = 27** &~ 5.96 - 107®. For arithmetic double
precision (53 bits for the mantissa including 1 sign bit, 11 bits for the exponent), we have
u =27~ 1.11-107' (see [10], p. 45).
Usually the total roundoff error in the result of an algorithm is composed of a number
of such errors. To make the origin of relative errors é7 clear in this notation, we use
superscripts for the operation o and subscripts for the operation step k.
In this section we show that, under weak assumptions, our fast DCT algorithms possess
a remarkable good numerical stability.
Before we can start to analyze the numerical stability of DCT-algorithms of length n, we
need to consider the roundoff errors caused by multiplication of matrices of length 2, since
all matrix factors in the factorizations of cosine matrices in Section 4 can be transformed
into block-diagonal matrices with blocks of order < 2 by suitable permutations.

5.1 Two auxiliary lemmas

In this subsection we analyze the roundoff errors of simple matrix—vector products, where
the matrix of order 2 is a (scaled) butterfly matrix or scaled rotation matrix. Before
starting the detailed analysis, we show the following useful estimate.

Lemma 5.1 For all a,b,c,d € R, we have
(el + b + lac — ba])? + ([ad| + be] + |ad + bel? < (a? +)(e +)
where the constant 16/3 is best possible.

Proof. Without loss of generality, we can assume that a,b,¢,d > 0. Further we can
suppose that ac > bd, since otherwise we change the notation and replace (a,b,¢,d) by
(b,a,d,c). Then the above inequality reads as follows

(ac)* 4 (ad 4 be)* < %(a2 +0*)(* + d*).
This inequality is equivalent to

0 < (ad — be)* 4 (ac — 2bd)?
which is obvious. For ¢ = ¢ = /2 and b = d = 1 we have equality. a

In the following, the order term O(u*) (k = 1, 2, ...) has the usual meaning of a quantity
bounded by a constant times «*, where the constant does not depend on wu.

22

Lemma 5.2 (i) For the butterfly operation yo := xo + 1, Y1 = To — &1 with o =
fi(zo + 21) and §1 := fl(xo — x1), the roundoff error can be estimated by

(@0 - 90)2 + (@1 — yl)2 <2’ (51/'(2) + :z;f) (5-2)

(ii) If the scaling factor a & {0, 1} is precomputed by a = a + Aa with |Aa| < ¢y u, then
for the scaled butterfly operation yo := a (zo+x1), y1 := a (xo—ax1) with Yo := fl(a (xo+x1))
and g1 :=fl(a (xo — x1)), the roundoff error can be estimated by

(90— y0)* + (i1 — y1)* < (2V2al + V21 + O(w))? u? (2§ + 21). (5.3)

(iii) If the different entries ap & {0, £1} with b* := a} + a® > 0 are precomputed by
ar = ap + Aay with |Aay| < cau for k = 0,1, then for the scaled rotation

Yo := QoZo + A1T1, Y1 = —A1Tg + Aoy
with go := fl(Goxo + a121), 11 := fl(—a1x0 + Gox1), the roundoff error can be estimated by
(9o = yo)* + (1 — y1)* < (5 VB[l + V2 e + O(u))* u? (2 + o). (5.4)
Proof. (i) By (5.1) we have

Yo = (51?0-|-51?1)(1-|-56|_):yo—l-(l'o—l-%)(sg—a
i = ($0—$1)(1+5f—):y1+($0—$1)5f—

with |6 < wu for k = 0,1 such that by
|90 — yol < |wo + 21| u, |91 = il < [wo — 21w,

we obtain (5.2).
(ii) Putting zo := a(xo + x1), 21 := a(xo — 1), it follows from (5.1) that

Jo = alwo+a)(1+7)(1+65) = 20+ a(wo+21)(65 + 5 +655),
gi= alwo—a)(L+67)(1+61) = 21 + a(wo — 21)(6] + 07 + 6767)

with |5 < u, 6] < u, k= 0,1. Thus, by
|90 — 2o < fa (o +a1)] Qutu?), i — =] < a(wo — 1) (2u +u?)
we get the estimate

|90 — Zo|2 + i — Zl|2 < 2&2(1'(2) + :z;f) u? (2 + u)2
with @* = a? + O(u) which yields

[(2=2)], ()
(Zom)=ae (1 20) ()

23

< (2v2lal+ O(u))u

2

we obtain

<V2qu

Z0 — Yo
21— Y /|,

and finally by triangle inequality

o), ()

(iii) Introducing zo := @oxo + @121, 21 := —ad120 + Goxy, it follows from (5.1) that

()

< (2V2lal+vV2e + O(u)) u

2

2

Jo = laoxo(1+ 65) + e (1467 (1+67),
g1 = [marwo(l +65) + aox (1 +65)] (1 +67)

with [6X| <w for j =0,....3 and [6;| < u for k= 0,1. Hence we obtain

(laoxo| + |ar1| + |Goxo + @r21]) w + (|Goxo| + |a121]) w

(larzo| + |aox1| + |10 — @ox1]) u + (Jarzo| + |aox1]) u?

<
J —Z1| <

and thus

o — zol” + |51 — z1* < [(la)?
+ (|arxo| + |aox1] + |arao — &051?1|)2] U2(1 + U)Q-

Applying Lemma 5.1, we find

(af + at)(zg + 27)u*(1 + u)?
(0% + O(u))u?(ag + 1),

90 — 20> 4+ |01 — 21| <

vl wl5

since a3 + ai = a2 + ai + O(u) = b* + O(u) by assumption. Therefore we obtain

<Q0—20> (51?0)
Ui — = L1 /||,
2o — Yo . Aao Aal s
(o) = (8 2) (2) e
(23] =5 (2)
21— W T1

since the matrix in (5.5) is orthogonal up to a factor and therefore its spectral norm equals

< (5 V316l +O(w)) u

2

By

we conclude that

<V2ecu

’
2

\/(Aa0)2 + (Aay)? < V2 ¢y u.

Using the triangle inequality, we obtain (5.4). O

24

5.2 Numerical stability of the recursive DCT-II algorithm

Now we consider the fast DCT-II Algorithm 3.1 (involving Algorithm 3.2) which is equiv-
alent to the factorization formula (4.3) up to some scaling factors,

VIO = (Pa(0)Au(Bo)) - (Palt = 2)Au(Bi)) (V2Tu(B,2y)) - - (V2Tu(Bo))- (5.6)

Our considerations are now based on the DCT-II algorithm in its iterative form:
For s =0 tot — 1 compute

X = VBT, ()X, (< i)
and for s = 0 to t — 2 compute
x(Hst) .= P (1 — s —2)A,(B,_, o) x\"T?.

Then z = Clix = X(zt 1) is the resulting vector.

The roundoff errors of this algorithm are caused by multiplications with the matrices
S.(B,) =V2T,(8,),s=0,...,t —1,and A,(B,), s =0,...,t — 2. These matrices have
a very simple structure. After suitable permutations, every matrix is block—diagonal with
blocks of order < 2. All blocks of order 1 are equal to £1. Every block of order 2 is either

a (scaled) butterfly matrix

11 L (11 L (1 -1
1 -1) va\1 —1)0 Va1l 1)7

or a scaled rotation matrix/rotation-reflection matrix
do a1 o a1
—a; ap)’ a1 —ao

= /2 cos 2;“;3, alzﬂsin@g:ﬁ)w, s=0,...,t—=2,k=0,...,2° —1.

with

For an arbitrary input vector x € R”, let y := /n Cllx € R" such that z := \/Lﬁ y denotes
the exact transformed vector. Further let ¥ € R” be the output vector computed by our
DCT-II Algorithm 3.1 (involving Algorithm 3.2) using floating point arithmetic with unit
roundoff w. Finally, let z := ﬂ(ﬁ y). Since C'!! is nonsingular, %z can be represented in
the form z = C!f(x + Ax) with Ax € R”. An algorithm for computing C'I' x is called
normwise backward stable (see [10], p. 142), if there is a positive constant k,, such that

[A%[|2 < (kau+ O(u?)) [1x]|2 (5.7)
for all vectors x € R™ and k,u < 1. The constant k, measures the numerical stability.
Since C'I! is orthogonal, we conclude that ||Ax||; = ||C(Ax)
|CHx||; = ||z||2. Hence we also have normuwise forward stability by

< (knu + O(u?)) |22,

if (5.7) is satisfied.

25

Now let us look closer at the computation steps in our iterative DCT-II algorithm which
is equivalent to the factorization (5.6). First, for every s = 0,...,¢ — 2, all values

V2 cos 25";13 , V2 sin (25;'_113))”, k=0,...,2°—1 (5.8)

needed in the matrices ﬂTn(ﬁs) are precomputed. If cosine and sine are internally
computed to higher precision and the results afterwards are rounded towards the next
machine number, then we obtain very accurate values of (5.8) with an error constant
¢z = 1 (see Lemma 5.2, (iii)). We use the matrices Sn(ﬁs), s = 1,...,t — 1, with
precomputed entries (5. 8) instead of S,,(B,) = V2 T,(3,). Assume that the value v/2/2 is
precomputed with the error constant ¢; = 1/2 (see Lemma 5.2, (ii)). We use the matrices
An(ﬁs), s=1,. — 2, with the precomputed scaling factors V2/2 instead of A,(8,).
The vectors [35 are generated without roundoff errors.

Let x(© = x(® := x. We denote the vectors computed in the iterative DCT-II algorithm
by

K6 = A(5,(8,)%)), s=0,...,0—1

and the corresponding exact vectors by
xtH) =5 (8,)x®), s=0,...,t—1.
Further, we introduce the error vectors e**!) € R” by
() = 5(8,)%0) 4 el (5.9)

Note that e*t!) describes the precomputation error and roundoff error of one step in
our DCTII algorithm. The matrix—vector product S,(8,)%x®) = S,(B,)x involves only
butterfly operations such that by Lemma 5.2, (i)

lel2 < V2 u |[x].. (5.10)

Every matrix—vector product Sn(ﬁs) %), s =1,...,t—1, consists of butterfly operations
and rotations/rotation-reflections scaled by /2 such that by Lemma 5.2, (i) and (iii), we
obtain

le® V|2 < (V6 + v2+ O(u)) u

Now we introduce the vectors computed in our DCT-II algorithm

x|y, s=1,...,t—1. (5.11)

KD = (P (1 — s = 2 Au(Br,) X)) s =0, 0 -2,
the corresponding exact vectors
X(H—S—I—l) = Pn(t -5 Q)An(ﬁt—s—Q) X(H—S)? 8= 07 e 7t - 27
and the corresponding error vectors eltts+1) ¢ R» by
)A((H—S—I—l) = Pn(t — S — Q)An(ﬁt—s—Z))A((H—S) ‘I‘ e(t—l—s-l—l)‘ (512)

Every matrix—vector product An(ﬁt_s_z)fc(t"'s), s = 0,...,t — 3, consists of identities,
minus identities, and scaled butterfly operations (with precomputed scaling factor \/5/2)
such that by Lemma 5.2, (ii) we can estimate

e+ < (24 4 V2 + Ofu))w

t—I—s

|2, s=0,...,t—3. (5.13)

26

Note that by An(ﬁo) = I, we have e?=1) = 0.

Finally, we scale the result of our DCT-II algorithm by z := 27/2x(3=D, Let 2 :=
(2772 %=1, For even t, this scaling by a power of 2 does not produce an additional
roundoff error such that

82 || 4 (2t-1) _

X(zt_l)HQ'

12 — 2], = 27

For odd ¢, we precompute fl(27/2) = 2=(+D/21(\/2) with [i(v/2) — v/2| < u. Then by
(5.1) we obtain that for j =0,...,n—1

with [0 < w. But this implies that

i o 2—7,‘/2 }A((Qt—l)’b S 2—7,‘/2

XD u (1 + %\/5 + O(u)).
Finally, by triangle inequality it follows that

XC D u (14 5v2 4+ O(u) + 7=

o — 2l < & @) _x @D, (5.14)

N

which is also true for even t.

We are now ready to estimate the total roundoff error ||z — z||; of our fast DCT-II
algorithm under the assumption that /2 and the trigonometric values (5.8) in the factor
matrices are precomputed with error bound u.

Theorem 5.3 Let n = 2! (t > 3). Assume that /2 and the values (5.8) are precomputed
with absolute error bound w. Then the fast DCT-11 Algorithm 3.1 (involving Algorithm
3.2) and including the final scaling with 1/\/n is normwise backward stable with the con-
stant

ko= (3V3+1v2+43) (logyn — 1)~ 6.016508 (log, n — 1).

Proof. First we estimate the roundoff error ||[%(*=1 —x@*=1||,. Applying (5.9) and (5.12)
repeatedly, we obtain

XD = x4 P0)AL(By) - Pt — 2)An(B,_5)Sn(Biy) - - Su(By)eM + ..
+£.(0)

+P,(0)A,(B,)e*?. (5.15)

The matrices 5,(3,), s =0,...,t—1, are orthogonal up to a factor and have the spectral
norm ||.5,(8,)|l: = v2. The matrices P,(s) A,(3,), s =0,...,t — 2, are orthogonal such
that || P.(s) A.(B8,)]|2 = 1. By (5.9) and (5.12) we can estimate

}2(5+1)"2 < V2 X(S)"z + He(s—l_l)Hza s =0,...,t =1,
75-|—s-|—1)H2 < }A((t—l—s)Hz_l_ He(t—l—s+1)H27 s :()7,,,71‘—2.

%!

Thus by (5.11) and (5.13) we see that

O < (V24 O@) 5, s =0, 1,
}A((7:+s+1)H2 < (14 0(u)))A<(75+5)H27 s=0,...,t—2.

27

Since x(© = x this implies
X+, 262 L O(u)) |[x|lz, s=0,....t—1, (5.16)

<
£, < @24 OW) x5 =002 (5-17)

From (5.11), (5.13), (5.16), and (5.17) it follows that

He(s+1)H2 9(s+1) /2(\/__|_1_|_(9())UHXH% s=0,...,t—1,

<
< 2P+ 5V2ZH0W)ulxla s=0,..,1 =3,

lel=+1]l,

We obtain from (5.15) that

) = xC Yy < ISu(Bi) - Su(By)ellelz + - A 1Su(Br) el
+le@lz + ... + [l
< (Ve + ...+ V2 [y + €@z + ... + [e@D,

and hence by (5.10) and the above estimates for He(s"'l)Hg and He(t"'s"'l)Hg that

(2¢t-1) 275—1)H2

_

< 2Pu((BVEHIVEHR(E 1)~ 1 - EVEHOW) x| (5.18)

For the final scaling z = 271/2x(*=1) et 2 = (2712 %=V, By (5.14), (5.17) and (5.18)

we get the final estimate

p'e

Su ((3V3+5V243) (1= 1)+ O0w) [x]..

This completes the proof. a

5.3 Numerical stability of the other recursive DCT algorithms

The numerical stability of the further recursive DCT algorithms of Section 3 can now be
shown analogously, as it is done in the last subsection for the DCT-II algorithm.

Theorem 5.4 Let n = 2" (¢t > 3). Assume that the values
\/_ V2 cos zgtlg) , V2 sin (zgzrlg,)w

with k=0,...,2° =1 and s =0,...,t — 1 are precomputed with the absolute error bound
w. Then the fast DCT-IV Algorithm 3.2 (involving Algorithm 3.1) and including the final

scaling with 1/\/n is normwise backward stable with the constant

= (3V3+1v2+3) (log;n — 1) ~ 6.016508 (log, n — 1).

Proof. We apply Algorithm 3.2 and the proof of Theorem 5.3. For arbitrary x € R"™, let
y = /1 CIV x, where /i CIV can be factorized by (2.8) in the form

Vil = P AL (Vin Ol @ v/) Sa(1)

28

with S, (1) = \/§Tn(1). In step 1 of Algorithm 3.2 we compute G = ﬂ(Sn(l)X). The

corresponding error vector e!) is defined by
a=25,(1)x+el.
By Lemma 5.2, (iii) (with b = v/2 and ¢, = 1) we obtain that
le™ll2 < (56 + vZ + Ou)) u |Ix|2

and hence |[all; < (\/§—|— O(w)) ||x]|2-
In step 2 of Algorithm 3.2 we get the computed vector v = fl ((/n:C & \/niCI)h)
with the corresponding error vector e(?) defined by

v = (\/nlcg D \/nlcg) a + 6(2)

In order to compute v, we apply the fast DCT-II Algorithm 3.1 of length n; two times.

Using (5.18), we can estimate

le®ls < 2092 ((3v3 + 5v2 4 3)(1 = 2) = 1 = V2 + O(u))

and thus

ull2

VI < (Vir 4 O(u)) [[allz < (Vi + O(w)) [Ix]]2.

Let y be the computed vector ﬂ(PEAn(l)ff) with the corresponding error vector e(®
explained by

y=PIrA,(1)v +e®.
From Lemma 5.2, (i) (with « = v/2/2 and ¢; = 1/2) it follows that
2 < (24 3V2+ O(u)) u [[¥]]2-

By
v =y + Pl A1) (Vi Ol e g Ol e + PT AL (1) e® + e®

we find the estimate

Vi l[e®llz + (el + (e
Vi ((5V3+5V2+3)(t = 1) = 1 = 5V2+ O(u)) u |[x]..

Finally, we scale this result by 1/y/n and obtain the wanted constant k, by (5.14). O

<
<

Remark 5.5 Let n = 2' (¢ > 3). In [2], it has been shown that for computing z = Cllx
one has normwise backward stability with

(i) k. = V2n%? for classical matrix—vector computation,

(il) k, = (4\/5 +2)log,n + V2 for an FFT-based DCT-11 algorithm, and

(iii) k, = 2v/3 (n — 1) for the real fast algorithm [19] based on polynomial arithmetic.
In these algorithms, the nontrivial entries of the factor matrices were assumed to be
precomputed exactly. As shown in Theorems 5.3 and 5.4, the fast DCT-II and DCT-1V
algorithms are extremely stable with a constant which is comparable with the constant
for the FFT-based DCT-II algorithm.

The similarly small constant

= (33 + 1V2 4+ 3)(logyn — 2) + 2 + £4/2 ~ 6.016508 log, n — 7.911695

29

is achieved for the DCT-1 Algorithm 3.6 (involving Algorithms 3.7 and 3.8) under the

assumption that the values
V2, V2 cos g V2 sin A, (k=1,...,270 — 1)

are precomputed with the absolute error bound w and including the final scaling with
1/v/n. Under the same assumption, the fast DCT-II1 Algorithm 3.7 (involving Algorithms
3.6 and 3.8) possesses the stability constant

= (33 + 1V2 4+ 3)(logyn — 1) + 3 + /2 ~ 6.016508 log, n — 0.895188

after the final scaling with 1/\/n. The corresponding proofs use again matrix factoriza-
tions and are omitted here.

Considering the numerical stability of the MDCT-II Algorithm 3.4, we obtain only a
constant k, = O(y/n log, n). Hence the MDCT-II algorithm is much less stable than the
above DCT-II Algorithm 3.1, but behaves better than the polynomial DCT-II algorithms
considered in [2]. The larger constant k, is due to the fact that all matrices A/ (8,) and
SH(B,), s = 1,. — 2, as well as 5,(8,_;) are not longer orthogonal, but have the

spectral norm \/_ In particular we obtain
Theorem 5.6 Let n =2 (t > 3). Assume that
\/5, V2 cos g, V2 sin g

are precomputed with absolute error bound u and that the values

(2k+1)m s (2k+1)7w
COS ooz, 8N o

with k =0,...,2°—1 and s = 1,...,t —2 are precomputed with absolute error bound u /2.
Then the fast MDCT-I1 Algorithm 3.4 is normwise backward stable with the constant

ko o= Vi ((GVE+ V24 Dllogyn —1) + 3V3 4+ 4v2+ 1)
~ 1.920050 /n log, n + 0.588204 v/n.

Proof. The proof follows similar lines than that of Theorem 5.3. Using analogous no-
tations as in the proof of Theorem 5.3 for x(*), x(*), e(®) s = 0,....2t — 1, where the
matrices A,(8,), Su(B,), s = 0,...,t — 2 are replaced by Al (83,), S.(3,), we find by
1S5.(8:)l2 = 1 Pals) AL(B2 = V2 for s = 0,.... ¢ — 2 and [|S,(8,_,)ll2 = V2 that

s—|—1 H

Oy 4]l s=0,...,2t =2

By Lemma 5.2 we obtain that
e, < (3V3+ V24 O(u))u
le?l: < (5V6+ V2 +O(u))

lel™]|y < (V2414 O(u) u

and by A’ (B,) = I, we have =Y = 0. Thus, with

A<5>H2, s=0,...,t—2,
t IH

t—I—s

HQ, SZO,...,t—g,

[0 < (2642 1 O()) Ixllsr s =0,...,2t -2,

30

it follows that

e, < 2 (1VE+VE+O() ulxls 5= 00—
ey < 20=D/2 (L6 4+ /24 O(u)) u ||x]f2,
He(t-l-s-l-l)H2 < 20s+1)/2 <\/§_|_ (’)(u)) u ||x][2, s=0,...,t—3.
Hence,
}2(21‘—1) _ X(27§—1)H2
< | Pa(DALBY) - - Palt = 2)AL(B,) Su(Bim)Si(Biza) - - S1(B) |2l €M
o P AL B 2|2 + [le@ 2y
262
< Z 275—1—5/2 He(s)H2
s=1
< 2w (BVE+3V2+ Dt —1) + 28— 12+ O(w)) |[x]|2-
After scaling with 27%/2 we find the result by (5.14). O
Acknowledgment

The authors would like thank one of the referees for the very useful comments and hints
to improve that paper. Further we thank K. Thsberner for several corrections.

References

1]

H. Ahmed, T. Natarajan, and K. R. Rao, Discrete cosine transform, IEEE Trans.
Comput. 28 (1974), 90-93.

G. Baszenski, U. Schreiber, and M. Tasche, Numerical stability of fast cosine trans-
forms, Numer. Funct. Anal. Optim. 21 (2000), 25-46.

V. Britanak, A unified discrete cosine and discrete sine transform computation, Signal

Process. 43 (1995), 333-339.

W. H. Chen, C. H. Smith, and S. Fralick, A fast computational algorithm for the
discrete cosine transform, IEEE Trans. Comm. 25 (1977), 1004-1009.

L. Cheng, H. Hu, and Y. Luo, Integer discrete cosine transform and its fast algorithm,

Electron. Lett. 37 (2001), 64-65.

[. Daubechies and W. Sweldens, Factoring wavelet transforms into lifting steps, J.

Fourier Anal. Appl. 4 (1998), 247-269.
E. Feig, A scaled DCT algorithm, Proc. SPIE 1244 (1990), 2-13.

E. Feig and S. Winograd, Fast algorithms for the discrete cosine transform, IEEE
Trans. Signal Process. 40 (1992), 2174-2193.

M. T. Heideman, D. H. Johnson, and C. S. Burrus, Gauss and the history of the fast
Fourier transform, Arch. Hist. Exact Sci. 34 (1985), 265-277.

N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia,
1996.

31

[11]
[12]

[13]

[14]

[15]

[24]
[25]
[26]

[27]

H. S. Hou, A fast recursive algorithm for computing the discrete cosine transform,

[EEE Trans. Acoust. Speech Signal Process. 35 (1987), 1455-1461.

B. Lee, A new algorithm to compute the discrete cosine transform, IEEE Trans.
Acoust. Speech Signal Process. 32 (1984), 1243-1245.

L. Loeffler, A. Lightenberg, and G. S. Moschytz, Practicle fast 1-d DCT algorithms
with 11 multiplications, Proc. IEEE Internat. Conf. Acoust. Speech Signal Process.
(1989), 989-991.

M. Piischel and J. M. Moura, The algebraic approach to the discrete cosine and
sine transforms and their fast algorithms, SIAM Journal of Computing 32 (2003),
1280-1316.

K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Appli-
cations, Academic Press, Boston, 1990.

C. Runge and H. Konig, Lectures on Numerical Arithmetic (in German), Springer,

Berlin, 1924.

U. Schreiber, Fast and numerically stable trigonometric transforms (in German),

Thesis, Univ. of Rostock, 1999.

A. N. Skodras and C. A. Christopolous, Split-radix fast cosine transform algorithm,
Internat. J. Electr. 74 (1993), 513-522.

G. Steidl, Fast radix—p discrete cosine transform, Appl. Algebra Engrg. Comm. Com-
put. 3 (1992), 39-46.

G. Steidl and M. Tasche, A polynomial approach to fast algorithms for discrete
Fourier—cosine and Fourier—sine transforms, Math. Comput. 56 (1991), 281-296.

G. Strang, The discrete cosine transform, SIAM Rev. 41 (1999), 135-147.

C. W. Sun and P. Yip, Split-radix algorithms for DCT and DST, Proc. Asilomar
Conf. Signals Systems Comput., Pacific Grove, 1989, 508-512.

M. Tasche and H. Zeuner, Roundoff error analysis for fast trigonometric transforms,
in: Handbook of Analytic—Computational Methods in Applied Mathematics, G. Anas-
tassiou (ed.), Chapman & Hall/CRC, Boca Rota, 2000, pp. 357-406.

C. F. Van Loan, Computational Framework for the Fast Fourier Transform, STAM,
Philadelphia, 1992.

7. Wang, Fast algorithms for the discrete W transform and the discrete Fourier
transform, IEEE Trans. Acoust. Speech Signal Process. 32 (1984), 803-816.

Z. Wang, On computing the discrete Fourier and cosine transforms, IEEE Trans.

Acoust. Speech Signal Process. 33 (1985), 1341-1344.

H. Zeuner, A general theory of stochastic roundoff error analysis with applications

to DFT and DCT, J. Comput. Anal. Appl., to appear.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF DUISBURG-ESSEN,
D - 47048 DUISBURG, GERMANY

INSTITUTE OF MATHEMATICS, UNIVERSITY OF ROSTOCK,
D - 18051 ROSTOCK, GERMANY

E-mail addresses: plonka@math.uni-duisburg.de
manfred.tasche@mathematik.uni-rostock.de

32

