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“ He that breaks a thing

to find out what it is

has left the path of wisdom.”
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1 Introduction

Although the history of iron converting can be traced back long before Christ [1], steel
had over the centuries only a minor role as material. It was in most cases only used
in war techniques. This changed around the 19th century with the beginning of the
industrial revolution, inventions like the steam engine (1712 by Thomas Newcomen) and
the railway, the market for steel grew rapidly. In the middle of the 19th century faster
production methods were developed by Henry Bessemer (1855) and Sidney Gilchrist
Thomas (1855) to cover the demand. But with this new market also new requirements
were made on the produced components. They had to stand high pressure or enormous
forces. As a consequence, there were too many accidents like boiler explosions, derailing
or even bridge collapses, often caused by only little defects in some components. Reliable
methods for material testing had to be developed.

Until the end of the 19th century there were no e↵ective methods for testing steel com-
ponents. Although one was able to evaluate several material properties, it was hardly
possible to find defects inside the material. This changed with the discovery of x-rays by
Wilhelm Conrad Röntgen in 1895. But while x-rays came to immediate use in medical
science the use in non-destructive material testing was problematic. The equipment was
big and expensive, the testing process was time-consuming and dangerous, and only thin
material could be tested. Due to these facts the x-ray non-destructive testing did not
become important until 1930. With the discovery of the piezoelectric e↵ect (page 9) by
Pierre Curie in 1883 the foundation for ultrasonic testing was laid. Ultrasonic testing did
not possess the disadvantages of x-rays but it still took 60 years until the first feasible
equipment was produced.

The historical introduction above shown is based on [2]. Nowadays there are many di↵er-
ent non-destructive testing methods known based on x-rays, ultrasound, eddy current or
other techniques. However, while non-destructive testing techniques are still enhanced,
the automation of the complete steel production process presents new problems. The
data given by the non-destructive testing method has to be analysed in a fast and reliable
way without slowing down the production.

In this thesis a fast and stable algorithm for ultrasonic data is introduced that is able to
reconstruct main features of a defect e.g. position, form, size and type. For this purpose,
Chapter 2 will shortly introduce the technique of ultrasonic non-destructive testing.
Chapter 3 will touch upon the currently known methods from the field of non-destructive
testing as well as the ideas from close-by fields like inverse scattering. The remaining
chapters of this thesis will describe our new approach to the problem. Chapter 4 will
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1 Introduction

provide a simple model for ultrasonic non-destructive testing and Chapters 5 to 8 will
focus on a new inversion method for this model. Chapter 9 will present numerical results
as well as a comparison to the methods shown in Chapter 3. Finally, the last chapter
will conclude this thesis.
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2 Ultrasonic Non-Destructive Testing
(NDT)

In this chapter we give a brief introduction to the physical and technical background
of the methods considered in this work. The first section covers the emergence and
behaviour of ultrasound in steel. For a better understanding this is done in an illustrative
way following [3]. For more information we refer to [4–6] and references therein or to [7]
for a detailed mathematical introduction. We would also like to mention [8] where
a short introduction into ultrasound and its applications in non-destructive testing is
given including a number of tables listing material constants needed in this work.

The second section of this chapter will illuminate the generation and measuring of ul-
trasound. The di↵erent methods of ultrasonic testing will be introduced and their mode
of operation will be illustrated.

2.1 Principles of Ultrasound

2.1.1 Oscillations and Waves

Before we can understand the propagation of ultrasound in materials it is necessary to
understand oscillations and waves. To demonstrate oscillation we consider an object
that is elastically fixed at a point. If we now stretch the object away from its origin and
release it, it will be pulled back to the origin because of the elastic fix. Furthermore,
due to the speed it has at the origin, it will move across it and drift away stretching
the elastic fix again (Figure 2.1). Note that we do not consider a loss of energy in this
chapter. Oscillations and waves usually decrease over time by e↵ects like reflection,
refraction, friction and others but this decrease will be specified later on.

In solid materials like steel, the particles are not fixed to a certain point but elastically
bounded by their neighbouring particles (Figure 2.2). If one particle starts to oscillate, it
will a↵ect its neighbours which will now also start to oscillate. Thus a wave propagates
through the particle grid. Note that a time shift appears between the oscillation of
two neighbouring particles caused by the elastic bound between them. In order to
illustrate this e↵ect, we will consider two special cases. In the first case we look at the
behaviour of the grid in perpendicular direction to the oscillation. Therefore we consider
the first column to oscillate in vertical direction while all vertical connections stay fixed

3



2 Ultrasonic Non-Destructive Testing (NDT)
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Fig. 2.1: Oscillation of a elastically fixed object (left) and expansion plotted over time (right).

(Figure 2.3). This e↵ect is the so-called transverse wave. In the second case, we consider
an oscillation in horizontal direction while all vertical connections still stay fixed (Figure
2.4). This wave is called the longitudinal wave. In practice the appearing waves will
always be a combination of both types. Note that the propagation shown in Figures 2.3
and 2.4 only holds far away from boundaries.

Fig. 2.2: Sketch of a particle grid.

wavelength

Fig. 2.3: Wave propagation perpendicular to the oscillation.

Let us now introduce some ultrasound parameters needed for later on discussions. For
this purpose, we only consider isotropic homogeneous materials in this work. For non-
homogeneous materials we refer to [9]. In isotropic homogeneous materials the prop-
agation speed of ultrasound is constant and depends on the wave type. In steel, the
longitudinal wave has approximatively a speed of 5.94mm

µs

while the transversal wave
only propagates with 3.29mm

µs

[8]. These values can di↵er depending on the type of steel,
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2.1 Principles of Ultrasound

wavelength

Fig. 2.4: Wave propagation in oscillation direction.

other values might also be found in di↵erent literatures. For the applications considered
in this work this large speed di↵erence leads to the situation that the transversal waves
will usually be measured a long time after the last relevant longitudinal wave has been
recorded. Hence we only consider longitudinal waves in our model as done in [10] and
denote

c = 5.94
mm

µs
. (2.1)

The frequency ! of a wave is defined by the oscillations of a particle per second. If
the frequency is above 20kHz (10

3

s

), it is called an ultrasound wave [5]. For ultrasonic
testing ! is normally taken between 0.5Mhz and 10Mhz [3]. Furthermore, we define the
amplitude of a wave by the maximum deflection (Figure 2.1) and the wavelength � by
the distance in mm between to points in the wave with the same deflection (Figure 2.3
and 2.4). Note that

!� = c (2.2)

holds [3]. Now we have analysed the emergence and behaviour of ultrasound far away
the boundary. To understand the phenomena of reflection, refraction and di↵raction, we
first have to introduce the Huygens principle in the next subsection.

2.1.2 Huygens Principle

In 1690 Christiaan Huygens published his work ”Traité de la lumière” (Treatise on
light [11]) where he showed the e↵ect of reflection and refraction with a simple principle
that was named after him later. Although his work was mainly applied to light waves,
the principle can be used for all types of waves and also explains the e↵ect of di↵raction.

5



2 Ultrasonic Non-Destructive Testing (NDT)

”There is the further consideration in the emanation of these waves,
that each particle of matter in which a wave spreads, ought not to com-
municate its motion only to the next particle which is in the straight
line drawn from the luminous point, but that it also imparts some of
it necessarily to all the others which touch it and which oppose them-
selves to its movement. So it arises that around each particle there is
made a wave of which that particle is the centre. ...” [11]

For a better understanding of this principle we first denote a wave front [5, 12] as those
neighbouring points with same phase, this means with same displacement to their origin.
In Figure 2.4, all particles in one column build a wave front while the distance between
two wave fronts of the same phase is the wavelength. Far away from boundaries all
particles that start to oscillate at the same time build a wave front. For isotropic
homogeneous media this means all particles with the same distance to the source build a
wave front. Figure 2.5 shows typical wave fronts for di↵erent sources. Note that e↵ects
at boundaries like reflection can cause interference of ultrasound waves and thereby
influence the shape of the wave fronts.

Fig. 2.5: Typical wave fronts (thin) for di↵erent sources (thick).

We now understand “each particle of matter in which a wave spreads” as the wave front
with the largest distance to the source. This means the boundary between oscillating
and not yet oscillating particles. Huygens principle can be illustrated as shown in Figure
2.6, where each particle of the old wave front is the center of a so-called elementary wave,
a half sphere in propagation direction with radius depending on the ultrasound speed
and the considered time step. The closure of all elementary waves is the new wave front.

6
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source
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Fig. 2.6: Huygens principle for a point source (left) and a plane wave (right).

2.1.3 Reflection, Refraction, Di↵raction

With the help of Huygens principle we will now demonstrate the e↵ect of reflection,
refraction and di↵raction at boundaries, see also [3, 5, 13, 14]. In the last subsection the
principle was shown for waves far away from the boundary. If a wave approaches a
boundary we can observe di↵erent e↵ects depending on the type of the boundary.

The first e↵ect appears when a wave hits a (straight) surface. The elementary waves at
the boundary build a new wave front that propagates as a reflected wave. Note that
at boundaries also mode conversion may occur. This means, a part of the incoming
wave is converted to a di↵erent wave type, i.e. an incoming wave will cause a reflected
transversal and longitudinal wave. We only consider longitudinal waves in our model so
we do not consider the e↵ect of mode conversion. Figure 2.7 (top) shows the reflection of
an incoming ultrasound wave without mode conversion. Because the ultrasound speed
stays the same, the angle of reflection is equal to the angle of incidence. The mode
converted elementary waves have a di↵erent speed and the wave is reflected at a di↵erent
angle similarly to the e↵ect we will see at refraction.

Next we will analyse di↵raction. This e↵ect takes place at the edges of boundaries. Here
it seems as if ultrasound can travel round the defect. At first glance this seems to be
unlikely but remember that the new wave front is the closure of all elementary waves.
As soon as a wave passes the edge, these elementary waves are no longer restricted by
the boundary and the wave propagates around the edge. Figure 2.7 (middle) shows this
e↵ect for a wave propagating perpendicular to the boundary.

While reflection and di↵raction are e↵ects that take place in the same material, refraction
explains the transfer of ultrasound between two bordering materials. An ultrasound
wave that propagates to a boundary will also cause elementary waves in the bordering
material. These elementary waves build a new wave front. Because the ultrasound speed

7
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in both materials may di↵er, the refracted wave propagates in a di↵erent direction. The
connection between incoming and refracted angle can be explained by Snell’s law [3, 5]

sin↵

sin�
=

c
1

c
2

,

where c
1

and c
2

is the ultrasound speed in the materials and ↵ and � are the propagating
angles (see Figure 2.7 (bottom)). Snell’s law can also be applied to the reflection angle
of a mode converted wave. Note that for (c

2

/c
1

) sin↵ > 1, there is no possible solution
for �. This means no refraction (or mode converted reflection) takes place. The angle ↵
with (c

2

/c
1

) sin↵ = 1 is called critical angle [5]. Figure 2.7 (bottom) shows the e↵ect of
refraction.

↵ ↵

↵

�

Fig. 2.7: Huygens principle for reflection (top), di↵raction (middle) and refraction (bottom).

2.2 Ultrasonic NDT Methods

In this section we will discuss the use of ultrasound for non-destructive testing methods.
Therefore we first have to learn how to excite and measure ultrasonic waves. This can be
done with the piezoelectric e↵ect explained in the next subsection. Later in this section

8



2.2 Ultrasonic NDT Methods

we will introduce di↵erent testing techniques and see how they take advantage of the
di↵erent e↵ects reflection, refraction and di↵raction.

2.2.1 The Piezoelectric E↵ect

The piezoelectric e↵ect is very important in the exciting and measuring of ultrasound.
This section will only deliver a short insight to this phenomenon. For detailed infor-
mation we refer to [3, 4] and the references therein. A short review can also be found
in [5].

To test a component part with ultrasound, one needs to be able to create an ultrasonic
impulse with desired properties like direction, amplitude and frequency. The most com-
mon way to do so, is to use piezo elements like barium titanate [3]. These elements have
the property to change in size if a voltage is applied. Depending on the voltage direction
it increases or decreases. This is called the reverse piezoelectric e↵ect. Therewith it is
possible to regulate the amplitude and frequency of the generated ultrasound directly.

While the reverse e↵ect is used to create ultrasound, the direct piezoelectric e↵ect can
be used to measure it. If mechanical stress is applied to a piezo element, it creates a
voltage that can be measured. That means, if an ultrasonic wave hits the piezo element
the amplitude and frequency can be measured by measuring the created voltage. Figure
2.8 illustrates the piezoelectric e↵ect, whereat both directions are possible: Mechanical
stress is applied and voltage is created or voltage is applied and the piezo element changes
in size.

-
+

+

-

Fig. 2.8: Piezoelectric e↵ect.

Most of the probes used nowadays are mainly based on the piezoelectric e↵ect. A piezo
element is attached to an electric circuit. Thus the probe can be used as an emitter or
receiver by using the reverse or direct piezoelectric e↵ect. We would like to mention at
this point that the probes used nowadays also have some further techniques to focus the
generated ultrasound, see [3, 4].

2.2.2 Measuring with Ultrasound

This subsection will give a short introduction into the general set-up of ultrasonic non-
destructive testing. For detailed information see [3, 4, 15]. Understanding the function-
ality of ultrasound probes, this general set-up can be explained as shown in Figure 2.9.
An electric impulse is applied to the emitter which converts it into an ultrasonic impulse.
This impulse is inducted into the component. Depending on the inner structure of the
component, parts of the ultrasound itself and reflections and di↵ractions of it reach the

9



2 Ultrasonic Non-Destructive Testing (NDT)

receiver that converts the signal back into electricity producing the measured data. Nor-
mally, a coupling liquid is placed between the probes and the component, but we do not
attend to it in this short introduction.

electric impulse

Emitter

ultrasonic impulse

Steel

ultrasound

Receiver

electricity

measured data

Fig. 2.9: Set-up for ultrasonic testing.

Note that Figure 2.9 assumes only one emitter and receiver which is typical for ultrasonic
non-destructive testing. That way, the methods are more flexible and transportable. In
order to gather a high amount of data, several measurements are made with di↵erent
probe positions. Thus one speaks about a-scan and b-scan data. The a-scan is the data
of one measurement with fixed probes positions, it is a graph of the measured electricity
over time (see Figure 2.10 (left)). The b-scan is a two-dimensional matrix where each
column contains an a-scan, i.e. it is a two dimensional structure where one dimension
is the time and the other dimension describes the probe position. For example, if we
move the probes along a line, we get a two-dimensional b-scan as shown in Figure 2.10
(right), where each column stands for a probe position on this line. One fixed column
is just the grey-scaled a-scan belonging to this probe position. If we move the probes in
more than one direction, we obtain higher dimensional b-scans.

Now we want to classify ultrasonic testing methods into two classes depending on the in-
coming ultrasound. The first class is called impulse-echo technique. Thereby, the emitter
and receiver are placed in a way on the component such that reflections or di↵ractions of

10



2.2 Ultrasonic NDT Methods

Fig. 2.10: A-scan (left) and b-scan (right).

defects in the component reach the receiver. Figure 2.11 (left) shows a typical example
where one probe, emitter and receiver in one, is placed on the surface of the component.
The emitted ultrasound will be reflected by the defect and on this way propagates back
to the probe. As we will see later, there are also di↵erent examples, where emitter and
receiver are placed di↵erently to measure diagonal reflections / di↵ractions.

The second class is the so-called transmission technique. Here the receiver is placed on
the opposite border of the material such that a possible defect is situated between both
probes. Unless there is a defect in the component, the transmitted ultrasound reaches the
receiver in an extenuated form (see Figure 2.11 (right)). The impulse-echo technique is
much more common because the measured signals contain information about the defect
boundary, and hence more conclusions about the defect are possible. For example, the
current time of the ultrasound is directly related to the distance between defect and
probes. The algorithm presented in this work also needs this information, thus we will
now concentrate on impulse-echo techniques.

defect

emitter + receiver

defect

emitter

receiver

Fig. 2.11: Impulse-echo (left) and transmission technique (right).

One can find plenty of di↵erent impulse-echo techniques in the field of non-destructive
testing, some of them highly adapted to their testing problem. In this work we will

11



2 Ultrasonic Non-Destructive Testing (NDT)

specifically concentrate on two methods that will be introduced in the next subsections:
the Time-of-Flight-Di↵raction technique [3, 10, 16–18] and the wall thickness measure-
ment [3, 4].

2.2.3 Time of Flight Di↵raction (ToFD)

The first method we want to present is the Time of Flight Di↵raction technique. As
implied by its name, this technique makes use of the di↵raction e↵ect. A typical applica-
tion is the inspection of welds. It operates with two probes, one emitter and one receiver,
that are placed symmetrically to the weld. The emitter transmits an ultrasound impulse
that propagates to the weld. If there is a defect in the weld, the di↵raction caused by it
will propagate to the receiver and hence will be measured. Thus the ToFD method can
detect the defect.

Besides the di↵raction, there are three other signals that can appear in the measured
data: the lateral wave, defect reflections and the back wall echo. The lateral wave is the
first signal that arrives at the receiver. It is the ultrasound wave that directly travels from
the emitter to the receiver on the shortest way. The back wall echo is the last signal that
appears, it is the reflection of the lower boundary of the component. Both, the lateral
wave and the back wall echo, appear in almost every measurement and are typically
very strong signals. All signals in the meantime are caused by di↵ractions from defects
and material inhomogeneities. In some cases one may also measure reflections from the
defect surface, but this signal mostly has a very low amplitude and often disappears in
the noise. Figure 2.12 illustrates the ToFD technique.

emitter receiver

weld

lateral wave
reflection
di↵raction
backwall echo

Fig. 2.12: Time of Flight Di↵raction method (ToFD).

To inspect the whole weld one needs more than one measurement. Thus after one
measurement is done both probes are moved parallel to the weld by a fixed small distance
and another measurement is done. That way one gets a two-dimensional b-scan as shown
in Figure 2.13. Here every column is an a-scan of a fixed probe position. One can see the
typical parabola-like patterns of a defect measurement, the larger the distance between
probes and defect the later the di↵racted signal arrives.
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2.2 Ultrasonic NDT Methods

defect

lateral wave

backwall echo

Fig. 2.13: ToFD b-scan.

2.2.4 Wall Thickness Measurement

The second method we would like to introduce is a typical application of an impulse-echo
technique with one probe acting as emitter and receiver at once. It seems clear to use
non-destructive testing methods to find defects inside a component. But even defects
that are on the surface can be hard to find if the surface is not easily accessible. For
example, the inner surface of a tube may be hard to analyse. Thus one needs a method
that can “see” through the outer surface to inspect the inner one. This can be done with
a wall thickness measurement. Therefore a probe, emitter and receiver at once, is placed
on the outer surface. It emits ultrasound waves in the direction of the inner surface
which reflects them back to the probe. Because there is a direct correlation between
the arrival time of the reflection and the wall thickness, one can reconstruct the inner
surface. Figure 2.14 shows the set-up of a wall thickness measurement.

emitter + receiver

Fig. 2.14: Wall thickness measurement.

In order to reconstruct the inner surface, one needs to move the probe across the whole
outer surface. This means it is moved in two dimensions implying a three-dimensional
b-scan. Figure 2.15 shows a cut-out of such a b-scan where, again, each column belongs
to a probe position on a line on the surface. One can see not only one but multiple
reflections of the back wall and the defect. A part of the reflected ultrasound does not
arrive at the probe but is reflected again at the outer surface, then reflected again at
the inner surface and so on. On this way several back wall echoes with a decreasing
amplitude can be measured. Another monitored signal is the surface reflection. When
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2 Ultrasonic Non-Destructive Testing (NDT)

the ultrasound is emitted, only a part of it enters the component, the rest is directly
reflected to the probe. Thus a surface reflection can be measured right at the beginning.

defect backwall echos

surface reflection

Fig. 2.15: Two-dimensional out-cut of a wall thickness measurement b-scan.
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3 Defect Reconstruction: State of the Art

We have seen how ultrasonic non-destructive testing is applied in practice. Further-
more the physical background is well understood [3, 4, 7]. Thus for a known defect the
ultrasonic data of a non-destructive testing method can be easily modelled. However
the so-called inverse problem of reconstructing the defect out of given data, is often
“ill-posed”. This means small noise on the data may lead to big errors in the reconstruc-
tion, besides there may be even no or no unique solution. To obtain numerically stable
inversion algorithms one needs to use a regularisation and/or a-priori information. An
introduction to inverse problems can e.g. be found in [19] and the references therein.

In the past, many heuristic and mathematical methods were developed to solve this
ill-posed problem. Before we introduce our own algorithm we will consider the methods
currently available in this chapter. For a better overview we classify all methods based
on their original research field. The first section will present algorithms from the field of
non-destructive testing. The next section is about theoretical results in inverse scattering
and the last section will give an introduction to di↵erent related fields of research.

Note that although we only present the main ideas in this chapter, a complete algorithm
consists of several improvements, pre- and post-processing methods. More information
can be found in [20,21] and the references in the di↵erent subsections.

3.1 Reconstruction Methods in NDT

In this section we would like to introduce two methods used in non-destructive testing.
We begin with an elementary method based on gates. The second method is called
“Total Focusing Method” (TFM) and includes a number of slightly di↵erent techniques
as we will see. At the end of this section there will be a short subsection with an overview
of other reconstruction methods being used.

3.1.1 Applying Gates

The application of a threshold [22] is a tool that is often used for denoising in signal-
and image-processing. In [3, 4] a similar idea for a-scans is introduced. A gate can best
be explained as a time limited threshold. It consists of a time interval and a threshold
value. Depending on the type of gate, every amplitude that is measured in this time
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3 Defect Reconstruction: State of the Art

interval and that is above (or below) the threshold value, is recorded. For example,
Figure 3.1 shows a gate applied to a ToFD a-scan where the time interval begins right
after the lateral wave and ends before the back wall echo. The threshold value needs to
be chosen in such a way that the noise level is below the gate but a defect reflection will
exceed it. Thus if we apply the gate to a whole b-scan we obtain the relevant amplitudes
as shown in Figure 3.2. However, the determination of suitable threshold values is a
very delicate problem depending on e.g. the noise level and probe characteristics.

backwall echo
lateral wave

gates

defect

Fig. 3.1: Gate applied on ToFD a-scan.

Fig. 3.2: Raw ToFD data (left) and after applying a gate (right).

Further an amplitude that falls below a certain gate can also be a very useful information.
For instance if we choose the time interval such that only the back wall echo is included,
an underrun of the threshold might be caused by a back wall defect [3, 4].

This technique reduces the amount of data in a fast and simple way. It can be used as a
preprocessing step in automated or half-automated testing methods [23] or supportingly
in manual inspections. Thus the use of multiple gates is nowadays implemented in most
ultrasonic testing devices [24, 25].

3.1.2 Total Focusing Method (TFM)

The Total Focusing Method is a reconstruction method based on the amplitude arrival
time similar to the methods we considered in [10]. With given ultrasound speed, probes
positions and arrival time one can backtrack the signal to all possible scattering points.
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3.1 Reconstruction Methods in NDT

For instance, if we assume the ultrasound speed to be constant, an amplitude measured
at a special time can only be caused by points lying on an ellipse (or spheroid in the three
dimensional case, which is an ellipsoid with two equal diameters) with the emitter and
receiver positions as focal points (see Figure 3.3). For all points lying outside this ellipse
the signal would be measured later and for all points inside, it would arrive earlier. Thus
for all measured amplitudes one is able to find a set of points that may have caused this
signal.

emitter receiver

possible points

Fig. 3.3: Total Focusing Method for one emitter and receiver.

Now the reconstruction with TFM works as follows. First one discretizes the component
usually by a Cartesian grid. Then for all amplitudes the set of possible scattering points
is calculated and approximated with a set of points on the grid. Thus, we can assign a
value to each point on the grid that is the sum of all amplitudes where this point is a
possible scatterer, or 0 if the point does not belong to any set. The idea here is that the
amplitudes sum up to a high value at the defect position while the value is staying low
at the other grid points. Thus one can reconstruct the defect by taking the grid points
with high function values.

This reconstruction technique can be used for any number of probes acting as emitter
or receiver, for more information see [26]. If we use TFM with only one probe acting
as emitter and receiver at once we obtain the “Synthetic Aperture Focusing Technique”
(SAFT). This special case is a typical application for TFM. Detailed information to
SAFT can be found in [7] or see also [3, 4, 27]. Note that the idea of TFM can also be
expanded to anisotropic media [28].

Figure 3.4 illustrates the reconstruction with SAFT for a simulated ToFD dataset. The
position of the material surface, the back wall and the defect is clearly noticeable. Nev-
ertheless, TFM and SAFT do only reconstruct an image of the material. Hence, to
get information about the included defect, post processing is required. Moreover, since
the wave structure is still contained in the reconstruction, these methods are naturally
limited in their resolution by the wave length.
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Fig. 3.4: Simulated ToFD data (left) and SAFT reconstruction(right).

3.1.3 Further Reconstruction Methods

Apart from TFM there are many other reconstruction techniques. Some of them are
highly adapted to a special testing method. In this subsection we will introduce two
further methods, one based on eigenvalue decomposition and one on a non-model based
technique. For an overview of reconstruction methods we refer to [3, 4, 29,30].

In [31] an algorithm using Time Reversal (TR) and Multiple-Signal-Classification
(MUSIC) is presented. Here one uses the fact that the eigenvalues of the so-called
Hermitian time-reversal-matrix correspond to the di↵erent scatterers. With the help of
MUSIC one is able to calculate those singular values. Since the Hermitian time-reversal-
matrix is a N ⇥ N matrix where N is the number of probes used, one needs at least
as many probes as defects for this reconstruction technique. This method is especially
used for small defects (point scatterers). For further readings also see [12, 32,33].

Until now we have only considered reconstruction methods based on a physical model of
the problem. A di↵erent approach is the use of neural networks. Depending on the input
data a neural network decides whether and what kind of defect is on hand. This method
possesses two disadvantages. First because of the high amount of ultrasound data the
input has to be reduced to the most relevant features. Second the neural network has
to be trained, meaning that one needs a set of feature vectors where the desired output
is already known. With the help of this set one can adapt the network in a way so that
it yields the desired output. The success of a neural network will highly depend on the
choice of the features and the training set. An introduction to neural networks can be
found in [34,35], for the use in non-destructive testing see [36–38].

3.2 Inverse Scattering

Now that we have seen reconstruction methods developed in the NDT community, we
will concentrate on the mathematical point of view. In applied mathematics the field of
inverse scattering engages the problem of reconstructing an object out of scattered data.
This can be done by solving an inverse problem involving partial di↵erential equations
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3.2 Inverse Scattering

(PDEs) that describe the behaviour of waves in media. This section will give a short
introduction to direct and inverse scattering and the reconstruction methods developed
therein. Furthermore we will consider the limited aperture case, which discusses the
reconstruction from incomplete data. For more information about inverse scattering we
refer to [7, 39–42].

3.2.1 The Direct and Inverse Problem

Let us first introduce the direct and inverse scattering problem in an illustrative way for
the one-dimensional case following [42]. Afterwards we will discuss the mathematical
problem for the three-dimensional case based on [39].

Consider an infinite homogeneous, isotropic medium in R with density p. The function
u(x, t) with x 2 R and t 2 [0,1) describes the displacement of the particle at position
x at time t. We call u the wave function. Note that, caused by oscillations, the position
of a particle changes over time. Thus one normally should consider a function u(x(t), t)
where the position is time-dependent. Assuming that the time dependence of x has only
minor e↵ects, we only study the simplified model of a linearised function u(x, t).

Now we assume a force that impacts this medium and analyse the behaviour of the wave
function. Therefore let F (x, t) be the force applied to the particle at position x at time t.
Let I = [x, x+"] be an interval. Then the e↵ective force acting on I is F (x, t)�F (x+", t)
the di↵erence between incoming and outgoing force. The acceleration of a particle at
position x is given by the second derivative of its displacement function u

tt

(x, t), where
we denote the derivative by a lower index. Now Newton’s second law gives us

F (x, t)� F (x+ ", t) = p" · 1
"

Z

I

u

tt

(x, t)

where p is the density of the material, or in the limiting case ("! 0)

F
x

(x, t) = pu
tt

(x, t)

By Hooke’s law we have a linear dependence between the applied force F (x, t) and the
strain of the material, i.e. the change of size under this force, thus u

x

(x, t). We obtain

F (x, t) = E · u
x

(x, t) ) F
x

(x, t) = E · u
xx

(x, t)

with Young’s modulus E that is a material constant. Combining both formulas we
obtain the wave equation

c2u
xx

� u

tt

= 0

with the wave velocity c =
p
E/p.
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Now let us consider the three-dimensional case following [39]. Therefore let x 2 R3,
t 2 [0,1) and

u(x, t) : R3 ⇥ [0,1) ! C (3.1)

be the wave function. We consider u 2 C2 to be two times continuously di↵erentiable
and u(x, ·) 2 L2 for all x 2 R3, meaning that its Fourier transform w.r.t. the time exists.
Then the following notations are well-defined and the three-dimensional wave equation
for an isotropic, homogeneous media is given by

c2�u� u

tt

= 0. (3.2)

In inverse scattering one usually studies a slightly di↵erent equation that arises when we
look at the special case of time-harmonic waves, meaning u(x, t) = Re{u(x)e�i!t} with
a frequency !. Inserting this in (3.2) and using the Fourier transform one obtains the
Helmholtz equation

�u+ k2u = 0 (3.3)

with k = !/c and u = û the Fourier transform of u. In this section we will discuss the
reconstruction of u as this is the case typically considered in inverse scattering. Later
on we will see that our approach to solve the problem in time domain using the function
u is closely related to the theory of inverse scattering via the Fourier transform.

The general idea in scattering now is that the wave function u is a superposition of two
parts u = ui + us, where ui is the incident wave generated by the emitters and us is
the scattered wave. As the material defects have no influence on the incident wave ui

it should be a solution of the Helmholtz equation in R3 but does not necessarily satisfy
the boundary conditions at the defect boundary. Thus us manipulates u in a way that
the Helmholtz equation still holds outside the defect but the boundary conditions also
are valid. We can formulate the scattering problem for a defect D ⇢ R3 as

�u+ k2u = 0 in R3 \D (3.4)

u = ui + us (3.5)

u = 0 on @D (3.6)

lim
r!1 r

✓
@us

@r
� ikus

◆
= 0, (3.7)

with r = kxk
2

. Condition (3.7) is the so-called Sommerfeld radiation condition. For
every outgoing scattering wave there is always an incoming wave as solution which is
physically not relevant but does not hold the Sommerfeld radiation condition. Thus,
this condition guarantees outgoing scatterers. The boundary condition (3.6) is called
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Dirichlet condition and implies a sound-soft medium. It can be replaced by the Neumann
condition

@u

@v
= 0 on @D (3.8)

for sound-hard media, where v is the outer normal on @D, or also other boundary
conditions as impedance boundary condition, transmission condition or resistive boundary
condition, see [39, 43]. Finally one can replace (3.4) and (3.6) by

�u+ k2n(x)u = 0 in R3 (3.9)

and obtains the scattering problem for the more general case of inhomogeneous media
described by the function n(x).

Now let us introduce the far field of a function u. It was shown in [39] that every
scattered wave that satisfies the Sommerfeld radiation condition can be written as

us(x) =
eikkxk2

kxk
2


u1
✓

x

kxk
2

◆
+O

✓
1

kxk
2

◆�
, kxk

2

! 1, (3.10)

where u1 is supported on S := {x 2 R3 | kxk
2

= 1}. We call u1 the far field of u. In
many inversion algorithms one assumes that the measured data is approximative the far
field u1. Thus, one does not require measurements covering R3 but only r · S for a fixed
r 2 (0,1). One can show that the far field satisfies

u1(x) =
1

4⇡

Z

@D


u(y)

@e�ikx·y

@v
� @u

@v
(y)e�ikx·y

�
dy, x 2 S, (3.11)

with x · y denoting the standard scalar product in R3 and v being the outer normal on
@D.

Now the direct scattering problem can be formulated as follows. For given ui and D or
n(x) construct the far field u1. The inverse scattering problem is to reconstruct D or
n(x) for given ui and u1.

At this point, we will turn our attention to the reconstruction techniques developed in
inverse scattering. We will return to the theory in Section 4.3 where we discuss the
analogy between our model and the inverse scattering theory. Indeed, we will show that
our inversion method first introduced by a heuristic approach in this work, can also be
evolved from the theory of inverse scattering. Thus we find ourselves right in the middle,
building a connection between the practical and the theoretical world. Furthermore, we
will see that our algorithm possesses some similarities with SAFT, which, first a heuristic
approach, was later also derived out of the inverse scattering theory [7, 44].

21



3 Defect Reconstruction: State of the Art

3.2.2 Reconstruction Methods for Complete Data

We will first study reconstruction methods considering the best case of completely given
data, meaning us or u1 are completely known. While we only present a few algorithms
and their ideas, a wide overview can be found in [39, 45–47] and the references therein.
A short introduction can also be found in [48]. The following outline is based on the
references mentioned above.

Basically, almost every reconstruction method can be assigned to one of the three classes,
namely iterative methods, decomposition methods and sampling methods (sometimes
called probe methods). We will provide the general ideas of these three classes and give
an illustrative exemplary algorithm.

We will start with the class of iterative methods, which is based on the most straightfor-
ward idea. The inverse scattering problem for a fixed incident wave ui can be expressed
by an operator F such that

F (@D) = u1.

Given the far field u1 one wants to find the defect boundary @D, meaning that one
needs to invert the non-linear, ill-posed operator F . We may apply the known theory
for non-linear inverse problems [19] and make use of the methods developed therein
which often are iterative. This forthright approach leads to regularised reconstruction
methods based for example on Newton- or Landweber-Iterations [45]. While most of
these techniques try to linearise the non-linear operator locally, the Fréchet derivative
of F is required, which is a crucial step in these algorithms, see [19, 49].

To give a demonstration of such algorithms, we will comprehend an example given
in [45]. Here only star shaped defects are considered, such that @D can be expressed
by a function r : S ! (0,1) in the sense that @D = {r(x)x | x 2 S}. Now we define
F (r) := F (@D) = u1. Considering two approximations D

1

and D
2

of the defect D
expressed by functions r

1

and r
2

we get the linearisation of F around D
1

by

F (@D
2

) = F (r
2

) = F (r
1

+ (r
2

� r
1

)) ⇡ F (r
1

) + F 0(r
1

)(r
2

� r
1

),

where F 0(r
1

) is the Fréchet derivative of F at r
1

. For a given far field u1 starting with
a function r

0

we can use a regularised Newton iteration to solve the inverse problem.
This means, starting with k = 0, iterate

Solve: F (r
k

) + F 0(r
k

)r = u1,
Update: r

k+1

= �r
k

+ (1� �)r and k = k + 1,

until a stopping criterion holds, where � 2 (0, 1) is a regularisation parameter. Such
iterative approaches typically lead to accurate and stable reconstructions. However, the
disadvantages of such methods are obvious. A good and stable implementation of both
F and F 0 is required. Furthermore, as a Newton method only converges to local minima
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one needs a good starting guess, i.e. good a-priori information. For a detailed numerical
discussion we refer to [50–52].

The second class of methods is the class of decomposition methods. As we have seen
before, the inverse scattering problem is non-linear and ill-posed. Decomposition meth-
ods try to deal with this problem by separating it into two parts, one being ill-posed but
linear and the other non-linear part. Thus, one can deal with the two di�culties sepa-
rately. A common way to do so is to reconstruct us out of u1 first and then reconstruct
@D out of us.

u1
linear�����!

ill-posed

us
non-linear������! @D

As an example for this kind of techniques we will outline a method by Kirsch and Kress
that can be found in [39, 45, 47]. The authors show that for an unknown density ' in
the interior of D, there is a linear but ill-posed integral operator F

1

such that

F
1

' = u1

holds. For the same density ' one can define an integral operator F
2

such that us is
given by

F
2

' = us.

Now for a known incident wave ui one can find @D by analysing where ui + us satisfies
the boundary condition. For Dirichlet boundary conditions we obtain the algorithm:

Solve the inverse problem F
1

' = u1 by regularisation.
Calculate us = F

2

'.
Solve the non-linear problem ui + us = 0 on @D.

A di↵erent formulation of this idea as a minimisation problem in ' and @D can be
found in [39]. Here one tries to solve both problems at once in a least square sense by
minimizing the functional

kF
1

'� u1k2
L

2
(S) + ↵k'k2

L

2 + �kui + F
2

'k2
L

2
(@D)

over ' and @D, where ↵ is a regularisation parameter and � is a coupling parameter. An-
other decomposition method is the point-source method introduced by Potthast [53,54].
We will later discuss this method for the case of limited data. While the numerics of
iterative methods are slightly better, this type of method does not require an implemen-
tation of the forward solver and its Fréchet derivative.

The last class of methods we would like to consider are sampling methods. The idea here
is to define a functional f(x) that decides whether a point x 2 R3 is on the boundary
@D or not. In practice f(x) will be defined in a way that it tends to infinity when x
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tends to a point on the boundary. If one takes a finite grid G ⇢ R3 of the relevant area
in R3 one can approximate @D by

@D = {x 2 G | |f(x)| > K}

with a constant K > 0. Note that this reconstruction idea is similar to the idea of the
TFM/SAFT algorithm. An example for such an algorithm is the linear sampling method
given in [45,55]. We define the operator F as

Fg(x) =

Z

S
u1(x, s)g(d)ds, x 2 S

where g 2 L2(S) and u1(·, s) is the far field for an incident plane wave with direction
s, i.e. u

i

(x, s) = eikx·s. Now one can show that the solution g(x, z) of

Fg(·, z) = �1(·, z) 8z 2 R3

tends to infinity if z approaches the boundary of D, meaning kg(·, z)k
L

2
(S) ! 1. Here

�1(x, z) = 1

4⇡

e�ikz·x is the far field of the fundamental solution �(x, z) = e

ikkx�yk2
4⇡kx�yk2 ,

see [39, 45]. With f(z) = kg(·, z)k
L

2
(S)

we obtain the algorithm

Solve Fg(·, z) = �1(·, z) for all z 2 R3.
Set @D = {z 2 R3 | kg(·, z)k

L

2
(S) > K} for a constant K > 0.

One major advantage of these methods is that they do not require the knowledge of
a-priori information or the boundary condition. However, a computation of g for all
z 2 R3 is required and the accuracy of the approximation highly depends on the choice
of K.

Now we have demonstrated di↵erent ideas and algorithms to solve the inverse scattering
problem. Although we have restricted our introduction to the case of homogeneous
data, there are of course similar reconstruction ideas for the inhomogeneous case, see e.g.
[56, 57]. However, we only considered algorithms for complete data. In our application
of non-destructive testing often data measured only from a limited number of directions
is given. In addition, because of the measurement set-up, it is also not clear if the
measured data approximates the far field well enough. This means that although the
theory shown above provides good reconstruction methods for complete data, we cannot
apply it to our problem. Hence we now move on to the limited aperture case, which will
supply reconstruction methods for the case of incomplete data.

3.2.3 The Limited Aperture Case

Let � be a proper subset of S. Then the reconstruction problem in the limited aperture
case is to reconstruct the scatterer D when u1 is only known on �. Although this

24



3.2 Inverse Scattering

problem is more di�cult than the full aperture case, analytically it is su�cient to know
u1 on a subset � with a non-empty interior to provide uniqueness of the problem,
see [39]. However, in practice the stability and quality of the reconstruction decreases
drastically especially if � is small [39]. For this reason, good reconstruction methods are
rare and are often restricted to special cases and a-priori assumptions. We will shortly
present three methods published in the last years that try to transfer the reconstruction
ideas of the full aperture case. Their use for our application will be discussed. Note that
we will skip the analysis of the algorithms and only introduce the ideas, since examples
have already been shown in the last section. More information about the presented
methods can be found in [58–62].

We start with the point source method for the limited aperture case presented in [58,59].
This method belongs to the class of decomposition methods and especially considers
incident plane waves. The authors define two operators H : L2(�) ! L1(R3) and
A

g

: L2(�) ! L2(R3), where A
g

depends on a density g defined on �. Now one can show
that if Hg satisfies some properties, then A

g

u1 is a good approximation of us at least on
a special subset ⌦ of R3. This subset ⌦ is independent from the incidence direction and
frequency but it is unknown. The idea of Potthast and Luke is to use the point source
method for several incident plane waves with di↵erent directions and/or frequencies.
One can now detect ⌦ by a combination of all reconstructions, since their behaviour
di↵ers outside ⌦ but is equal inside ⌦. However, although the presented method can
reconstruct the defect quite well even with few data, it still requires di↵erent frequencies
and incident directions. The numerical results in [58] show a breakdown of this algorithm
for very small apertures. It is therefore too unstable for our application.

Next, we discuss a method presented in [60] for the special case of photon scanning
tunnelling microscopy. It is an iterative method where the Born approximation is used for
a good starting guess. Especially for low frequencies this is a good approximation. This
allows an iterative reconstruction of the defect with multiple frequency data. Starting
with the Born approximation for the lowest frequency one makes use of a connection
between two solutions of the inverse scattering problem with slightly di↵erent frequencies
to obtain an update step. Numerical experiments show a quite good reconstruction, but
the use of several frequencies is crucial, thus an adaption to our problem is not possible.

Finally, we mention the enclosure method introduced in [61]. The enclosure method tries
to reconstruct the convex hull of an obstacle. Note that [61] is restricted to the two-
dimensional case. The algorithm uses the fact that the convex hull can be reconstructed
from the knowledge about the function

h
D

(!) := sup
x2D

x · !

with ! 2 S, where in this case S denotes the two-dimensional sphere. To calculate the
function values of h

D

one first needs to construct an approximate density g similarly
to the point source method. Then one can define an operator I

g

(!, r) based on the
incomplete data u1 such that I

g

is approximately linear in r with slope h
D

(!). Thus,
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calculating I
g

(!, r) for fixed ! at several points r
i

, i = 1, 2, 3 one can fit a line through
the points (r

i

, I
g

(!, r
i

)) and take its slope as an approximation for h
D

(!). For each
calculated value of h

D

the convex hull can be reduced to a half plane defined by !. That
way one can restrict the convex hull of D iteratively to a shrinking area. One advan-
tage of this method is that it does not need multiple frequencies or incident directions.
Nevertheless, the method cannot reconstruct non convex structures. This specifically
applies for cases with more than one scatterer since in this case the area between the
obstacles will be included in the convex hull as one can see in the numerical results
in [61]. Furthermore the reconstructed area even for the noiseless case contains several
wrongly reconstructed parts.

As we have seen, there were several ideas to solve the inverse scattering problem in the
case of limited aperture. However, most algorithms try to compensate the missing data
by using several frequencies or incident waves. Such data is often not available in non-
destructive testing. For a reconstruction with a very small amount of data the theory is
limited and the provided algorithms are unstable and/or improper.

3.3 Other Fields of Research

In the last section of this chapter we would like to take a look at research fields that are
related to non-destructive testing. As there are many similar problems, the reconstruc-
tion algorithms used might be helpful for our case.

Let us begin with a summary of the radar technique based on [63, 64]. Radars have to
detect obstacles (e.g. air planes) in an approximately homogeneous medium (e.g. air)
using scattered signals from high frequency waves. So the detection of obstacles with
radar beams is similar to the problem of defect reconstruction in NDT. Here one uses
two di↵erent approaches. The first one is to upgrade the radar aperture in a way that
the transmitted waves have a very special form. Thus the amplitude of the reflected
waves corresponds directly to the direction of the scatterer while the distance to the
object can be calculated using the runtime of the signal. As a second approach one
uses algorithms to solve the inverse scattering problem. Here, one inversion method has
proven to deliver good results. The Synthetic Aperture Radar (SAR) is a technique to
combine radar signals taken at di↵erent positions. The a�nity between the names SAR
and SAFT is not a coincidence, indeed both methods are based on the same idea applied
in di↵erent fields of research [30]. Yet another implementation of this idea is used in
sonar techniques, which uses the same modelling principles as the radar technique but
underwater. The corresponding algorithm is called Synthetic Aperture Sonar (SAS) [65].

Another large field of application for ultrasound can be found in medical or biomedical
imaging. First it seems that scanning a human body or a steel tube for “defects” should
work similarly and thus the same algorithms should be applied. But there are big
di↵erences between these two applications: In particular, there are di↵erent requirements
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to the reconstruction results. In non-destructive testing, the reconstruction only needs
to give a rough impression about the enclosed defect, but the algorithm has to deal with
strong noise and needs to be fast (e.g. for ToFD a tube with length 0.5m needs to be
inspected in 1s). The opposite case applies to medical applications. Here it is crucial
to have a detailed reconstruction of e.g. brain tumours. Therefore one accepts methods
that have a low noise level but may take a lot of time. Thus, one usually has enough data
to apply the inversion theory known from inverse scattering. This is usually not the case
for NDT. For more details about medical and biomedical imaging we refer to [12,66,67].

As we have seen, the methods and theory in all these di↵erent applications are largely
consistent. While in our application the inverse scattering theory for strongly limited
data is just at the beginning, the heuristic inversion approach with TFM/SAFT currently
seems to be the method of choice. In the next chapters we will introduce our new model
and a suitable inversion algorithm. But we keep in mind that in the end we have to
compare our numerical results with the TFM/SAFT algorithm.
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In the previous chapters we have gathered information about non-destructive testing
methods, their historical and physical background and the known reconstruction meth-
ods. We have seen that there are only few applicable reconstruction algorithms due to the
limited amount of data and the high noise level. Furthermore, the methods used today
still have drawbacks. For this reason, we now develop a new model based reconstruction
method. We introduce it step by step in the following chapters.

We start by introducing our new model for ultrasonic testing methods. The first section
describes the continuous model which is mainly based on a geometrical approach. At
the end of the section we add a convolution to the model to include the wave structure
of ultrasound. After that we have a look at the discretization. The last section of this
chapter gives a validation, first by a comparison between modelled and real data, and
secondly by the theory of inverse scattering that we have seen in the previous chapter.
Here we also analyse the type of noise in real data and add it to our model. As we will
see, our model is strongly related to inverse scattering, therefore our model function will
be denoted by u to fit into the notation we have used so far.

4.1 The Continuous Model

In this section we design our continuous model for ultrasonic testing. Thereby this
model has to fulfil several requirements. On the one hand, it should deliver a good
approximation for real data, meaning the forward problem should be approximated
accurately. On the other hand we want to keep the model as simple as possible to be
able to develop a fast and stable reconstruction method later on that can deal with the
limited amount of data. Furthermore, the model should be applied to di↵erent testing
set-ups. This means, it needs to be flexible relating to e.g. material and probe properties
and positions.

Taking all this into account we shall develop a new model based on simple geometrical
relations combined with a convolution. Please note that we therefore use fundamental
facts from geometrical optics, optical physics or its applications, see e.g. [3,4,7,11,68–70].
However, to the author’s best knowledge, a model such as the one we will present in this
work, does not exist so far.

In our model we will only consider one emitter and one receiver. However, to simulate
a measurement based on multiple probes one can simply use this model for every com-
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bination of emitters and receivers. Furthermore, we will neglect the lateral wave as it is
not relevant for the reconstruction and can be easily filtered out. E↵ects caused by the
material boundary e.g. back wall echo and surface reflections will often be skipped in
the simulations but can be included by adding the material boundary as a “defect” to
the simulation.

4.1.1 The Geometrical Approach

We start this subsection by introducing the functions and variables we need to describe
our model. Consider a measurement set-up with one emitter and one receiver probe on
a homogeneous infinite material with several defects inside. The probes are considered
to be idealised points. Now we use the following notations.

Denote by x
E

(h) : [0, 1] ! R3 and x
R

(h) : [0, 1] ! R3 the path of the emitter and receiver
probe, meaning both probes move along a path in R3 starting at x

E

(0) respectively x
R

(0)
and ending at x

E

(1) respectively x
R

(1). For each h 2 [0, 1] a measurement (an a-scan)
is done with the probes positions x

E

(h) and x
R

(h). Note that while these functions
imply a one-dimensional ordering of the a-scan by the parameter h, for some testing
methods like wall thickness measurement it is more reasonable to consider the data in
more dimensions. This can be done easily by rearranging the data afterwards. In Figure
4.1 we demonstrate an example where the a-scans are arranged on a two-dimensional
grid.

Fig. 4.1: Way of the probes (left) and arrangement grid (right).

Next, let K 2 N be the number of defects and let the defects be given by the disjoint
sets D

k

⇢ R3 for k  K, where each set is connected but D
k

[D
j

is not connected for
k 6= j.

Furthermore we denote the geometrical model function by ũ(h, t) : [0, 1] ⇥ [0,1) ! R,
where ũ(h, t) is the measured amplitude (of the geometrical model) at time t with probes
positions at x

E

(h) and x
R

(h). Here t = 0 is the time, where the emitter sends out an
ultrasound impulse at position x

E

(h).

The goal of this subsection is to determine the geometry of the measurement set-up by
describing ũ with the help of x

E

, x
R

and {D
k

}K
k=1

. Therefore we treat the ultrasound as
a ray and ignore its wave structure, or in other words, we assume the ultrasound impulse
to be a peak function.
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4.1 The Continuous Model

As mentioned above, ũ(h, t) models the amplitude at time t for probe positions x
E

(h)
and x

R

(h). To construct the function ũ we have to answer two questions:

When will an amplitude be measured at the receiver, i.e. for which h 2 [0, 1] and
t � 0 is ũ(h, t) 6= 0?

What determines the amplitudes strength, i.e. what determines the value ũ(h, t)?

Let us have a closer look at the first question. The ultrasound has to travel through the
material before it reaches the receiver. Starting at the emitter position x

E

(h) it moves
towards the defect. There it is reflected/di↵racted into the direction of the receiver (see
Figure 4.2 for e.g. reflection).

x
E

(h) x
R

(h)

x

defect

Fig. 4.2: Sketch of the geometry for a reflecting point x.

Let x 2 R3 be the point on the defect boundary where the ultrasound is reflected or
di↵racted. Then the distance the ultrasound has covered is given by kx � x

E

(h)k
2

+
kx

R

(h)�xk
2

. We assume homogeneous material, thus the ultrasound speed c is constant.
Given that the ultrasound was send out at time t = 0 the amplitude will arrive at the
receiver at time

kx� x
E

(h)k
2

+ kx
R

(h)� xk
2

c
.

This means the amplitude of the reflection/di↵raction caused by x will influence the
value ũ(h, t) if and only if

t =
kx� x

E

(h)k
2

+ kx
R

(h)� xk
2

c
(4.1)

holds. Vice versa, to answer our first question, the value ũ(h, t) can only be unequal 0
if there exists at least one point x 2 [K

k=1

@D
k

such that (4.1) holds. Here @D
k

denotes
the boundary of the defect D

k

. With the help of the next definition we can restate this
result.

Definition 4.1.1:

Let E
h,t

⇢ R3 be the set of all points for which (4.1) holds, i.e.

x 2 E
h,t

, t =
kx� x

E

(h)k
2

+ kx
R

(h)� xk
2

c
.

Note that E
h,t

is a spheroid with semi-major-axis tc/2 and focal points x
E

(h) and x
R

(h).
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We directly obtain:

Model Assumption 4.1.2:

If ũ(h, t) 6= 0 for h 2 [0, 1] and t � 0 then

E
h,t

\
�
[K

k=1

@D
k

�
6= ;. (4.2)

Note that the contrary statement does not have to be true. This phenomenon is called
destructive interference [5]. Here several ultrasound waves are incoming at the receiver
but their (positive and negative) amplitudes add up to 0 and thus ũ(h, t) = 0.

Given this assumption, we can now consider by what the amplitude is influenced if (4.2)
holds. Let us follow the way of the ultrasound from emitter to receiver and debate its
e↵ects on the amplitude.

The ultrasound wave is generated at the emitter and hence surely depends on the emit-
ter’s properties. For example the piezoelectric e↵ect (see Subsection 2.2.1) indicates that
a high voltage generates waves with large amplitudes and a low voltage generates small
waves. But nowadays probes go far beyond this and can even create ultrasonic waves
whose amplitude depend on the direction. Thus it is possible to e.g. focus on special
directions. We use the function a(s) : S ! R to simulate the emitter’s behaviour, where
S denotes the unit sphere. It maps a direction to the corresponding amplitude. The
function a strongly depends on the emitter type and can be determined with a special
measurement process see e.g. [3, 4, 8]. Figure 4.3 shows an example for such an emitter
function where the amplitudes are colour-coded onto the sphere. One can see the side
lobes that are typical for a focussing emitter. Note that the direction s from x

E

(h) to a

point x can be derived via s = x

E

(h)�x

kx
E

(h)�xk2 .

Fig. 4.3: Focussing directional amplitudes.

After the ultrasound wave is generated it begins to move through the object. This
movement will constantly change the amplitude by many e↵ects often grouped under
attenuation [3–5, 8]. Here we will only consider three sources of attenuation to keep
the model simple: Divergence, absorption and dispersion. Neglecting other sources will
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4.1 The Continuous Model

generally not worsen the model as these three sources are usually the main reasons for
attenuation.

Let us start by considering divergence, see also [6,71]. As we assumed homogeneous and
isotropic media, the ultrasound will spread out from its source in each direction with the
same speed. Thus, the wave front will form a sphere with radius ct where t is the elapsed
time. This means, the wave front area is increasing in time. Thus, to keep the carried
energy constant, the amplitudes have to decrease. Let us have a look at the energy on
a wave front at time t, where ã is a spherical function of amplitudes at time t. As the
energy is proportional to the squared amplitude [71], we obtain

Z

tcS
ã2
⇣ x
tc

⌘
dx = (tc)2

Z

S
ã2(x)dx

!

=

Z

S
a

2(x)dx,

where the last equation has to hold to keep the energy constant [6]. This holds, if ã = a

tc

,
thus all amplitudes have to decrease in time inversely proportional to the sphere radius
tc. In other words, the greater the wave front gets the smaller the amplitude will be at
each point. Figure 4.4 shows the increase of a spherical sector in time. Note that the
decrease factor is only true for spherical waves, for other wave forms one has to estimate
the factor similarly.

Fig. 4.4: Spherical increase in time.

Let us now consider the e↵ects of absorption and dispersion, see also [3, 4, 72]. An
ultrasonic wave is the motion of particles which causes heat e.g. by friction. This heat
is a conversation of energy, thus reduces the amplitude of the wave. It seems to be clear
that the more motion the wave causes (i.e. the higher the frequency or amplitude is)
the more energy will be lost by heat. A reasonable and often used conclusion is that
the loss of energy by absorption is proportional to the amplitude [3–5, 8, 72]. Thus one
obtains an exponential decay. The e↵ect of dispersion is quite similar. Although we
have assumed that the material is homogeneous, there are tiny inhomogeneities smaller
than the wave length that can a↵ect the ultrasound. These inhomogeneities are to small
to be considered as scattering objects, but nevertheless they cause a dispersion of the
wave. This means, while most of the wave will pass the inhomogeneity without being
influenced much, part of it will be spread in all directions. Again we obtain a decrease
proportional to the amplitude. Because the inhomogeneities are evenly distributed, we
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get an exponential decrease by the dispersion. Altogether one can summarize that the
amplitude decreases by a factor of

e��t

where � > 0 is a constant depending on the material and the frequency of the wave. For
a list of values for several materials and frequency we refer to [3,4,8]. Note that besides
the decrease of the amplitude, dispersion has another e↵ect on the measured data. The
part of the ultrasound that is spread over and over in the material leads to a significant
noise on the data as it is also measured at the receiver. We will consider this type of
noise later in Section 4.3.

Now we know how the amplitude changes while the ultrasound moves through the ma-
terial. The next point we want to consider, is the change of the amplitude when the
wave “hits” a surface, i.e. the influence by reflection or di↵raction. We start with the
di↵raction as it is simpler to analyse. We remember that, due to Huygens principle for
di↵raction (see Figure 2.7), the wave does not interact with the boundary but moves
alongside it until the surface ends and the di↵racted wave accrues. Thus, the di↵racted
wave has the same amplitude as the incoming wave as long as we do not consider inter-
ference with other waves. Note that there are several models for di↵raction that consider
interference as for example Fresnel di↵raction or Fraunhofer di↵raction (see [69]). For
our model, it is enough to consider interference not before it arises at the receivers po-
sition. This means we will treat two interfering waves separately until they reach the
receiver (see later discussions).

Let us now have a look at the change of amplitude caused by reflection. Di↵erently
to di↵raction, here the wave interacts with the surface and part of it penetrates it as
a refracted wave. This means, a part of the energy is split up and lost what leads to
a decrease of the amplitude. This is a complicated process influenced by many di↵er-
ent factors. The reflected amplitude does not only depend on the angle of incidents
but although on the wave types of incident and reflected wave, the state (solid, fluid,
gaseous) and density of both bordering materials and the speed of both longitudinal and
transversal wave. Here we only introduce the formula for the most important case of an
incoming longitudinal wave reflected as a longitudinal wave at a border of solid (steel)
and gaseous material (gas inclusions). The amplitude decrease is then given by

Ref(↵) :=
( ct
c

l

)2 sin(2↵) sin(2↵̃)� cos2(2↵̃)

( ct
c

l

)2 sin(2↵) sin(2↵̃) + cos2(2↵̃)
, (4.3)

where the ultrasound speed of longitudinal waves c
l

= c has an explicit index to distin-
guish it from the speed of transversal waves c

t

. Furthermore, ↵̃ is given by Snell’s law
sin↵/ sin ↵̃ = c

l

/c
t

with the incident angle ↵. To ensure that the incident angle is well
defined, we have to assume that the boundaries of all defects D

k

are regular. Then the
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outer-pointing normal N
k

: @D
k

! S on D
k

exists and one can determine the angle of
incident for a point x 2 D

k

and emitter position x
E

(h) by

cos↵ =

⌧
x
E

(h)� x

kx
E

(h)� xk
2

, N
k

(x)

�
. (4.4)

For the detailed mathematics and formulas for all cases we refer to [73]. An overview can
also be found in [3,4]. Figure 4.5 shows the absolute decrease of the amplitudes depending
on the incident angle for the case of a gas inclusion in steel with c

l

= c = 5.94mm

µs

and
c
t

= 3.29mm

µs

. Note that the function in (4.3) is negative for all ↵ 2 [0,⇡] causing a phase
shift of the reflected wave. Figure 4.5 shows the absolute value of Ref(↵) in 4.3.
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Fig. 4.5: Amplitude of reflected wave depending on incident angle.

So far we have only considered principles of ray optics. According to ray optics, the angle
of incident is the same as the emergent angle. However, the direction from the defect
point x to the receiver x

R

(h) may di↵er from the emergent direction by an angle ✓. Using
only ray optics means the reflected wave will miss the receiver and will never be recorded.
Figure 4.6 (top) illustrates this problem. However, we know that the reflected wave will
propagate not only in the emergent direction but will also be spread along others. Thus,
part of it will reach the receiver but with a decreased amplitude depending on the angle
✓. To simulate the behaviour of a reflected very thin ray-like ultrasound wave we use
a simple physical consideration, the so called di↵raction at a circular aperture [6, 68].
Thereby a plane wave is transmitted onto a non penetrable object that has a circular
hole with diameter d. The wave can only pass the object through the circular opening.
This means, for small d only a very thin ultrasound wave will pass it and di↵ract in all
directions on the other side of the object. To solve our ray-optics problem we consider
a circular aperture with radian d that is placed in emergent direction with distance ed to
the scatterer x (see Figure 4.6 (bottom)). The ultrasound will then di↵ract towards the
receiver with an angle ✓̃. If we now let ed go to 0, we obtain ✓̃ = ✓ and the amplitude
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of the ultrasound wave which propagates into receiver direction can be described as a
function of ✓ by the di↵raction at a circular aperture [6, 68]

J
1

�
⇡d

�

sin ✓
�

⇡d

2�

sin ✓
, (4.5)

where the Bessel-function of the first kind J
1

[39] is given by

J
1

(x) =
1X

k=0

(�1)k

k!(k + 1)!

⇣x
2

⌘
2k+1

.

This consideration is only reasonable if �⇡

2

 ✓  ⇡

2

. For |✓| > ⇡

2

we will set the reflected
amplitude to 0 as the receiver’s direction di↵ers strongly from the reflected direction (see
also Figure 4.8). The angle ✓ can be derived according to Figure 4.6 (top) by

cos ✓ =

⌧
x
R

(h)� x

kx
R

(h)� xk
2

, 2

⌧
x
E

(h)� x

kx
E

(h)� xk
2

, N
k

(x)

�
N

k

(x)� x
E

(h)� x

kx
E

(h)� xk
2

�
. (4.6)

Note that, to simulate an ultrasound ray with thickness 0 one may also consider the case
d ! 0. This will lead to the scattering at a point scatterer x, i.e. the point x will have
no outer surface normal as it has no surface at all and thus the amplitude will be the
same in all directions. So instead of considering the case d ! 0, we keep d as a variable
of our function as this approach will prove to be very useful in the discretization of our
model. The function in (4.5) is shown in Figure 4.7 with d

�

= 4.

Knowing how the amplitude is changed by reflection and di↵raction, we need a criterion
to determine whether a signal is reflected or di↵racted at a point x. This can easily be
done with the help of the incident angle ↵ 2 [�⇡,⇡). We note that an ultrasound wave
will be reflected at a point x if the incident angle satisfies |↵| < ⇡

2

. A di↵raction will only
appear if the ultrasound wave approaches the point x with an incident angle |↵| � ⇡

2

.
Figure 4.8 illustrates the angles of incident for reflection and di↵raction at a point x.

Following the considerations above and the illustrations of Figure 4.8 we now define

Definition 4.1.3:

Let all sets @D
k

be regular. Then the reflection-di↵raction-term RD : [�⇡,⇡) ! R is
defined by

RD(↵) :=

8
>><

>>:

Ref(↵)
J1(⇡d

�

sin ✓)
⇡d

2� sin ✓

|↵| < ⇡

2

, |✓|  ⇡

2

0 |↵| < ⇡

2

, |✓| > ⇡

2

1 |↵| � ⇡

2

where the angle ✓ can be derived by (4.6).
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Fig. 4.6: Di↵usion approximation with di↵raction at a circular aperture.

Fig. 4.7: Function (4.5) with d
� = 4.
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Fig. 4.8: Incident directions for reflection and di↵raction (left) and behaviour of reflected am-
plitude depending on ✓, amplitude is 0 in the thin half circle (right).

Note that RD is usually small for reflecting points. This accords to the observation that
in the case of a ToFD-measurement (see Subsection 2.2.3) the measured amplitudes will
most likely belong to a di↵raction of a defect.

After the ultrasound is reflected/di↵racted by the defect, its amplitude will again de-
crease by the e↵ects of attenuation and finally arrive at the receiver where it is measured.
Thus, we can formulate our second model assumption which specifies the amplitude value
by multiplying all considered e↵ects.

Model Assumption 4.1.4:

Let all boundaries of D
k

, k = 1, . . . ,K be regular. Then the amplitude of an ultrasound
wave reflected or di↵racted at

x 2 E
h,t

\
�
[K

k=1

@D
k

�

that arrives at the receiver is given by

a(s)
e��kxE

(h)�xk2/c

kx
E

(h)� xk
2

RD(↵)
e��kxR

(h)�xk2/c

kx
R

(h)� xk
2

,

where the angle ↵ can be derived by (4.4), � is a material constant and s is given by

s =
x� x

E

(h)

kx� x
E

(h)k
2

.

Since x 2 E
h,t

and Definition 4.1.1 this is equivalent to

e��tA(h, x) with A(h, x) :=
a(s) RD(↵)

kx
E

(h)� xk
2

kx
R

(h)� xk
2

. (4.7)
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With the help of the model assumptions 4.1.2 and 4.1.4 we are now able to answer the
two questions stated at the beginning of this subsection. To complete the presentation
of our continuous model we have to combine all amplitudes that arrive at the same time
t by summing them up. Assuming A is integrable, we have to calculate the integral

e��t
Z

E

h,t

\([K

k=1@Dk

)

A(h, x)dx. (4.8)

Here another problem arises as the manifold

E
h,t

\
�
[K

k=1

@D
k

�
(4.9)

might have di↵erent dimensions depending on h and t. Thus, we do not know if the
integral should be understood as e.g. a line- or a surface-integral. In the discrete case of
our model this will be no problem at all because the integral will be simplified to a sum
over a discrete set of points but for the continuous case we have to make the assumption
that the manifold in (4.9) does not form a surface in R3. Then we can interpret the
integral in (4.8) as a line-integral. This assumption fits into the consideration that the
intersection between a defect and the ellipsoid E

h,t

will most likely form a line in R3.
The integral in (4.8) will be 0 if (4.9) is only a 0-dimensional manifold, e.g. a point. This
means that the intersection is too small to cause any reflections or di↵ractions. Note
that (4.9) is regular as all used sets are assumed to be regular. We can now formulate
our first model.

Model 4.1.5 (The continuous geometrical model):

Let the boundaries of D
k

, k = 1, . . . ,K be regular. Furthermore let

E
h,t

\
�
[K

k=1

@D
k

�

be a manifold of dimension 1 or 0 for all h 2 [0, 1], t > 0 and let A be integrable over
these manifolds in a line-integral sense. Then the continuous geometrical model function
ũ is defined by

ũ(h, t) := e��t
Z

E

h,t

\([K

k=1@Dk

)

A(h, x)dx,

where the integral is a line-integral. Since all D
k

are disjoint, this can be rewritten as

ũ(h, t) = e��t
KX

k=1

Z

E

h,t

\@D
k

A(h, x)dx. (4.10)

Note that model assumption 4.1.2 holds for (4.10) because all integrals will be 0 in
the case that the manifold in (4.9) is the empty set. Moreover, the model includes
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constructive or destructive interference by integration over A(h, x) where destructive
interference means a change in the sign of A(h, x) on the region of integration. However,
this model does only simulate the measured amplitudes and does not include the wave
structure of ultrasound. In order to incorporate this aspect, we expand this model in
the next subsection via a convolution.

4.1.2 Wave Convolution

The geometrical model can tell us at which time t an ultrasound wave is measured at
the receiver and what its amplitude is. Let us first consider the simple example with
ũ(h0, t0) = 1 for fixed h0, t0 and ũ(h, t) = 0 otherwise. This means, there is an incoming
ultrasound wave for positions x

E

(h0), x
R

(h0) and time t0 with amplitude 1. Now let the
duration of this incoming impulse be ⌧ , then the wave will be recorded for all t 2 [t0, t0+⌧ ]
while ũ(h, t) 6= 0 only for h = h0 and t = t0. Thus, due to the missing wave structure, the
geometrical model cannot simulate real data. To overcome this issue, we want to derive
the model function u that will also take the wave structure into account. Therefore we
consider a function

f(t) : R
+

! R (4.11)

where in this work we define R
+

= [0,1) explicitly including 0. This function simulates
the ultrasound impulse that is send out by the emitter at time t = 0. Note that one can
expand f on R by setting f(t) = 0 for t < 0. We will use this expansion implicitly in some
of the following formulas. Remembering that we only consider homogeneous material
we can assume that f is independent of h and that the incoming ultrasound waves that
were measured at the receiver do not di↵er too much from f . Thus, considering the
example from above with

ũ(h, t) =

(
1 h = h0, t = t0,
0 otherwise

the model function u should consist of a single impulse f that starts at time t = t0 for
h = h0 with amplitude 1, i.e.

u(h, t) =

(
ũ(h0, t0)f(t� t0) h = h0,
0 otherwise.

As above, we assume that the incoming wave has a duration of ⌧ i.e. supp f = [0, ⌧ ].
We obtain supp u = h0 ⇥ [t0, t0 + ⌧ ] as desired. Now let us consider the general case. To
continue the above considerations, whenever ũ(h, t) 6= 0 holds, one should observe an
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4.1 The Continuous Model

ultrasound impulse f that starts at time t with amplitude ũ(h, t). This can be done by
convolution in the following way

u(h, t) =

1Z

0

ũ(h, ⌧)f(t� ⌧)d⌧

= (ũ(h, ·) ⇤ f)(t)

which directly leads us to the continuous model.

Model 4.1.6 (The continuous model):

Using the assumptions and definitions of the continuous geometrical model 4.1.5 we
define our continuous model function u as

u(h, t) = (ũ(h, ·) ⇤ f)(t). (4.12)

with a given ultrasound impulse function f . We assume that the convolution is well
defined, what holds for e.g. f, ũ(h, ·) 2 L

1

(R).

We want to complete this section by giving two examples for the wave impulse f that
we will mainly use in this work. The first one is a real valued Gabor function introduced
in [74]

f(t) = e�⇢t
2
cos(2⇡ t+ �) (4.13)

with a bandwidth factor ⇢ > 0, a center frequency  and a shift �. The second example
we want to consider is a raised cosine introduced in [7]

f
N

(t) =

(⇣
1 + cos 2⇡ 

N

t
⌘
cos(2⇡ t) �N 2

 

 t  N 2

 

,

0 otherwise
(4.14)

with a center frequency  and a bandwidth factor N . Both functions (4.13) and (4.14) do
not satisfy f(t) = 0 for t < 0 and thus they have to be shifted. The Gabor function (4.13)
also has an infinite support and hence will be restricted to a finite interval in numerical
applications. For a better representation we have neglected this in the formulas (4.14)
and (4.13). Furthermore, we will only consider wave impulses f that are normalized
due to their energy. This means the function will be multiplied by a constant such that
kfk

L2 = 1 holds. Figure 4.9 shows two examples for the wave function f , a Gabor wave
with ⇢ = 0.75,  = 4 and � = 0 (left) and as raised cosine with  = 4 and N = 4 (right).
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Fig. 4.9: Wave function f as Gabor function (left) and raised cosine (right).

4.2 Discretization

In the last section we have derived two continuous models, one using the geometric
approach only and the second also including wave structures. Later in this chapter
we will use these continuous formulas to show a connection between our models and
the theory of inverse scattering. For numerical application of these models for e.g. the
simulation of data we need a suitable discretization that will be developed in this section.
Let us therefore introduce the following definition.

Definition 4.2.1:

For a set @D ⇢ Rn we call {P
l

2 @D | l = 1, . . . , L} an "-discretization, if for all x 2 @D
there exists an index l such that

dist
@D

(x, P
l

) := min
g2C1

0

@
1Z

0

kg0(t)k
2

dt

���� g(t) : [0, 1] ! @D, g(0) = x, g(1) = P
l

1

A  "

holds with g 2 C1, meaning that the shortest path on @D between x and P
l

is at most
of length ". Define the set C(P

l

) as

C(P
l

) := {x 2 @D | dist
@D

(x, P
l

)  dist
@D

(x, P
l

0) for all l0  L}.

Then [L

l=1

C(P
l

) = @D, C(P
l

) \ C(P
l

0) is a null set for l 6= l0 and for x, y 2 C(P
l

) we
obtain

dist
@D

(x, y)  dist
@D

(x, P
l

) + dist
@D

(y, P
l

)  2".

Thus the sets C(P
l

) with l = 1, . . . , L form an "-net of @D.

Given the "-discretizations {P k

l

}Lk

l=1

of the defect boundaries @D
k

we approximate our
continuous model by forming a Riemann-like sum of the integrals with the given sampling
points. We define

t
l,k,h

:=
kP k

l

� x
E

(h)k
2

+ kP k

l

� x
R

(h)k
2

c
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4.3 Model Validation

and, by Definition 4.1.1, note that E
h,t

\ {P k

l

}Lk

,K

l,k=1

6= ; only holds if t = t
l,k,h

for any

l, k. Thus we obtain the set of sampling points T = T
h

= unique{t
l,k,h

}K,L

k

k,l=1

for the
convolution integral (4.12), where unique{. . .} removes all but one element for values
that appear multiple times. Then the inner integral

Z

E

h,t

\@D
k

A(h, x)dx

in (4.10) is for t
l,k,h

sampled at the points P k

l

corresponding to t
l,k,h

2 T
h

. Because P k

l

is the representative for the set C(P k

l

) which has a diameter of at most 2", we assume
that the surface element C(P k

l

) can be approximated by ⇡"2. Altogether we obtain

Model 4.2.2 (The discrete model):

Given the "-discretizations {P k

l

}Lk

l=1

of the sets @D
k

and the outer-pointing normals

{Nk

l

}Lk

l=1

with Nk

l

= N
k

(P k

l

), we then assume with the definitions from above that

u(h, t) ⇡ ⇡"2
X

⌧2T
h

e��⌧
KX

k=1

X

P

k

l

with

t

l,k,h

=⌧

A(h, P k

l

, Nk

l

)f(t� ⌧) (4.15)

= ⇡"2
KX

k=1

L

kX

l=1

e��tl,k,hA(h, P k

l

, Nk

l

)f(t� t
l,k,h

) (4.16)

where we explicitly note the dependence of A on Nk

l

. As P k

l

is the representative of
an area with a diameter of at most 2" we remember our experiment with the circular
aperture (see Figure 4.6) and set the diameter of the circular aperture d = 2" in (4.5).

The formula (4.15) will be useful for our considerations of the reconstruction method
presented in this work as it separates the points in a nice manner while (4.16) can be
used for implementations.

4.3 Model Validation

With the considerations of the last section we have derived a continuous model and a
discrete implementation formula. Our model combines physical aspects in a heuristic
way. However, we do not know anything about its approximation properties. Therefore,
we want to check the quality of our model in this section. We will validate the model
in two di↵erent manners. In the first subsection, we will show a connection to other
approaches in (inverse) scattering, a field of research that has a widely accepted theory
based on physical laws to model ultrasonic scattering problems among others. The
second subsection will compare the output data of our model with given real data to
expose similarities and di↵erences.
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4.3.1 Comparison to an Inverse Scattering Approach

The following considerations are based on Section 3.2 and the results in [39]. Note that
we need the fundamental solutions of the Helmholtz equation in this subsection, thus
all formulas have to be understood in the distributional sense. We first consider an
ultrasound impulse f 2 L

2

(R) that is inducted in an infinite homogeneous medium at
time t

0

and at position x
0

. The generated wave u has to satisfy the wave equation,
meaning that

1

c2
u

tt

(x, t)��u(x, t) = �(x� x
0

)f(t� t
0

),

where � is the delta distribution. With the Fourier transform in time domain and
u(x,!) = \

u(x, t)(x,!) we obtain

!2

c2
u(x,!)��u(x,!) = �(x� x

0

)eit0!f̂(!).

We note that this is the Helmholtz equation and for fixed ! the function u is given by
the fundamental solution. Thus

u(x,!) = eit0!f̂(!)
ei

!

c

kx�x0k2

4⇡kx� x
o

k
2

and with the inverse Fourier transform,

u(x, t) =
1

4⇡kx� x
0

k
2

f(t� t
0

) ⇤

0

@ 1p
2⇡

1Z

�1
ei!(

kx�x0k2
c

�t)d!

1

A

=
1

4⇡kx� x
0

k
2

f(t� t
0

) ⇤ �
✓
t� kx� x

0

k
2

c

◆

=
1

4⇡kx� x
0

k
2

f

✓
t� t

0

� kx� x
0

k
2

c

◆
. (4.17)

Let us now consider an emitter at position x
E

(h) for fixed h 2 [0, 1] that emits an
ultrasound impulse f at time t

0

= 0 and the defects D
1

, . . . , D
K

. Then the generated
ultrasound wave u is given by the sum of the incident wave u

i and the scattered wave
u

s. Note that the incident wave is directly given by formula (4.17) as

u

i(x, t) =
1

4⇡kx� x
E

(h)k
2

f

✓
t� kx� x

E

(h)k
2

c

◆
.

However, the scattered wave depends non-linearly on itself, meaning that us = u

s(ui, us)
because of multi-scattering e↵ects. To approximate the scattered wave u

s we use the so
called Born approximation that neglects those e↵ects and considers u

s ⇡ u

s(ui) [7, 39].
For an error bound of the Born approximation we refer to [75]. Given that u

s only
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depends on the incident wave ui we can consider every point on @D
k

as a single secondary
ultrasound source that is stimulated by u

i, so its generated wave is given by (4.17) with
f = u

i(x, ·). Then the scattered wave is the superposition of all secondary sources. We
obtain

u

s(x, t) =
KX

k=1

Z

@D

k

1

4⇡kx� yk
2

u

i

✓
y, t� kx� yk

2

c

◆
dy

=
KX

k=1

Z

@D

k

1

16⇡2kx� yk
2

ky � x
E

(h)k
2

f

✓
t� kx� yk

2

+ ky � x
E

(h)k
2

c

◆
dy.

Thus, the data that is recorded by the receiver at position x
R

(h) can be simulated by

u(x
R

(h), t) = u

i(x
R

(h), t) + u

s(x
R

(h), t)

=
1

4⇡kx
R

(h)� x
E

(h)k
2

f

✓
t� kx

R

(h)� x
E

(h)k
2

c

◆

+
KX

k=1

Z

@D

k

f
⇣
t� kx

R

(h)�yk2+ky�x

E

(h)k2
c

⌘

16⇡2kx
R

(h)� yk
2

ky � x
E

(h)k
2

dy,

where the first term u

i simulates the lateral wave and thus will be neglected in the
following considerations. We now assume that there exists a regular parametrisation
� : [t

0

, t
1

] ⇥ [0, 1] ! @D with �(t, ·) : [0, 1] ! @D \ E
h,t

. It follows that @D \ E
h,t

= ;
for t > t

1

or t < t
0

. Let �
1

, �
2

be the partial derivatives of �(t, s) with respect to s and
t, and let ✓(t, s) = �(�

1

(t, s),�
2

(t, s)) be the angle between the two derivatives at the
point (t, s), then we obtain

u(x
R

(h), t) =
KX

k=1

t1Z

t0

1Z

0

k(�
1

⇥ �
2

)(⌧, s)k
2

f
⇣
t� kx

R

(h)��(⌧,s)k2+k�(⌧,s)�x

E

(h)k2
c

⌘

16⇡2kx
R

(h)� �(⌧, s)k
2

k�(⌧, s)� x
E

(h)k
2

dsd⌧

=
KX

k=1

t1Z

t0

1Z

0

k�
1

(⌧, s)k
2

k�
2

(⌧, s)k
2

| sin(✓(⌧, s))|
16⇡2kx

R

(h)� �(⌧, s)k
2

k�(⌧, s)� x
E

(h)k
2

· f
✓
t� kx

R

(h)� �(⌧, s)k
2

+ k�(⌧, s)� x
E

(h)k
2

c

◆
dsd⌧

=
KX

k=1

t1Z

t0

Z

@D

k

\E
h,t

k�
1

(��1(y))k
2

| sin(✓(��1(y)))|f(t� ⌧)

16⇡2kx
R

(h)� yk
2

ky � x
E

(h)k
2

dyd⌧

= f ⇤
KX

k=1

Z

@D

k

\E
h,t

k�
1

(��1(y))k
2

| sin(✓(��1(y)))|
16⇡2kx

R

(h)� yk
2

ky � x
E

(h)k
2

dy.
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We observe that the di↵erence between our new model and the approach via inverse
scattering using the Born approximation especially regards the amplitude function. A
comparison with model 4.1.5 yields

new model $ scattering with Born approximation,

e��ta(s)RD(↵)

kx
R

(h)� xk
2

kx� x
E

(h)k
2

$ k�
1

(��1(x))k
2

| sin(✓(��1(x)))|
16⇡2kx

R

(h)� xk
2

kx� x
E

(h)k
2

.

We note that, because � is regular, k�
1

(��1(x)k
2

| sin(✓(��1(x)))| > 0 holds. Hence
the Born approximation does neither consider a phase shift (e.g. by reflection) nor
destructive interference of the amplitudes. As a side node we also want to mention
that the inversion method introduced in this work does not directly use the structure of
the amplitude function, so it can be applied to our new model as well as to the model
obtained by the scattering approach via Born approximation.

4.3.2 Numerical Validation

In the last subsection we have shown the connection between our model and an inverse
scattering approach that can be seen as some kind of theoretical validation. Next we
are going to compare our model output data with real data, hence perform a practical
validation. Besides the real output data, we need some technical data on the process of
data requisition. For most output data it is no problem at all to get the emitter type, the
frequency of the impulse signal and other testing settings. However, a priori information
about the defects in the material are not available. As the defect is inside a steel tube,
it is often not accessible and one needs to disassemble the component. This may be
impossible as the tube might e.g. be already in use. Even if one is able to disassemble
it this process might destroy the defect. In order to overcome this problem, special
types of defects are produced to obtain the corresponding real data. In this way we can
evaluate if our model data and the pattern shown by real data fit together. Thereby we
will consider three types of defects, firstly a pore defect with a ToFD set-up, secondly a
crack also examined with a ToFD set-up and at last a half-spheroid back wall defect in
a wall thickness measurement.

Let us start with the real data from ToFD measurements with pore defects shown in
Figure 4.10. Besides the lateral wave and the back wall echo, which we will not take
into account here, we observe parabolic like structures in the data (marked). These are
typical reflection and di↵raction signals of pore defects in the material as emitter and
receiver first move closer to the defect, meaning the signals are measured earlier in time
and more stronger reaching its tip at the apex of the parabolic structure and then begin
to decrease as the probes move away from the pore. Note that the data also contains
smaller structures and noise that are mostly caused by scattering on minor structures.
We will consider this noise later in this section.
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To reproduce the output data for a pore by our model, we have simulated a spherical
defect with a diameter of 1.5mm that is 5mm under the material surface. Equivalently
to the real ToFD set-up, emitter and receiver have been placed on lines at the left and
the right of the defect moving along these lines for a distance of 44cm where they pass
the nearest point to the defect after 22cm. a-scans have been recorded every 1mm. The
function a is simulating a focussing emitter such that the pore is slightly out of focus
and as an impulse function we have taken the Gabor wave (see 4.13) with bandwidth
factor 0.75Mhz2, a center frequency of 1Mhz and no shift. For the time discretization we
have chosen a step size of 0.05µs and the "-discretization has been computed for " = 0.1.
The obtained output data can be seen in Figure 4.11. We note that the model produces
the same parabolic like structures as observed in the real data, thus seems to be a good
approximation for pore defects.

Fig. 4.10: Di↵erent real output data of pore defects in ToFD.

Now let us have a look at the output data produced by crack defects in ToFD measure-
ments. Real output data is given in Figure 4.12. We observe that the measured signals
are mostly concentrated along a line that seems to follow the shape of the crack. Figure
4.13 shows the simulated output data for a ToFD measurement with the same parame-
ters as above but an impulse Gabor function with bandwidth factor 1.25 and frequency
2.75. Now we have placed an 8mm long horizontal crack at the end of the component
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Fig. 4.11: Modelled ToFD output data for a pore defect.

right below the surface. Similarly to real data, we can observe the same concentration
of signals along a horizontal line.

Fig. 4.12: Di↵erent real output data of crack defects in ToFD.

After having compared the output data of our model with two set-ups for the ToFD
method, we now consider a back wall thickness measurement. Therefore Figure 4.14
shows real output data for di↵erent damaged back walls. Again, the data also contains
a surface reflection and multiple reflections of the back wall which will not be taken
into account. We observe that a defect of the tube produces a breakup of the back wall
echo in the output data. Depending on the size and form of the defect this breakup
can be abrupt or slowly fading. Instead of the back wall signal one may receive a defect
reflection also appearing abruptly or slowly fading.

To simulate the output data of a back wall thickness measurement we have modelled a
probe, being emitter and receiver in once, that moves over the surface of a 5cm thick
component along a 30cm long line taking an a-scan every 1mm. The probe focus is
directly targeting the back wall and the impulse is simulated with a Gabor function
with bandwidth factor 1.25, frequency 2.75 and no shift. The discretization step size in
time is 0.05µs and we choose " = 0.1. A smooth thin but 16cm long and 5mm high
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Fig. 4.13: Modelled ToFD output data for a crack defect.

defect is placed in the back wall. The resulting data is shown in Figure 4.15. Here one
can observe the same e↵ects as in real data. The back wall echo vanishes and a signal
reflection of the defect appears. Note that due to the smoothness of the defect the signals
fade out/in very smoothly.

As we have seen, our model is able to simulate the same e↵ects that appear in real data.
But besides signals caused by reflection and di↵raction at defect boundaries, real data
also contains a significant rate of noise caused by e.g. multiple scattering or material
inhomogeneities. This noise can cause problems in the inversion process as ill-posed
problems typically are very prone to it. Thus, to counteract this problem, we have
to understand the structure of this noise. One can observe by the di↵erent real data
examples (see Figure 4.10, 4.12 and 4.14) that the noise has also a wave like structure.
This is consistent with the above consideration that the noise is caused by multiple
scattering and inhomogeneities. Thus, noise seems to be randomly incoming ultrasound
waves with small amplitude. We assume that our model can be expanded with such
noise by adding Gaussian noise to the geometrical model function ũ. Figure 4.16 shows
the modelled data with added Gaussian noise (variance 0.01). Indeed, we observe that
the modelled noise produces e↵ects similar to the noise on real data.

After the validation of our new model we will turn our attention to the inverse problem
in the next chapters. We have seen similarities of our model to the field of inverse
scattering as well as to real output data. Thus it can serve as a fundament for our
inversion method that we will present in this work. Note that there will be further and
more detailed numerical examples in Chapter 9 where we will numerically analyse our
reconstruction method.
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Fig. 4.14: Di↵erent real output data of back wall thickness measurement.

Fig. 4.15: Modelled back wall thickness measurement.
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Fig. 4.16: Modelled data with Gaussian noise on ũ.
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5 Inversion - an Overview

After we have considered several topics about the direct problem in the previous chapters,
we are now prepared to introduce our new inversion method. In Chapter 1 the problem
and the necessity for a reliable algorithm was introduced. We learned about the physical
background and non-destructive testing techniques in Chapter 2. The actually used
methods in non-destructive testing as well as in nearby fields of research were presented
in Chapter 3. Thereby we also commented on the di�culties and weaknesses of some
methods and why they cannot be adapted easily to our problem. Finally, in Chapter 4
we designed a new model based on heuristics that will be the foundation for our new
inversion method.

Our algorithm can be divided into three separated steps. To give the reader an idea what
the aim of each inversion step is and how they are combined to a complete reconstruction
method, this chapter will give a brief overview of the complete algorithm and introduce
the considerations behind those steps. Each step will later be discussed in detail in
Chapters 6 to 8.

To introduce our inverse method we consider a model function u of the form

u(h, t) =

0

B@f(t) ⇤

0

B@
KX

k=1

Z

@D

k

\E
h,t

a(t, y, h)dy +N(t, h)

1

CA

1

CA (t) (5.1)

with the notations of the last chapters, an amplitude function a and Gaussian noise
N(t, h). Note that our model with a = e��tA(y, h) as well as the inverse scattering model
using Born approximation can be described by 5.1. Our reconstruction algorithm can
be applied to most problems that can be modelled by (5.1). Indeed the only assumption
we need, is that

�������

KX

k=1

Z

@D

k

\E
h,t

a(t, y, h)dy +N(t, h)

�������

generally is big in relation to the noise level if @D
k

\ E
h,t

6= ; for at least one k. This
means, if there is a reflection or di↵raction caused by the defect, there is a considerable
increase of the amplitude. If @D

k

\ E
h,t

= ;, the amplitude then only consists of the
noise N(t, h) and should stay low. This assumption assures that the important signal
structures can be separated from the noise, otherwise we would not be able to reconstruct
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all information transferred by this amplitude function. Using this assumption we have
to solve the following inverse problem, namely

The Inverse Problem 5.1.1:

Given the function u or samples of it defined by (5.1), reconstruct {@D
k

}K
k

where K 2 N
is also unknown.

Let us now have a closer look at formula (5.1). To reconstruct @D
k

out of (5.1) we first
need to invert the convolution, secondly the summation and at last the integral. We use
separate methods for each of these steps. The combination of these methods will present
the complete reconstruction algorithm.

We will start considering the deconvolution of formula (5.1). Therefore, we assume
that there are only few and small defects in the material, which is a realistic assumption
because today’s manufacturing is quite good. As a consequence, we note that few defects
can only cause few significant amplitudes in the data. For most h and t the intersection
@D

k

\ E
h,t

will be empty and thus the amplitude function will only consist of noise.
Hence we can rewrite u as

u = f ⇤ (X +N) (5.2)

where N is noise and X is sparse. The inverse problem to reconstruct X now becomes
a sparse deconvolution problem and assuming that f ⇤N is negligible we are searching
for a X 0 such that u ⇡ f ⇤X 0. Such a problem can be solved by using greedy algorithms
like Matching Pursuit (MP) or Orthogonal Matching Pursuit (OMP) [76, 77] but one
may also consider the Prony method [78, 79]. The details of all methods and their
adaptation to our inverse problem will be presented in Chapter 6 that is based on our
publication [80]. These techniques try to reconstruct a sparse solution X 0 of problem
(5.2). We will later see that for the practical problem of defect reconstruction the
most important information of X 0 is given by its support and not by its values which
are often strongly influenced by noise. Thus we consider the essential support of the
reconstruction X 0 that is related to the support of significant values of X + N . Due
to the assumption that the amplitude of the noise N is small compared to significant
structures of X this support will be also related to the essential support of X. In this
way, we may assume that suppX 0 ⇡ suppX holds and use this information for the next
inversion step. Note that the first step approximates the usually small essential support
of X for given data u. Hence we may understand this deconvolution step as denoising
and information extraction of u.

As a result of the first step of our inversion method we obtain the support of the sparse
deconvolved and denoised data

KX

k=1

Z

@D

k

\E
h,t

a(t, y, h)dy. (5.3)
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Let us first assume K = 2, i.e. there are two defects in the material which should also
have great distance to each other. Now it follows that most likely if @D

1

\E
h,t

6= ; then
@D

2

\ E
h,t

= ; and otherwise, meaning that only one element of the sum in (5.3) is
non-zero at a time. If one defect causes a signal at time t and position h then, because
of the great distance between both defects, the other one will surely be too far away to
cause a signal at the same time t. In this scenario the support of (5.3) will consist of two
parts, where for the first part @D

1

\E
h,t

6= ; will hold while for the second part we obtain
@D

2

\E
h,t

6= ;. Moreover, because of the long distance between both defects, these parts
can be separated forming two clusters of the support of (5.3). We can easily find those
clusters using a clustering algorithm on the given support. Then each cluster contains a
part of the signal that is caused by only one defect and can be used to apply our defect
fitting algorithm as the last step of the inversion method. Let us now consider a more
general case where the number of defects K is unknown. In this case one has to use a
clustering algorithm where the number of clusters is not predetermined. The number
of returned clusters will then correspond with the numbers of defects in the material.
Using such algorithms it is possible to reconstruct K. Now, considering also the case of
two defects near to each other, the clusters will surely intersect, what means they can no
longer be separated by a standard clustering algorithm. We will present ideas to adapt
those clustering algorithms using also geometrical information of the support, as the two
defects may not be separated in the coordinate plane but the structure of the caused
signals allows a reconstruction of both clusters. Thus, this step of the inversion aims to
reconstruct the number of defects K and attaches each signal to its source defect. The
details of these step will be presented in Chapter 7.

In the last step of our reconstruction method, we will reconstruct the defects by using
the information obtained from the previous steps. As we have separated the defects in
step 2 we can now use a reconstruction method that only considers one defect. We apply
it to each cluster on its own. Thus, the problem can be stated as follows. For given

Z

@D

k

\E
h,t

a(t, y, h)dy (5.4)

and fixed k  K, how can we reconstruct the set @D
k

? Note that the reconstructed
amplitude is not reliable because of the noisy measurement. Furthermore, the function
a depends on @D and thus the unknown defect appears both in the integral and in its
domain making the inversion problem even harder. For these reasons, we will only use
the information about the support of (5.4), i.e. the pairs (t, h) such that (5.4) is not
equal 0. One may consider the information given by the amplitude in reconstruction
problems where more data is given. It may also be possible to use the structure of a in
a fourth step to improve the obtained solution. However, our algorithm does not make
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5 Inversion - an Overview

use of the information provided in the amplitudes. Furthermore, instead of using the
support of (5.4) we use a slightly relaxed information, namely that

@D \ E
h,t

6= ; for all (h, t) 2 Cl

where we omit the k in @D = @D
k

and Cl is the cluster derived by the second step of
our reconstruction method. Again we use the assumption that the defect @D will most
likely be small. This leads to the minimization problem

min
D

D with @D \ E
h,t

6= ; 8(h, t) 2 Cl (5.5)

where the minimization has to be defined in a reasonable way. Although the constrains
are non-convex we will use their special structure to develop an algorithm that starts
with a big star-shaped defect and reduces it iteratively until it stops in a local minimum
of (5.5). The details of step 3 will be presented in Chapter 8.

Now we have presented a short overview of the methods and ideas used in our inversion
method. A graphical illustration is shown in Figure 5.1. The next chapters will discuss
all steps of our algorithm in details. We strongly recommend to keep the ideas of this
chapter in mind or reread it whenever necessary as the aims of each step and their
collaboration will help to understand the following considerations.
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Fig. 5.1: Illustration of the algorithm.

57





6 Inversion 1 - Deconvolution

In this chapter, based on [80], we want to introduce the first step of our reconstruction
technique. Although the ideas of this step have been presented in the last chapter, a
short summary will be given for an easier understanding. Therefore consider our model

u(h, t) =

0

B@f(t) ⇤

0

B@
KX

k=1

Z

@D

k

\E
h,t

a(t, y, h)dy +N(t, h)

1

CA

1

CA (t). (6.1)

In order to reconstruct the defects in the material, our first aim is to deconvolve the
data and remove the noise N(t, h). We assume only few and small defects. This is a
reasonable assumption due to today’s quality that can be achieved in steel production.
As a direct consequence we obtain that

KX

k=1

Z

@D

k

\E
h,t

a(t, y, h)dy (6.2)

is a sparse signal while the noise N(t, h) is not. This is a powerful constraint that we
want to exploit by using sparse deconvolution methods. These methods are especially
designed to find a sparse solution X of the problem

u = f ⇤X.

As the reflected and di↵racted signals caused by the defects will most likely form the
main components of the signal u, the reconstructed solution will be a good approximation
to (6.2). Moreover, the noise N(t, h) is a non sparse signal with low amplitudes and thus
it has only little e↵ect on the solution and most of it will be filtered out. Hence, sparse
deconvolution methods satisfy all requirements to our first reconstruction step as they
provide a technique to deconvolve and simultaneously denoise the data. We will discuss
those methods in the next section in detail.

Note that until now we have implicitly assumed that the wave function f in (6.1) is known
to allow a deconvolution of the data. This is often not the case in practical applications.
In the second section of this chapter we will therefore discuss techniques to solve a blind
deconvolution problem where f is unknown. This can be done by iteratively solving
the sparse deconvolution problem with an approximation f̃ ⇡ f and then applying an
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6 Inversion 1 - Deconvolution

update step to f̃ . However, with the blind deconvolution problem further di�culties
appear that have to be considered, as e.g. a starting guess for f̃ is needed.

6.1 Sparse Deconvolution

Let us first consider a general sparse deconvolution problem, namely to reconstruct X
from given data

u = f ⇤X

where f is known and X is sparse. Furthermore we assume that at least an upper
bound L 2 N for the number of non-zero elements in X is given. Today there is a
wide range of algorithms to solve such a sparse deconvolution problem as e.g. the Prony
method [79, 80], the MUSIC method [81] or reconstruction via l

1

-minimization [82].
As each technique possesses its own advantages and disadvantages one has to choose a
method depending on the requirements that occur with the problem. In case of ultrasonic
non-destructive testing these are stability, even with highly noised data, and the need
for a computational e�cient implementation to allow a fast defect reconstruction. Both
requirements reduce the number of possible algorithms drastically as the reconstruction
of a sparse solution is complex and thus many algorithms have high cost and/or are
prone to noise. However, there is one class of algorithms that is especially designed to
(approximatively) solve problems with high complexity in an e�cient way, the so called
“Greedy”-methods [83,84]. Roughly said, these methods try to find a global solution of
a problem by solving multiple local problems and combining them. Considering sparse
deconvolution this e.g. means that the algorithm tries to find an L-sparse solution by
deriving L times a 1-sparse solutions of related problems. As a disadvantage that comes
at hand, Greedy methods do not always recover the exact solution but often return a
good approximation of it. Thus, the resolution of those algorithms might be less accurate
than other methods. However, in ultrasonic non-destructive testing this is less important
than a fast and stable implementation. Hence, the greedy approach is our method of
choice. In this work we will make use of two greedy algorithms, namely the Matching
Pursuit (MP) and the orthogonal Matching Pursuit (OMP) [76, 77]. We will introduce
these algorithms in the following subsection.

6.1.1 (Orthogonal) Matching Pursuit

Two Greedy methods that are based on very simple ideas and therefore allow a fast im-
plementation, are the Matching Pursuit (MP) and its extension the orthogonal Matching
Pursuit (OMP). Both algorithms and modified versions of them have been considered
earlier in ultrasonic non-destructive testing, see [85–87]. However, in [80] we applied
them for the first time in connection with a blind deconvolution approach when the ul-
trasound impulse f is unknown. Furthermore, to the authors best knowledge, this work
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6.1 Sparse Deconvolution

is the first to combine Matching Pursuit with additional methods to design a complete
reconstruction algorithm.

In this subsection we will first present the two techniques MP and OMP independently
from our application. Later in this chapter, we will discuss their adaption to ultrasonic
non-destructive testing. Since OMP is based on MP, we will start with the MP algorithm.
We consider a function u in a Hilbert space H with an inner product h·, ·i and the
corresponding norm k · kH. Let D = {f

1

, . . . , f
D

} be a dictionary with f
k

2 H and
kf

k

kH = 1 for k = 1, . . . , D. MP now tries to find the best L-term approximation of
u according to the dictionary D, i.e. 1  j

1

< . . . < j
L

 D and x
1

, . . . , x
L

2 C that
minimize

�����u�
LX

k=1

x
k

f
j

k

�����
H
.

MP uses L iterations to recover a good L-term approximation. In each iteration it
chooses greedily one element of the dictionary D that matches best to the remaining
residual. Thus, the algorithm works as follows:

1. Let a function u 2 H, a dictionary D and L 2 N with L ⌧ #D be given. Initialize
k := 1, r

1

:= u and iterate steps 2 and 3 until k = L.

2. Determine the element f
j

k

2 D that correlates most with the residual r
k

, i.e. solve

j
k

:= arg max
j=1,...,D

|hr
k

, f
j

i|.

3. Update x
k

:= hr
k

, f
j

k

i, r
k+1

:= r
k

� x
k

f
j

k

and k := k + 1.

4. Return {j
k

}L
k=1

and {x
k

}L
k=1

.

We know that

min
j

min
a

kr
k

� af
j

k2H = min
j

kr
k

� hr
k

, f
j

if
j

k2H (6.3)

= min
j

(kr
k

k2H � |hr
k

, f
j

i|2)

= kr
k

k2H �max
j

|hr
k

, f
j

i|2,

and thus the MP solves in each iteration the local problem (6.3) to approximate the
solution of the global problem

min
x

k

,j

k

k=1,...,L

�����u�
LX

k=1

x
k

f
j

k

�����
H
. (6.4)
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6 Inversion 1 - Deconvolution

However, the reconstruction quality of MP strongly depends on the correlation between
the active dictionary elements, i.e. between the elements {f

j

k

}L
k=1

. This can be seen
easily in the following example. Consider the function

u =
LX

k=1

f
k

.

Then the optimal solution of (6.4) is given by j
k

= k and x
k

= 1 for k = 1, . . . , L.
Assume the first dictionary element chosen by MP is j

1

= 1. Then the first coe�cient
reconstructed is given by

hu, f
1

i = 1 +
LX

k=2

hf
1

, f
k

i,

and this term is not necessarily 1 but depends on the correlation between the dictionary
elements. It recovers the correct coe�cients only if the dictionary elements are orthog-
onal. As an extension of MP, the orthogonal Matching Pursuit tries to overcome this
problem. Compared to MP, there is an additional optimization of the parameters x

k

in
each iteration. In detail, OMP works as follows:

1. Let a function u 2 H, a dictionary D and L 2 N with L ⌧ #D be given. Initialize
k := 1, r

1

:= u and iterate step 2-4 until k = L.

2. Determine the element f
j

k

2 D that correlates most with the residual r
k

, i.e. solve

j
k

:= arg max
j=1,...,D

|hr
k

, f
j

i|.

3. Calculate {x
i

}k
i=1

by solving min
x

i

ku�
kP

i=1

x
i

f
j

i

kH.

4. Update r
k+1

:= u�
kP

i=1

x
i

f
j

i

and k := k + 1.

5. Return {j
k

}L
k=1

and {x
k

}L
k=1

.

Thus, OMP recomputes all coe�cients in each iteration to take the correlations between
active dictionary elements into account.

Besides OMP there are plenty of algorithms based on MP trying to improve accuracy,
stability or runtime by adding additional ideas, see e.g. [86–90]. Here we will only
consider the use of MP and OMP as the detailed discussion of all variations of MP
would go beyond the scope of this work, but note that one could easily replace MP and
OMP in our reconstruction method by other algorithms that approximately solve the
sparse deconvolution problem.
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6.1 Sparse Deconvolution

6.1.2 MP and OMP for Sparse Deconvolution of NDT Data

Now we understand how MP and OMP work in a general framework. Let us analyse how
it adapts to the special set-up of sparse deconvolution of ultrasonic NDT data. Therefore
we consider an a-scan u, i.e. ultrasound data received from only one measurement. Since
the convolution of our model is only in the time dimension, all results obtained here can
also be used to deconvolve data containing more a-scans by applying the methods on
each a-scan separately. Now, assume that the ultrasound data

u = f ⇤X (6.5)

is sampled on a grid 0  t
1

< . . . < t
N

< 1 and the impulse function f is known. Thus
the function vector (u(t

k

))N
k=1

is given where we suppress the dependence on h as the
convolution is only performed in the parameter t. We first consider the noiseless case
where the number of ultrasound impulses L in u is known and assume that u is of the
form

u =
LX

k=1

x
k

f(·� ⌧
k

)

with shift parameters ⌧
1

, . . . , ⌧
L

and x
k

2 R for k = 1, . . . , L. Thus the optimal dictionary
for a sparse representation of u would be D = {f(·� ⌧

k

)}L
k=1

. Unfortunately, the exact
shifts are not known. For this reason we need to design a dictionary that does not
necessarily include the correct shifts of f but at least contains good approximations.
Therefore we define sampling points 0  t

1

< . . . < t

M

< 1 and choose the dictionary
D = {f(· � t

k

)}M
k=1

. If the sampling distance t

k+1

� t

k

is small enough, then we can
assume that there exists t

j

k

such that |t
j

k

� ⌧
k

| is small and

u =
LX

k=1

x
k

f(·� ⌧
k

) ⇡
LX

k=1

x̃
k

f(·� t

j

k

).

Hence, u possesses a sparse approximation in D. We can now discretize equation (6.5)
to

0

B@
u(t

1

)
...

u(t
N

)

1

CA =

0

B@
f(t

1

� t
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) . . . f(t
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1

) . . . f(t
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x
1

...
x
M

1

CA .

To avoid notational clutter we will stay with the notation of (6.5) and define

u :=

0

B@
u(t

1

)
...

u(t
N

)

1

CA , F :=

0

B@
f(t

1

� t

1

) . . . f(t
1

� t

M

)
...

. . .
...

f(t
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1

) . . . f(t
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� t

M

)

1

CA , X :=

0
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x
1

...
x
M

1

CA ,
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6 Inversion 1 - Deconvolution

where each column (f(t
1

� t

k

), . . . , f(t
N

� t

k

))T of F is the discretization of an element
f(· � t

k

) of the dictionary D. Note that for N = M and t
k

= t

k

for all k = 1, . . . , N
the matrix F becomes an ordinary discrete convolution matrix. To perform one MP
iteration on the data u with dictionary D we need to calculate

arg max
j=1,...,M

|hu, f(·� t

j

)i| = arg max
j=1,...,M

�����

NX

k=1

u(t
k

)f(t
k

� t

j

)

�����

= argmax |F T

u|.

Thus the iteration step of MP and OMP can be performed by evaluating a matrix
vector multiplication. However, remember that we have designed our ultrasound impulse
function in such a way that they have a finite support and hence the matrix F will be
sparse containing only S ·M non-zero elements, where S is the size of the support of the
discretized impulse function. We note that the sampling resolution of {t

k

}M
k=1

should
be at least as high as the resolution of {t

k

}N
k=1

to avoid a loss of information. However,
choosing M >> N will not improve the method as the correlation between f(·� t

k

) and
f(·� t

k+1

) becomes too large and hamper a correct determination of the right dictionary
element even with very few noise on the data. Hence we can assume that M is of size
O(N) and thus, the matrix vector multiplication has a complexity of O(N). Since all
other computations for one iteration step are also bounded by O(N), the complete MP
algorithm can be performed in O(LN) computations and is therefore suitable for real
time computation.

As a remark, we want to mention that the general discretization shown above allows a
sampling grid {t

k

}M
k=1

for the solutionX that is independent of the sampling grid {t
k

}N
k=1

of the given data. Nevertheless, a typical choice would be t

k

= t
k

for k = 1, . . . , N �M
0

where we use the same grid on both sides and skip the last M
0

elements as the main
part of the support of f(· � t

k

) will be outside the sampling interval [t
1

, t
N

] and thus
does not allow a good correlation analysis, see Figure 6.1. If not mentioned otherwise,
this will be the grid used in all numerical examples in this work.

Until now, we have assumed that the number of non-zero elements L of X is known. In
practice, the more common case will be that only an upper bound L can be determined
but the exact number is unknown. Consider for example a ToFD-measurement. Here,
each column of the data might contain a lateral wave, a back wall reflection and not more
then 1 � 3 defect signals. Thus L = 5 might be a suitable upper bound. But as most
columns will only contain the lateral wave and the back wall echo, the MP algorithm will
reconstruct at least 3 signals that were caused by noise on the data. This demonstrates
the need for a stopping criterion that involves information of the data. We want to
suggest two heuristic ideas that have provided good results in numerical experiments.

• The first stopping criterion is based on the norm of the residual r
k

. If the norm
kr

k

k
p

is smaller then a chosen threshold, then the information contained in the
residual is low and it might already only contain noise. As the ultrasound impulse
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Fig. 6.1: Illustration of F for an equidistant discretization.

has a sparse support and mainly consists of a few high values before it decreases,
one may choose p � 1 up to p = 1 to prefer high values in r

k

. Furthermore,
because the input data di↵ers strongly depending on the material and the probe
set-up, we chose the threshold relative to the norm of u such that the stopping
criterion automatically adapts to the input data. The algorithm will stop if

kr
k

k
p

< "kuk
2

holds for a chosen ". Note that we use the 2-norm of u because the original
signal may contain multiple reflections and di↵ractions that are less emphasised in
p-norms with large p.

• As a second stopping criterion we consider the value x
k

itself. Remember that
|x

k

| = max |F T

u| is the maximum correlation between the residual and our dic-
tionary elements. If this correlation becomes small, the residual may only contain
signals that do not fit well into our dictionary, as e.g. noise. As mentioned above,
we can choose a threshold relative to the input data and let the MP stop if

|x
k

| < "kuk
2

.

One advantage of this stopping criterion is that the value x
k

is already given by
the algorithm itself and hence it does not require the calculation of a p-norm as
the criterion shown above does.

We suggest a further adaption of MP and OMP to ultrasonic non-destructive testing
data that becomes clear if we remember the model designed in Chapter 4. A basic
property of ultrasound we discussed was that its amplitude decreases in time by e↵ects
like absorption. It follows that di↵ractions caused by a defect will have a lower amplitude
the longer the distance between probes and defect is. However, although the amplitude is
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6 Inversion 1 - Deconvolution

lower for a far distance, the information carried about the defect boundary is the same.
Thus we consider not to choose the dictionary element with the greatest correlation
argmax |F T

u| as this will prefer signals that come early in time, but to apply a weighted
greatest correlation argmax |WF T

u|. Here W = diag(w) 2 RM⇥M is a weight-matrix
with the entries w 2 RM on the diagonal. To compensate the decrease of the amplitude
in time we choose w with components of increasing magnitude. Furthermore, one may
even choose particular weights very low to e.g. suppress unwanted signals corresponding
to the back wall echo or the lateral wave.

All considerations above apply for MP as well as for OMP. To decide which algorithm is
the best for our sparse deconvolution problem, we have to bring the di↵erences between
MP and OMP back in mind. As we have seen, both algorithms only di↵er in the
calculation of the coe�cients x

k

. Here OMP solves a minimization problem to deduct
the correlation between the active dictionary elements. Although this makes the method
more accurate, solving a minimization problem in each iteration is a time consuming
process. In order to use the accuracy of OMP without a drastic increase of computation
time we propose a MP-OMP-hybrid method, where the coe�cients are determined by
the OMP minimization problem only if the correlation of the newly added dictionary
element and the already active elements is too strong. Otherwise the coe�cient is directly
determined via the MP iteration.

Combining all considerations above we obtain the following hybrid orthogonal matching
pursuit (HOMP) algorithm adapted to ultrasonic non-destructive testing.

Algorithm 6.1.1 (HOMP for NDT data):

Let the input data u and the function f be given and let F
k

denote the matrix F
restricted to the columns j

1

, . . . , j
k

, where F
0

:= 0. We perform the following HOMP
algorithm to solve the sparse deconvolution problem:

1. Choose a sampling grid {t
k

}M
k=1

and calculate F = (f(t
j

� t

k

))N,M

j,k=1

. Set W =

diag(w), L := 5, k := 1, p � 1 and "
0

, "
1

, "
2

> 0. Initialize X := 0 2 RM and
r
1

:= u.
2. Determine j

k

:= argmax |WF T r
k

|.
3. Calculate E := kF

k�1

· (f(t
i

� t

j

k

))N
i=1

k
2

.
4. If E < "

0

set x
j

k

:= (F T r
k

)
j

k

else set (x
j

i

)k
i=1

:= arg min
y2Rk

ku� F
k

yk
2

.

5. Update r
k+1

:= u� FX and k := k + 1.
6. Repeat 2� 4 until k > L, kr

k

k
p

< "
1

kuk
2

or |x
j

k

| < "
2

kuk
2

.
7. Return X.

Here E calculates the correlation between the newly chosen dictionary element and those
which are already active. So far we did not analyse the approximation results and the
stability of MP based algorithms. There are already many results know as e.g. shown
in [77]. Unfortunately, most of these results require a dictionary where the correlation
between two elements is bounded away from 1. Thus, these results do not apply in our
case as the dictionary elements are strongly correlated especially for neighbouring shifts.

66



6.1 Sparse Deconvolution

However, as we will see in the numerical examples in Chapter 9, the method provides
good results even for data with strong noise. Nonetheless, in the following subsection
we briefly want to discuss some basic examples for MP that will give an idea of the
problems that may arise in real data computation.

6.1.3 Some Comments on Approximation Properties of MP

Although MP-like algorithms are in many cases successfully applied to reconstruct a
sparse solution, the corresponding theory does not cover all applications. Especially for
dictionaries with highly correlating elements the behaviour of MP is somehow unclear.
Hence we will consider a few examples in this subsection to get an idea of the answer
to the following questions: How does noise influence MP? How does MP act on signals
containing highly correlated dictionary elements (two close by non-zero elements in X)?
Does a false reconstruction at least approximate the right solution?

First, we want to analyse the behaviour of MP when noise is added to the data. Therefore
we consider the functions f

k

= f(· � k�
t

) with k 2 Z, �
t

2 R
+

, where kfkH = 1 and
f has finite support. For simplicity we use the infinite dictionary D = {f

k

| k 2 Z} to
avoid boundary e↵ects. We want to reconstruct the 1-term approximation of u = af

k

0

with k0 2 Z. If there is no noise on the data u, then the MP-algorithm will surely find
the exact solution as

k0 = argmax
k2Z

|hu, f
k

i|

and

a = hu, f
k

0i.

However, let us now consider noisy data

u = af
k

0 +
1X

k=�1
"
k

f
k

with Gaussian random variables "
k

with variance �2. First, we note that

hu, f
k

0i = a+
1X

k=�1
"
k

hf
k

, f
k

0i

will most unlikely be equal to a and thus MP cannot recover the exact amplitude. But
furthermore because of

hu, f
l

i = ahf
k

0 , f
l

i+
1X

k=�1
"
k

hf
k

, f
l

i = ahf
k

0 , f
l

i+ "
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6 Inversion 1 - Deconvolution

with a Gaussian random variable " with variance
1P

k=�1
hf

k

, f
l

i2�2 := C(�
t

)�2, we obtain

hu, f
k

0i � hu, f
l

i = a(1� hf
k

0 , f
l

i) + "0 (6.6)

with a Gaussian random variable "0 with variance 2C(�
t

)�2. If we now consider the case
where l is close to k0, then the correlation hf

k

0 , f
l

i may be high and thus for � large
enough (or �

t

small enough) it is unclear whether hu, f
k

0i > hu, f
l

i or not. Hence the
MP-algorithm may choose the wrong dictionary element due to the noise. From this
observation, it follows that the MP-algorithm has a restricted resolution depending on
the noise level. Note that C(�

t

) decreases for increasing step size �
t

and as a consequence
the method seems to be more stable for large step sizes. However, this does only hold
if u is the combination of dictionary elements. In the general case where u is unknown,
one has to use a suitable small step size to ensure that u can be approximated by a
combination of the dictionary elements.

For the next example we consider the dictionary D = {f
1

, f
2

, f
3

} with

f
1

(x) =

(
sin(x) 0  x  2⇡

0 else
,

f
2

(x) =

(
sin(x� ↵) ↵  x  2⇡ + ↵

0 else
,

f
3

(x) =

(
sin(x� 2↵) 2↵  x  2⇡ + 2↵

0 else

with ↵ < ⇡

4

. This is a very simple dictionary of shifted and truncated sine functions
as ultrasound impulses. Note that the functions are not normalized but this can be
neglected for the following considerations as all three functions have the same norm. We
obtain

hf
2

, f
3

i = hf
1

, f
2

i =
2⇡Z

↵

sin(x) sin(x� ↵)dx =
2⇡ � ↵

2
cos(↵) +

sin↵

2
> 0

hf
1

, f
3

i = (⇡ � ↵) cos(2↵) +
sin(2↵)

2
> 0.

Consider the signal u = f
1

+ f
3

. It follows

hu, f
1

i = ⇡ + hf
1

, f
3

i
hu, f

2

i = hf
1

, f
2

i+ hf
3

, f
2

i
hu, f

3

i = hf
1

, f
3

i+ ⇡.
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6.2 Blind Deconvolution

To ensure that the MP-algorithm chooses the right dictionary element, namely f
1

or f
3

,
hu, f

1

i > hu, f
2

i has to hold. But for e.g. ↵ = ⇡

6

, we obtain

hu, f
1

i � hu, f
2

i = ⇡ + (⇡ � ↵) cos(2↵) +
sin(2↵)

2
� (2⇡ � ↵) cos(↵)� sin(↵)

⇡ �0.6043

< 0

and thus hu, f
1

i < hu, f
2

i, i.e. the MP-algorithm will choose the wrong dictionary element
for small ↵. We note that the method tries to approximate the signal u with the element
that fits best and, caused by the strong correlation of f

2

with f
1

and f
3

, it does not
detect two active dictionary functions but approximates them with a function that is
right in the middle.

We have now seen some limitations of MP-like algorithms. While one can theoretically
choose a huge dictionary D to provide a large number of elements MP can choose,
the resolution will not benefit as it is bounded by the noise and the correlation of the
elements. Especially if the signal u consists of several strongly correlated elements the
algorithm will most likely not find the right elements. Note that the above examples do
not only hold for MP itself but for OMP and other modifications as well, as they all
choose the next active element in the same way due to the highest correlation. However,
OMP, the here presented HOMP for NDT data, and also other techniques may proof to
deliver better results for a high number of iterations as they also try to balance the error
from previous iterations, while MP does not. But although MP-like algorithms might
not always find the best sparse solution of the data u, considering (6.3) it is likely that
they will find a suitable approximation.

6.2 Blind Deconvolution

In the last section we have introduced a method to solve the sparse deconvolution prob-
lem u = f ⇤ X if f is known. Yet, the more common case in practise is that the wave
impulse f is not known. This means, we have to estimate both, the sparse solutionX and
the pulse function f from the given data u = f ⇤X. These so-called blind deconvolution
problems are of special interest and many approaches to solve it have been developed,
see e.g. [74, 91], the adaptive approaches in [92, 93] based on minimum entropy evalua-
tion, [94,95] considering order statistics or [96,97] using wavelet regularisation. We also
refer to similar methods in [98,99] that are directly applied to b-scans of ultrasonic data.

However, to receive fast and stable algorithms for blind deconvolution of ultrasonic data
one really needs to exploit the sparsity of X and the special structure of the wave impulse
f as these are powerful constraints. Therefore, we consider the data u 2 RN sampled at
0  t

1

< t
2

< . . . < t
N

. As f is an ultrasound impulse, it can be modelled as a function
f = f

p

depending on parameters p, as e.g. the Gabor function (4.13) with p = (⇢, ,�)
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6 Inversion 1 - Deconvolution

or the raised cosine (4.14) with p = (N, ). For a sampling 0  ⌧
1

< ⌧
2

< . . . < ⌧
M

,
define f

k

= (f
p

(t
1

� ⌧
k

), . . . , f
p

(t
N

� ⌧
k

)). Using the sparsity of X we can now rewrite
u = f ⇤X as

u =
SX

j=1

x
v

j

f
v

j

(6.7)

where v
j

is the index of the j-th non-zero element of X and S is the number of non-
zero elements. Besides S, v

j

and x
v

j

, j = 1, . . . , S, we now also have to estimate the
parameter set p defining the function f

p

that generates the dictionary. In this work we
propose the following approach:

1. Calculate a starting guess of ep ⇡ p.

2. Use the HOMP algorithm (6.1.1) to derive S, {v
j

}S
j=1

and {x
v

j

}S
j=1

.

3. Set ep := argmin
p

ku�
SP

j=1

x
v

j

f
v

j

k
2

.

4. Iterate 2-3 until a stopping criterion holds.

We will present an easy way to calculate a very good starting guess ep from the given data
in the following subsection. Although there is no guaranty for global convergence of step
2 and 3, this choice of ep will enable reasonable results even in the very first iterations.
Note that step 3 is a minimization problem only in the parameter vector p and thus of
low dimension. Its solution can be approximated with fast converging algorithms as e.g.
Newton iteration. We will discuss this approach later.

Furthermore, note that our model is a simplified version of the model presented in
[74, 100]. There one uses the functions f

k

= (f
p1(t1 � ⌧

k

), . . . , f
p

N

(t
N

� ⌧
k

)), meaning
that each shift function has its own parameter vector. This general approach might
be useful if one considers inhomogeneous material where the structure of the incoming
wave impulses are strongly influenced by the material. The additional degree of freedom
is traded against a higher complexity of the problem as one now also has to estimate
S#p parameters. As a drawback, the number of non-zero elements S has to be known
in the general model, see [74]. Furthermore, the used algorithms, namely expectation
maximization (EM) or space alternating generalized EM (SAGE) [101], might either be
slow [102] or unstable [103]. However, we assume homogeneous material and thus it is a
suitable assumption that the measured wave impulses have (approximatively) the same
structure.

6.2.1 Calculation of the Starting Parameters

First, let us consider how one obtains a suitable starting guess ep. The easiest way to do
so, is to use information given by the testing set-up as e.g. the a-priori known frequency
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6.2 Blind Deconvolution

of the emitter pulse. But although the sent out ultrasound impulse is given by the
emitters properties, the parameters might change slightly due to the attenuation in the
material. Thus it is advisable to also use the information given by the data u itself as
it already includes this change of the pulse shape. To obtain a reliable approximation
we consider several data vectors u

1

, . . . , u
Z

, Z 2 N produced with the same set-up. This
procedure does not cause extra costs in most cases since the NDT routine will perform
multiple measurements anyway. Our method to derive a suitable ep will be more accurate
the more measurements are taken, i.e. the larger Z is chosen. However, we only want to
calculate a starting guess, and the parameter vector will be updated in each iteration.
Thus it is not necessary to choose Z very large.

Given the data vectors u

1

, . . . , u
Z

2 RN , Z 2 N that have been sampled with the
same set-up at time 0  t

1

< . . . < t
N

, we concentrate on a signal that is contained
in every measurement u

k

, k = 1, . . . , Z, namely the back wall echo. Here we do not
consider surface reflections or the lateral wave as these signals are less reliable and can
be removed by cutting of the first elements of each vector. It is most likely that in each
vector u

k

the reflection caused by the back wall is represented by the same shift of the
function f

p

and has the same amplitude. Thus, if we sum up all data vectors, the back
wall echo will remain due to constructive interference while all other signals will cause
negligibly small amplitudes . We obtain

ZX

k=1

u

k

⇡ x
�
f
p

(t
j

� t̃)
�
N

j=1

(6.8)

with an amplitude x 2 R. The unknown shift t̃ can be calculated easily as we know that
f
p

(·� t̃) has its essential support on an interval that starts at time t̃. Hence for a chosen
" > 0 we set

t̃ := min

(
t
j

����
ZX

k=1

u

k

(t
j

) > "

)
and t̃

0

:= max

(
t
j

����
ZX

k=1

u

k

(t
j

) > "

)
,

Furthermore we divide (6.8) by its maximum absolute value to normalize it. It follows
that

ef :=

0

BBB@

ZP
k=1
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k

(t
l

)

max
j=1,...,N

����
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˜
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˜
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p
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. (6.9)

A very good starting guess ep can now be found by solving the problem

e
p = argmin

p

�����
ef �

�
f
p

(t
l

� t̃)
�
˜

tt

l

˜

t0

kf
p

k1

�����
2

. (6.10)
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6 Inversion 1 - Deconvolution

Figure 6.2 illustrates this technique of deriving a starting guess for the case that f is
a Gabor function as given in (4.13). The left column shows the summation of several
a-scans (6.8), where the first two rows were obtained from a ToFD measurement while
the last row corresponds to a wall thickness measurement. The second column illustrates
the normalization and support restriction (6.9), and in the last column one can see the
solution of the minimization problem (6.10). The method reconstructs the starting guess

e
p = (6.8486, 14.685,�2.0836) (top)

e
p = (30.0, 28.039, 3.0867) (middle)

e
p = (45.0, 35.448, 1.5708) (bottom)

given in (MHz2,Mhz, ·).

Fig. 6.2: Calculation of the starting guess ep, left: the summation of several a-scans, middle:
normalization and restriction to the essential support of the back wall echo, right:
approximation by a Gabor impulse; time in microseconds.
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6.2 Blind Deconvolution

6.2.2 Parameter Update by Newton-Iteration

Now it is clear how we can find suitable starting parameters ep, and hence a first approx-
imation of X can be found with the HOMP algorithm (6.1.1). To further improve the
solution, we want to apply alternately HOMP for sparse deconvolution and a Newton
algorithm for parameter updating. The HOMP algorithm has already been discussed in
the first section of this Chapter. Thus we will now consider the minimization problem

e
p = argmin

p

ku�
SX

j=1

x
v

j

f
v

j

k
2

(6.11)

and how it can be solved with a Newton-Iteration approach. Therefore we define the
function

F(p) =
SX

j=1

x
v

j

f
v

j

(p),

where we explicitly denote the dependence of f
v

j

(p) on p. The minimization (6.11) can
now be written as ep = argmin ku � F(p)k

2

. We will solve this problem by linearising
the operator F and performing several Newton-iterations to calculate the minimum of
ku� F(p)k

2

with respect to p. We obtain the following algorithm:

1. For a given starting parameter ep set p
1

:= ep, k := 1 and choose " > 0.

2. Solve F

0�
p

= u� F(p
k

) in a least square sense e.g. with the Pseudo inverse. Here
F

0 2 RN⇥#p denotes the Jacobian matrix of F.

3. Update p

k+1

:= p

k

+�
p

and k := k + 1.

4. Iterate 2-3 until the step size k�
p

k
2

satisfies k�
p

k
2

< ".

To perform this algorithm we need to calculate the Jacobian matrix F

0. We will do this
analytically for the case of Gabor impulses with the parameters p = (⇢, ,�), i.e. for

f
p

(t) = e�⇢t
2
cos( t+ �),

where we explicitly do not normalize the function f as the normalization factor will
depend on the parameters p and thus an analytical di↵erentiation will get complicated.
Because of

d

d⇢
f = �t2e�⇢t

2
cos( t+ �)

d

d 
f = �te�⇢t

2
sin( t+ �)

d

d�
f = �e�⇢t

2
sin( t+ �)
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6 Inversion 1 - Deconvolution

we obtain F

0 2 RN⇥3 with
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Unfortunately, as we consider a function f that is not normalized, the update of the
parameters p implies a possibly considerable change of the norm of f . This leads to
a highly unstable method since the amplitudes {x

v

j

}S
j=1

are optimized with respect to
the norm of fe

p

with the parameters ep obtained beforehand. In order to counter this
problem we will update not only the parameters in each Newton-Iteration but also the
amplitudes {x

v

j

}S
j=1

to allow an adjustment of the amplitudes to the changing norm of

the wave function. Note that we do not change the positions {v
j

}S
j=1

of the non-zero
elements in X. This modifies the Jacobian matrix F

0 as it is also calculated with respect
to the amplitudes and thus F0 2 RN⇥S#p is given by
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The numerical results presented in Chapter 9 show that the Newton-iteration performed
with this Jacobian matrix is stable and converges fast even for significant changes in the
norm of f

p

. It emerges to be su�cient to use only very few iteration steps, namely no
more than about 10, to obtain reasonable results.

6.3 Summary

Let us summarize the results achieved in this chapter. In the first step of our recon-
struction method we had to solve the sparse blind deconvolution problem u = f ⇤ X.
In Section 6.1 we discussed the MP-based method HOMP (6.1.1) to reconstruct the
sparse solution X if f is known. The great advantage of this algorithm is its fast and
stable implementation. However, the resolution of the recovered solution is limited by
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6.3 Summary

the noise level and HOMP may fail to reconstruct all non-zero elements if some of them
are strongly correlated. Moreover, in practical applications the function f is often un-
known. Therefore we introduced an approach to solve the blind deconvolution problem
by alternately using HOMP for sparse deconvolution and Newton-iterations to update
the function f

p

in Section 6.2. We used the Gabor impulse as a suitable model for f
p

with three parameters. We also provided a technique to derive a suitable starting guess
as the Newton method only converges locally. Altogether the following algorithm has
been developed:

Algorithm 6.3.1 (Newton-HOMP for sparse blind deconvolution of NDT
data):

Given the input data u perform the following operations:
1. Calculate the starting parameters ep as described in Subsection 6.2.1.
2. Reconstruct X using the HOMP algorithm (6.1.1).
3. a) Solve F

0�
p

= u� F(ep) in a least square sense.
b) Update ep := ep+�

p

.
c) Iterate a) and b) for N  10 times.

4. Iterate step 2 and 3 until the non-zero elements of X do not change any more.
5. Return X.

Figure 6.3 illustrates the numerical results of this algorithm for real NDT data. For a
detailed numerical discussion we refer to Chapter 9 of this work. Now we will move on
to the next chapter where we analyse the second step of our inversion method.

Fig. 6.3: Sparse blind deconvolution with Algorithm 6.3.1 for real NDT data, left: original data,
right: non-zero elements (black) after deconvolution.
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7 Inversion 2 - Clustering

In the last Chapter we discussed a method to deconvolve and denoise the given data u.
Therefore a sparse blind deconvolution problem u = f ⇤X had to be solved to reconstruct
the large amplitudes of X and to suppress the small noise. We will now use the obtained
information to group the non-zero elements of X, where all elements in one group will
most likely be caused by the same defect in the material. Note that for simplicity and
motivated by Figure 6.3 we will from now on refer to the non-zero elements of X as
peaks.

While the deconvolution can be performed independently on each a-scan, i.e. on each
column of the data matrix u, here it is essential to not only consider the non-zero
elements of one a-scan but also use the information given by neighbouring a-scans. A
defect that causes a peak in one of the a-scans will probably cause more peaks for nearby
probe positions. Thus, for each a-scan at its own the peak does not provide suitable
information but considering several a-scans the peaks will accumulate in a region and
form a cluster. We will use a clustering algorithm to extract this information and
reconstruct the number of defects as well as the peaks caused by each of it. Therefore,
we will only use the positions of the in step 1 reconstructed non-zero elements since the
amplitudes are di�cult to interpret even without noise because they are highly dependent
on many material and defect properties. The problem can be stated as follows:

Given the pairs {(t
j

, h
j

)}SN

j=1

, S
N

= O(NS) extracted out of N a-scans for which

KX

k=1

Z

@D

k

\E
h

j

,t
j

a(t
j

, y, h
j

)dy 6= 0

holds, we want to find the number of defects K 2 N and {(t
j,k

, h
j,k

)}Jk,K
j,k=1

such that

Z

@D

k

\E
h

j,k

,t
j,k

a(t
j,k

, y, h
j,k

)dy 6= 0

holds for all k = 1, . . . ,K and j = 1, . . . , J
k

. Note that as a result of the sparse
deconvolution performed in step 1, the input data {(t

j

, h
j

)}SN

j=1

given for step 2 only
consists of S

N

= O(SN) = O(N) elements and thus is independent of the length of the
columns of u. In this way, the sparse deconvolution does not only extract important
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7 Inversion 2 - Clustering

information out of the measurement data but does also decrease the numerical e↵ort for
the following steps drastically.

The above formulated problem is a typical application of cluster analysis. A given
number of data points, here positions (t

j

, h
j

), has to be sorted into di↵erent groups,
where the number of groups is also unknown. Thus, we will shortly introduce some basic
ideas of cluster analysis in the next subsection and discuss our application afterwards,
where we will first consider the simple case of defects whose caused peaks are separated
in space and later the case where the clusters may overlap. For that matter it will
prove to be useful to use information about the data provided e.g. by our model. This
information will be crucial for a good and stable clustering algorithm.

7.1 Cluster Analysis

In this section, we want to give a very brief introduction to cluster analysis. Note that
only the main ideas will be discussed and we will not introduce any method in detail.
This will be done in the following sections when we apply the algorithms to our problem.
Also the theoretical considerations are kept short as they are often depending on the
methods itself. For a more detailed overview of cluster analysis, we refer to [104–106].

Clustering algorithms aim to classify a given amount of data into several clusters of
similar objects. Thereby a lot of di↵erent clustering techniques have been developed.
We want to shortly summarize the most important di↵erences that have to be considered
before choosing a clustering algorithm for a special application.

At first, we need to clarify the meaning of cluster to understand the principles of cluster-
ing algorithms. Besides several requirements that depend on the application, the clusters
should have the following two properties [104]:

• Elements in the same cluster should be related to each other / to the cluster.

• Elements of two di↵erent clusters should be unrelated to each other / to the cluster.

Therefore, a relation measure has do be defined depending on the application. Consider
e.g. a number of points {x

k

}K
k=1

2 Rn. We may say that two elements x
i

, x
j

are related,
if kx

i

� x
j

k
2

is small (e.g. below a certain threshold) and are unrelated if kx
i

� x
j

k
2

is large. A clustering algorithm then tries to find clusters of points that are near to
each other while the distance between two clusters is large. On this way a number of
clusters is created that contain related objects with respect to the relation measure. The
intensity of relation within one cluster can be chosen arbitrarily. As an example, the
Complete-Linkage algorithm [104] creates clusters in which each element is related to
each other element of the cluster while the Single-Linkage algorithm [104] only requires
each element to be related to at least one other element. Furthermore, some algorithms
consider a representative element for each cluster and measure the relation between an
element of the data and the representative [107].
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7.2 Clustering Algorithms for Separated Defect Peaks

We can now give a general description that applies to most clustering algorithms. Given
a data set, perform the following procedure:

1. Choose a starting set of clusters, where e.g. each element is a cluster on its own,
all elements are in one cluster or, if the number of clusters is known, all elements
are randomly assigned to a cluster.

2. Calculate all values of the relation measure.

3. Update the clusters by e.g. merging clusters, separating clusters or reassigning
elements.

4. Iterate 2-3 until the clusters do not change any more or another stopping criterion
holds.

Thereby, the detailed procedure of all steps is dependent on the exact methods and
will be discussed in the following sections for the algorithms we use in this work. To
give an example, we refer to one of the most used clustering algorithms, the k-means
[104,107,108].

However, the number of algorithms one can apply might be limited by the application.
As an example, some clustering algorithms as e.g. the k-means do explicitly require
a-priori knowledge about the number of clusters which is not always known. Moreover,
some algorithms produce overlapping clusters, meaning that they allow an element to
be member of more than one cluster. This may be useful or not depending on the
application and interpretation of the clusters. Considering all this, to find a suitable
clustering algorithm for a given application, we need to answer the following questions:

• Which function does best measure the relation between our data elements?

• Does it make sense to allow overlapping clusters?

• Do we know the number of clusters?

This will limit the number of algorithms we can use. In order to find the best algorithm
we should furthermore take into account the runtime, the relation intensity requested in
each cluster and other properties of the di↵erent methods. In the following two sections
we will consider these points, first for NDT data where the signals of di↵erent defects do
not intersect and later where they do. For both cases we will present an algorithm that
fits the requirements and thus can be taken as the second step of our inversion method.

7.2 Clustering Algorithms for Separated Defect Peaks

Let us analyse how to apply clustering algorithms to reconstruct the number of defects
and to classify each peak by its source. Thereby, we first consider the more simple case,
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where peaks from di↵erent defects are separated. This means, for (t
j

, h
j

), (t
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for some fixed " > 0. Here, � > 0 in (7.1) is a weight parameter that is necessary as
we are mixing a time and a distance variable. For an equal rate we choose � = c2 with
the ultrasound speed c. It follows directly that if (7.1) does not hold, then (t
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) and
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0) are caused by the same defect, i.e. k = k0. Thus the function
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will be a good choice as a relation measure.

Let us proceed by considering the results of the last section. We note that, due to the
separated defects, no peak will be caused by two defects at once and hence we do not
want the clusters to overlap. Furthermore, we do not know the number of clusters as
it coincides with the also unknown number of defects. Moreover, as there might be a
large distance between the first and the last peak caused by a defect, we do not require
one element to be related with all other elements of the cluster. An algorithm that
satisfies most of these requirements is the DBSCAN [105,109,110] (density based spatial
clustering for applications with noise). DBSCAN might produce slightly overlapping
clusters but as a big advantage, it is also able to handle noisy data, i.e. data points that
should not be classified to any cluster. Although most of the noise in our application
data will be eliminated in the first inversion step, this cluster algorithm will remove most
of the rest. The idea of DBSCAN is, to analyse the local density at each data point. It
distinguishes between core points with high density, i.e. points whose "-neighbourhood
contains more than P

min

points, and points with low density. The parameters " > 0 and
P
min

2 N have to be defined by the user. Starting at a random point DBSCAN runs
through the data until a core point is found. The core point and its "-neighbourhood form
the basis of a new cluster. DBSCAN expands the cluster by adding the "-neighbourhood
of all core points in the cluster and iterates this step until there is no new core point added
to the cluster. In this way, a cluster consist of so-called density-reachable core points
and their "-neighbourhoods. After one cluster is completely expanded, the algorithms
starts searching another core point in the remaining set. If in doing so a point with low
density is found it will be labelled as noise but might be later reassigned to a cluster if
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7.2 Clustering Algorithms for Separated Defect Peaks

found in the "-neighbourhood of a core point. Hence, DBSCAN only needs to consider
each data point once to check if it is either a core point and can directly be assigned to
a cluster or not.

Let us now adapt DBSCAN to our application. The choice of " is given by inequality
(7.1). Furthermore, we set the minimum number of points in the "-neighbourhood for
core points P

min

depending on the application. For e.g. ToFD we set P
min

= 2 as for
each peak their should be at least one peak in the successive and in the previous a-scan
and similarly we choose P

min

= 4 for wall thickness measurements because here one
analyses three dimensional data. We obtain:

Algorithm 7.2.1 (DBSCAN for defect-cluster reconstruction):

Given the pairs {(t
j

, h
j

)}SN

j=1

, let (7.1) hold for " > 0 for peaks caused by di↵erent defects.
Choose � > 0, P

min

arbitrarily and perform the following algorithm:
Initialize the index set I

uv

= {1, . . . , S
N

} of unvisited points and the number of
clusters K = 0.
Search for a core point by

1. Choose i 2 I
uv

and update I
uv

= I
uv

\ {i}.
2. Calculate the indices E of the points in the "-neighbourhood of (t

i

, h
i

) w.r.t.
the distance (7.2).

3. If E contains at least P
min

indices, start expanding, else continue with step 1.
Expand the cluster by

1. Set K = K + 1 and C
K

= {i} [ E .
2. For all core points in C

K

, add their "-neighbourhood to C
K

.
3. Iterate step 2 until no new elements are found.
4. Update I

uv

= I
uv

\ C
K

.
Return K and {C

k

}K
k=1

.

The iterative decreasing of the index set I
uv

nicely illustrates that DBSCAN considers
each element only once. The numerical most complex part of the algorithm is the
calculation of the "-neighbourhood. A naive approach would result in a complexity
of O(S2

N

) but this can be reduced to an average runtime of O(S
N

logS
N

) by smart
implementations [109]. In [110] one uses the triangle inequality

dist(p, q) > |dist(p, r)� dist(q, r)|

for a distance function dist and points p, q, r to estimate a lower bound for the distance
dist(p, q) by using a reference point r. In this way, the number of distance calculations
can be drastically reduced leading to a strong decrease in the runtime [110].

Figure 7.1 illustrates Algorithm 7.2.1 for t
j

2 {0,�
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, . . .} and h
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, 2�
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, . . .}
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and�
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. We simulated one probe, emitter and receiver in
one, with positions given by x
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)2 and " =
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Given t
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and thus (t
j1 , hj1) and (t

j2 , hj2) are related, i.e. d
�

(t
j1 , hj1 , tj2 , hj2) 

p
2�

h

, if and only
if (t

j2 , hj2) is in the 8-neighbourhood of (t
j1 , hj1).

Fig. 7.1: top: original dataset, middle/bottom: solution obtained with DBSCAN: 3 clusters
and noise.
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7.3 Clustering Algorithms for Intersecting Defect Peaks

In the last section we presented an algorithm to determine the defect clusters for sep-
arated peaks from di↵erent defects. Let us consider the more general case where the
peaks of di↵erent defects might intersect, i.e. for k 6= k0 there might be a point (t

j

, h
j

)
such that

Z

@D

k

\E
h

j

,t
j

a(t
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, y, h
j

)dy 6= 0 and
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0\E
h
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,t
j

a(t
j

, y, h
j

)dy 6= 0

holds. This will change the requirements to our clustering algorithm. Here it is crucial
for the reconstruction to use clustering methods that are able to handle overlapping
clusters. Moreover, as peaks of di↵erent defects will now intersect, the relation measure
(7.2) is no longer su�cient to separate unrelated elements. Thus, we need a clustering
algorithm that can separate intersecting clusters. Furthermore, some points belong to
several clusters and hence the algorithm should be able to handle multiple assignments.
DBSCAN already does this somewhat at least for the low density points. Another ap-
proach is shown in [111] where the fuzzy-C-means algorithm is presented, a generalisation
of k-means that uses fuzzy sets [112] where the membership of a point to a cluster can
not only take the values 0 (does not belong to the cluster) or 1 (does belong to the clus-
ter) but also values in between. However, such algorithms are useful to separate clusters
that blend into each other, but they will not work when clusters e.g. cross each other
as it might be the case in our application (see Figure 7.2). Here we need to modify the
existing algorithms to make special use of the structure of the clusters. Therefore, we
will only consider the ToFD application as overlapping signals do usually not occur in
wall thickness measurements. In [113] a modified version of DBSCAN is presented that
uses multiple density levels to decompose a set of points in several overlapping clusters.
Thereby one exploits the fact that the clusters may have di↵erent densities.

Fig. 7.2: Three overlapping clusters.
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7 Inversion 2 - Clustering

We will exploit the structure of our data by using the fact that our clusters are mostly
shaped like a discretized curve in R2. Therefore, we first rewrite DBSCAN in a di↵erent
manner and than modify the algorithm with respect to our cluster structure. Remember
that DBSCAN works as follows:

• Iterate through all points in the data.

• If a core-point is found, start a new cluster with the core-point and its "-neighbour-
hood.

• Add the "-neighbourhood of all core-points in the cluster to the cluster.

• Repeat this until the cluster does not change any longer. Than continue iterating
through the data.

We note that the core-points form the basis of this algorithm. Because of that, we can
rewrite the DBSCAN algorithm as

• Calculate the set C of all core-points in the data.

• Starting with a point in the set C as cluster, add all points in the "-neighbourhood
of the cluster that are also in C to the cluster.

• Repeat this until the cluster does not change any longer. Than start a new cluster
with another core-point that isn’t already assigned.

• For all found clusters, add the "-neighbourhood to the cluster.

Note that the second and third step describe the Single-Linkage algorithm [104] applied
to the set C of all core-points. Thus, DBSCAN first calculates all core points, than
applies Single-Linkage and in the end adds all non-core-points to the clusters. In order
to be able to separate intersecting clusters we will add another step that manipulates
the set C in a special way before the Single-Linkage algorithm is applied. In the ToFD
application, the clusters are mostly formed like curves in R2 with one dimension in time
and one in the position of the probes. It follows that for the right choice of ", a point in
a cluster should typically have two other core-points, one that is previous and one that is
successive on the curve. If the "-neighbourhood contains less core-points, the point might
be at one end of the cluster. Points that have more core-points in their "-neighbourhood
may indicate an intersection between two curves. Furthermore, we assume that the
clusters are smooth in the sense that for two intersecting clusters with points P

1

, Q,R
1

and P
2

, Q,R
2

the angles ^(P
1

QR
1

), respectively ^(P
2

QR
2

), are closer to 180� then
^(P

1

QR
2

), respectively ^(P
2

QR
1

). In other words, coming to an intersection point of
two clusters Q with an "-neighbourhood containing more than 2 points, it is most likely
that points belonging to the same cluster locally lie on a line-like curve. Using these
information about our clusters we can perform the following manipulation of the set C.
As long as there is a core-point P in C that has more then two neighbours corresponding
to C:

• Find the two neighbours N
1

, N
2

such that ^(N
1

PN
2

) is closest to 180�.
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7.3 Clustering Algorithms for Intersecting Defect Peaks

• Remove N
1

, N
2

from the neighbourhood of P .

• Add a new point P 0 to C with neighbours N
1

, N
2

.

Considering a point P with 5 neighbours, this iteration will replace P by three points
P
1

, P
2

, P
3

that have at most two neighbours such that the angle formed by P
1

, P
2

, P
3

and their neighbours are near to 180�. Figure 7.3 illustrates the result. Note that one
has to store the original point for each new point that was added to C as we do need to
map each point back at the end.

P P
1

P
2

P
3

Fig. 7.3: left: P and its original "-neighbourhood, right: copies P1, P2, P3 of P and their neigh-
bourhood.

Applying the Single-Linkage to the manipulated set C it will no longer merge intersecting
clusters. Consider for example a horizontal and a vertical line that intersect at point P
corresponding to Figure 7.3. While normally the complete neighbourhood of P would
be added to a cluster and thus both lines would be assigned to the same cluster, with
the new set of points P

1

, P
2

, P
3

, a line ”coming from the right” will add P
1

to its cluster
and continue on the left side while a line ”coming from below” will add P

2

to its cluster
and continue above.

However, after applying the Single-Linkage algorithm, we need to edit the returned
clusters to adjust them to the original set of core points. First of all, for every cluster
that contains points that were newly added to the set C, we remove these points and
add the original point instead. As an example, for a cluster containing the point P

1

we remove the point P
1

and add P instead. But moreover, we have to delete some of
the found clusters. Due to the manipulation of the set C the algorithm will return a
lot of small clusters that are completely covered by other clusters. Considering Figure
7.3 again, we assume that P

1

and P
2

are assigned to two di↵erent clusters forming a
horizontal and a vertical line. Furthermore, the 5th neighbour of P that was assigned
to P

3

should be noise and thus P
3

and its neighbour will be returned as an independent
cluster. After each point has been mapped back to P we obtain three clusters, one
horizontal line containing P , one vertical line containing P and one cluster containing
only P and one neighbour. It is clear that the last cluster is only a product of our
manipulation of the set C and should be removed.
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7 Inversion 2 - Clustering

Altogether, using the above considered adaptions of DBSCAN we receive the following
algorithm that we want to call DBCLAN as it is now more specialised in clustering lines
and curves instead of only taking the spatial information into account.

Algorithm 7.3.1 (DBCLAN for intersecting defect reconstruction):

Given the pairs {(t
j

, h
j

)}SN

j=1

, choose � > 0, " > 0, N
del

arbitrarily and perform the
following algorithm:

Determine the set C of all core-points, i.e. all points with at least 2 points in their
"-neighbourhood corresponding to the distance (7.2).
Manipulate the set C as long as there is a core-point with more then 2 core-points
in its neighbourhood by
1. Select a point P in C with more then 2 core-points as neighbours.
2. Find the core-pointsN

1

, N
2

in the neighbourhood of P with ^(N
1

PN
2

) closest
to 180�.

3. Remove N
1

and N
2

from the neighbourhood of P .
4. Add a new point P 0 to C with neighbours N

1

and N
2

.
Apply Single-Linkage to C.
Map back all newly added points in C to their original point.
Add the "-neighbourhood of each point in a cluster to the cluster. Here we also
consider non-core-points.
Remove clusters that are completely covered by other clusters or clusters that have
not more then N

del

elements.
Return the set of remaining clusters and the number of clusters K.

The numerical most complex part of the algorithm is still the calculation of the "-
neighbourhood and thus the complexity stays at O(S2

N

) respectively O(S
N

logS
N

) de-
pending on the implementation. Figure 7.4 illustrates the algorithm for three clusters
where two clusters intersect. We set N

del

= 5 while the other parameters were chosen in
the same manner as in the last section such that the "-neighbourhood is equivalent to
the 8-neighbourhood.

7.4 Summary

In this chapter we discussed algorithms to solve our second inversion step. Therefore a
short introduction to the ideas of cluster analysis was given. We introduced the DBSCAN
algorithm that can be seen as a generalization of Single-Linkage. This algorithms has
been proved to be very useful for our application as it is not only able to reconstruct
both the clusters and the number of clusters, but it also handles noisy data and thus has
a denoising e↵ect on our data. We adapted the algorithm to our application first with
non-overlapping defects, see Algorithm 7.2.1. Later in this chapter we also considered
intersecting defects. Taking the special form of our clusters into account we altered
DBSCAN into DBCLAN 7.3.1. Besides the advantages of DBSCAN, this algorithm is

86



7.4 Summary

furthermore able to separate intersecting clusters. For both algorithms, 7.2.1 and 7.3.1,
the numerical most expansive part is the calculation of the "-neighbourhood. Using
smart implementations this can be done in an average runtime of O(S

N

logS
N

), where
S
N

is the number of points obtained by the first reconstruction step. Because the
number of points S

N

= O(N) only depends on the number of a-scans, this will allow a
fast implementation of the algorithm.

Fig. 7.4: top: original dataset, middle/bottom: solution obtained with DBLCAN: 3 clusters
and noise.
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In the last step of our inversion method we will finally use the data obtained in step
2 to reconstruct the defect boundary. Given the result of the second inversion step we
have several clusters, each representing one defect. Thus we only need a reconstruction
method for a single cluster. This method can then be applied to each cluster separately.
In this way, we do not only obtain a simpler problem with only one defect in step 3 but
this also allows a parallel computing of several defects and hence a fast implementation.

Let us consider one cluster obtained in the second inversion, i.e. a set of points {t
k

, h
k

}N
k=1

where N is the number of points in the cluster. We denote the defect belonging to
this cluster by D and omit the defect indices as the inversion method will reconstruct
each defect on its own. Thus, the problem can be stated as follows. Given the points
{t

k

, h
k

}N
k=1

with

Z

@D\E
h

k

,t
k

a(t
k

, y, h
k

)dy 6= 0 (8.1)

we want to reconstruct @D. We note that the function a derived in Chapter 4 has a
complicated structure that highly depends on @D itself. To overcome this di�culty we
will not use the information (8.1) directly but use that

@D \ E
h

k

,t

k

6= ; (8.2)

follows from (8.1) for all k = 1, . . . , N . Furthermore, we need a discrete representation
of @D. Let us therefore introduce the following definitions.
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8 Inversion 3 - Defect Reconstruction

Definition 8.0.1:

Remember that in this work R
+

= [0,1). Let D ⇢ Rn be a bounded, connected set
that represents a defect in an n-dimensional model space with n = 2, 3. We call D
star-shaped if there exists a center point C 2 D and a continuous function r : S ! R

+

on the n-dimensional sphere S such that

@D = {C + r(⇣)⇣ | ⇣ 2 S}.

We say that D is non-degenerate if r is Lipschitz-continuous and strictly positive, i.e.
C 62 @D. Furthermore, let {⇣

j

}M
j=1

be a discrete sampling of S. We call the set

{P
j

= C + r
j

⇣
j

}M
j=1

⇢ @D

with r
j

= r(⇣
j

) a discrete representation of @D. Let .̂ (⇣
1

, . . . , ⇣
M

) be a polygonal
line (n = 2) or triangulation (n = 3) of S using the points {⇣

j

}M
j=1

. We say that

.̂ (P
1

, . . . , P
M

) is an approximation of @D where .̂ (P
1

, . . . , P
M

) is defined by

P
i

P
j

2 .̂ (P
1

, . . . , P
M

) , ⇣
i

⇣
j

2 .̂ (⇣
1

, . . . , ⇣
M

) (n = 2),

4(P
i

, P
j

, P
k

) 2 .̂ (P
1

, . . . , P
M

) , 4(⇣
i

, ⇣
j

, ⇣
k

) 2 .̂ (⇣
1

, . . . , ⇣
M

) (n = 3).

We call .̂ (P
1

, . . . , P
M

) suitable if it is also star-shaped and non-degenerate. This does
not necessarily hold as e.g. for n = 2 and M = 2 the set .̂ (P

1

, . . . , P
M

) = .̂ (P
1

, P
2

)

degenerates into a line.

Note that .̂ (P
1

, . . . , P
M

) is again a polygonal line / triangulation of @D but using the
definition above it can be derived without knowledge about @D. This will be useful
for our reconstruction method since we do not know @D. A 2-dimensional example
of a defect D, a discrete representation and its polygonal line is given in Figure 8.1.
Furthermore, we can prove the following theorem.

Theorem 8.0.2:

Let D be a non-degenerate, star-shaped defect and let {⇣
j

}M
j=1

be a discrete sampling of
S such that

min
j

k⇣
j

� ⇣k
2

 "

holds for an " > 0 and all ⇣ 2 S. Let {P
j

= C + r
j

⇣
j

}M
j=1

be a representation of @D.
Then

max
P2@D

min
j

kP � P
j

k
2

 (R+ L)"

holds with R = max
⇣2S

r(⇣) and the Lipschitz constant L of the radius function r.
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Proof:
Choose P = C + r(⇣)⇣ 2 @D arbitrary. It follows

kP � P
j

k
2

= kC + r(⇣)⇣ � C � r
j

⇣
j

k
2

 kr(⇣)⇣ � r
j

⇣k
2

+ kr
j

⇣ � r
j

⇣
j

k
2

= |r(⇣)� r(⇣
j

)|+ r
j
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j

k
2

 Lk⇣ � ⇣
j

k
2

+Rk⇣ � ⇣
j

k
2

and thus

min
j

kP � P
j

k
2

 (L+R)min
j

k⇣ � ⇣
j

k
2

 (L+R)".

P
1

= C + r
1

⇣
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⇣
1

P
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P
3

P
4

P
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P
6 P

7

P
8

C

Fig. 8.1: Defect boundary @D ⇢ R2, a discrete representation with points {Pj}8j=1 and its
polygonal line.

At this point we like to clarify the at first sight slightly conflicting notation. Theorem
8.0.2 shows an approximation property of the representation {P

j

}M
j=1

of @D. This might

be confusing as there is also the set .̂ (P
1

, . . . , P
M

) which we call the approximation of
@D. The reason for this notation is simple: {P

j

}M
j=1

is a discrete subset of @D and thus
a representation of @D in the sense of Theorem 8.0.2. However, if one wants to analyse
special characteristics of the defect, like area, volume or diameter, the representation
{P

j

}M
j=1

is no longer su�cient. Thus we will use the set .̂ (P
1

, . . . , P
M

) as an approxi-
mation to recover those characteristics. Furthermore, we like to note that in Theorem
8.0.2 the set {P

j

}M
j=1

can be replaced by .̂ (P
1

, . . . , P
M

) and the assertion still holds

since {P
j

}M
j=1

⇢ .̂ (P
1

, . . . , P
M

).
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8 Inversion 3 - Defect Reconstruction

Let us now continue our considerations. Given Definition 8.0.1 we can try to reconstruct
@D by finding a representation {P

j

}M
j=1

for which (8.2) holds. We obtain the discrete

problem, given {t
k

, h
k

}N
k=1

with

{P
j

}M
j=1

\ E
h

k

,t

k

6= ;, (8.3)

find C, {r
j

}M
j=1

and {⇣
j

}M
j=1

where M is also unknown. Note that the condition (8.3)
can be reformulated as

8k  N : 9j  M : P
j

2 E
h

k

,t

k

. (8.4)

After the points {P
j

}M
j=1

have been reconstructed, we can use .̂ (P
1

, . . . , P
M

) as an
approximation for @D to extract the important information about D.

The algorithm to reconstruct the points {P
j

}M
j=1

presented in this chapter is divided in
two parts. In a first step, we approximate the center point C as this is the reference
point for all points P

j

, j = 1, . . . ,M . This can be done, using heuristics that are highly
adapted to the measurement set-up. In the first section of this chapter we will present
three methods to calculate C starting with one that is adapted to ToFD. The second
method is adapted to wall thickness measurements and the third method is applicable
in a more general set-up. If an approximation of C is derived, we can reconstruct
{r

j

}M
j=1

and {⇣
j

}M
j=1

in a second step. Using some a-priori conditions for the defect D
the reconstruction will be reformulated as a minimization problem of special form which
can be solved with an iterative method. This algorithm will be presented in Section 8.2.

8.1 Reconstruction of the Center Point

The point C plays an important role in the representation of @D. Thus, before we
can calculate the points P

j

, we first need to approximate C. Thereby the interesting
question occurs, how much an approximation error in C influences the accuracy of the
second part, the reconstruction of {r

j

}M
j=1

and {⇣
j

}M
j=1

. Hence let us state the following
theorem.

Theorem 8.1.1:

Let D ⇢ Rn be a non-degenerate, star-shaped defect. For a suitable approximation
.̂ (P

1

, . . . , P
M

) of @D define the set C of all center points of .̂ (P
1

, . . . , P
M

) for which
a continuous, strictly positive function r exists, such that

.̂ (P
1

, . . . , P
M

) = {C + r(⇣)⇣ | ⇣ 2 S}

holds. Then C 6= ; is open.

Proof:
For suitable approximations of @D the set C is non-empty by definition. We choose
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8.1 Reconstruction of the Center Point

C 2 C. Note that C 2 C if and only if for all P 2 .̂ (P
1

, . . . , P
M

) the line CP \ {P} is
in the interior of .̂ (P

1

, . . . , P
M

) since it follows directly that for each direction ⇣ 2 S
there is exactly one point P 2 .̂ (P

1

, . . . , P
M

) that can be written as P = C + r⇣ with
r > 0. Hence the radius function r is defined point-wise. The continuity of r follows
from the continuity of .̂ (P

1

, . . . , P
M

) and r > 0 holds since C is in the interior of
.̂ (P

1

, . . . , P
M

).

We first consider the two-dimensional case n = 2. For fixed k, l, let E0 be the a�ne
hyperplane that contains the line P

k

P
l

2 .̂ (P
1

, . . . , P
M

). E0 divides R2 in two half
spaces, denote the half space that contains C by E excluding E0. Note that E is open.
Now let {E

j

}L
j=1

be the set of all half spaces that can be generated in this way for all

k, l such that P
k

P
l

2 .̂ (P
1

, . . . , P
M

) and {E0
j

}L
j=1

the corresponding a�ne hyperplanes.

We show that C = \L

j=1

E
j

and thus open.

Therefore, let C 0 62 \L

j=1

E
j

, this means C 0 62 E
j

0 for at least one j0  L. Let P
k

P
l

be

the line that is contained in E0
j

0 and choose P 2 P
k

P
l

with P 6= P
k

and P 6= P
l

. Then
there exist an " > 0 such that B

"

(P ) \ E
j

0 is in the interior and B
"

(P ) \ E
j

0 is not in
the interior of .̂ (P

1

, . . . , P
M

). Since C 0 62 E
j

0 and E
j

0 is a half plane, it follows that
C 0P \

�
B
"

(P ) \ E
j

0
�
6= {P}, i.e. C 0P contains points unequal to P that are not in the

interior of .̂ (P
1

, . . . , P
M

). Hence C 0 62 C.

Now choose C 0 62 C. It follows that there exist points P 2 @D and C
1

2 C 0P such that
C
1

P ⇢ C 0P is not in the interior of D. As above we obtain that C 0P \
�
B
"

(P ) \ E
j

0
�
6=

{P} following that C 0 62 E
j

0 . Thus we obtain C = \L

j=1

E
j

.

For n = 3 this follows with the same argumentation but using for j, k, l  M the a�ne
hyperplanes that contain the triangles 4(P

j

, P
k

, P
l

) 2 .̂ (P
1

, . . . , P
M

).

We obtain

Corollary 8.1.2:

For a given defectD ⇢ Rn let .̂ (P
1

, . . . , P
M

) be a suitable approximation. Furthermore,

let eC be an approximation of a center point C 2 C of .̂ (P
1

, . . . , P
M

) and define the
approximation error

" := kC � eCk
2

.

Then eC 2 C if " is small enough.

Proof:
This follows directly from the fact that C is open.

Note that we cannot provide any bound for the approximation error in the corollary.
Indeed, the size of the set C strongly depends on the shape of the defect. Figure 8.2
shows an example where C becomes small. However, the defects appearing in practice are
mostly “well-shaped” and thus the set C is relatively big. Hence, referring to Corollary
8.1.2, we will from now on assume that C is given exactly.
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8 Inversion 3 - Defect Reconstruction

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

Fig. 8.2: A star shaped defect and the set C (gray). The set becomes smaller if the points
P1, P3, P5, P7 approach each other.

After these theoretical considerations about the behaviour of the set C, we are going to
discuss several methods in the following subsections. Thereby, the diversity of defects
and applications makes it necessary to exploit given a-priori knowledge and use heuristics
to develop approximation algorithms for C. As there is no way to prove if C is a center
point or not, all methods presented here try to find a point that is somewhere in the
middle of the defect. For defect shapes that appear in practical applications, this is a
good approximation to a center point. Although these methods have no approximation
guarantee, the results obtained in numerical examples are quite good.

8.1.1 A Heuristic Method for ToFD

Let us start considering a heuristic method for the ToFD technique. Therefore remember
that the position of emitter and receiver for a pair (t, h) is given by the (known) functions
x
E

(h) and x
R

(h). For a set of points {t
k

, h
k

}N
k=1

let us define the set

x := {(x
E

(h
k

), x
R

(h
k

)) | t
k

= min
i

t
i

}

of emitter and receiver positions where the measuring time t
k

is minimal. As the measur-
ing time in homogeneous materials directly correlates with the distance between emitter,
reflection/di↵raction point and receiver, the set x contains all positions where the probes
were closest to the defect. We can now use the fact that ToFD is mainly used to analyse
welds in tubes. Thereby, the probes are aligned geometrically on each side of the weld.
It follows that for (x

E

, x
R

) 2 x the middle point x
M

:= x

E

+x

R

2

lies in the “weld-plane”.
Assuming that defects may only appear in the weld but not in the tube itself, the point
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8.1 Reconstruction of the Center Point

x
M

is directly above the reflection/di↵raction point P . Knowing that for a pair (t, h)
the equation kx

E

� Pk
2

+ kx
R

� Pk = ct holds and using the symmetry of the arrange-
ment we obtain by Pythagoras P = x

M

+ 1

2

p
(ct)2 � kx

E

� x
R

k2
2

⇣
M

where ⇣
M

is the
direction “downward the weld-plane” that is perpendicular to the probes movement and
to x

R

� x
E

. Thus we can calculate one point P 2 @D on the defect boundary. Figure
8.3 illustrates this.

kx
E

�x

R

k2
2

plane weld

⇣
M

x
E

x
R

x
M

ct

2

P

Fig. 8.3: Calculation of the point P 2 @D for (xE , xR) 2 x.

Next we have to decide whether the constructed point P is on the lower or on the upper
part of the defect, i.e. if we have measured a di↵raction or reflection. Remember that due
to the amplitude function A a reflection will most likely have a much smaller amplitude
than a di↵raction but a reflection from the surface of a defect will arrive before the
di↵raction from its bottom. For the probe positions (x

E

(h
j

), x
R

(h
j

)) 2 x consider the
set T := {t

k

| h
k

= h
j

} of all arrival times that were measured in the same a-scan. Now
we have to analyse two cases:

1. There is no arrival time t

k

2 T that is significantly greater than t

j

, i.e there is
no t

k

2 T such that t

k

> t

j

+ " holds. In this case, the only signals we have
measured in this a-scan are coming from approximatively the same positions. As
the di↵raction has a stronger amplitude than the reflection, we assume that (t

j

, h
j

)
was a di↵raction signal and the reflection got lost in noise. Thus we choose C =
P � �⇣

M

as a point that is above the point P on the lower part of the defect
boundary. Here � has to be chosen appropriately.

2. In the second case there is an arrival time t

k

2 T for which t

k

> t

j

+ " holds. Here
we have measured signals coming from two or more di↵erent regions of the defect.
Assuming that the first signal is now a reflection measure, we set C = P + �⇣

M

below the point P that is on the upper part of the defect boundary.

Note that if the set x contains more than one pair of positions, we can use the method
to calculate several center points C. As shown in Theorem 8.1.1, the set C of all center
points is convex and hence we can derive the mean of all generated points C. This will
enhance the algorithm and make it more stable against noise. We obtain
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8 Inversion 3 - Defect Reconstruction

Algorithm 8.1.3 (Center point approximation for ToFD):

Given the pairs {t
k

, h
k

}N
k=1

that have been derived by the first and second part of our
reconstruction method applied to ToFD-measurement data, we perform the following
steps to find an approximation C of a center point:

Choose ", � > 0 appropriately.
Initialize C = 0 and ⇣

M

2 S perpendicular to probe movement in the weld plane.
Calculate x := {(x

E

(h
k

), x
R

(h
k

)) | t
k

= min
i

t
i

}.
For all (x

E

(h
j

), x
R

(h
j

)) 2 x:
Calculate T := {t

k

| h
k

= h
j

}.
If 9t

k

2 T : t

k

� t

j

> "

then C = C + x

E

(h

j

)+x

R

(h

j

)

2

+ 1

2

p
(ct

j

)2 � kx
E

(h
j

)� x
R

(h
j

)k2
2

⇣
M

+ �⇣
M

else C = C + x

E

(h

j

)+x

R

(h

j

)

2

+ 1

2

p
(ct

j

)2 � kx
E

(h
j

)� x
R

(h
j

)k2
2

⇣
M

� �⇣
M

.
Average C = C

|x| .

8.1.2 A Heuristic Method for Wall Thickness Measurement

As a second example for highly adapted heuristic methods we want to consider a tech-
nique to reconstruct C for wall thickness measurement data. Therefore remember that
this ultrasonic non-destructive testing technique is a classical application of an impulse
echo method. This means a probe, emitter and receiver in one, placed at position x

E

sends out the ultrasound in direction ⇣
M

of the tube back wall. Thus, the measured
signals are most likely reflections from points below the tube in direction ⇣

M

or near
by. Given the set {t

k

, h
k

}N
k=1

we define the mean probe position x
M

= 1

N

P
N

k=1

x
E

(h
k

).
This is the mean of all positions where defect reflections were measured. Referring to
the considerations above, the position x

M

is directly atop the middle of the defect. Ne-
glecting the curvature of the material we obtain that x

M

is on the surface and hence the
alternate point on the back wall is given by C = x

M

+ s
t

⇣
M

where s
t

is the thickness of
the component. C will surely be inside the defect as it is on the back wall and we are
analysing back wall defects and so we can use it as an approximation for a center point.
We obtain the method

Algorithm 8.1.4 (Center point approximation for back wall defects):

Given the pairs {t
k

, h
k

}N
k=1

that were derived by the first and second part of our recon-
struction method applied to wall thickness measurement data, we use

C =
1

N

NX

k=1

x
E

(h
k

) + s
t

⇣
M

as an approximated center point. Here s
t

is the diameter of the component and ⇣
M

is
the directional vector pointing from surface to back wall.
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8.1 Reconstruction of the Center Point

8.1.3 A General Heuristic Approach

The last reconstruction method for C we want to present is a general heuristic approach
that can be applied to almost every sort of testing set-up. Therefore, we use that for
most defect shapes appearing in practical applications the “middle” of the defect is a
good guess for a center point C 2 C. Let us define the middle of a defect D as those
points which are in the interior of D and have the greatest distance to the boundary
@D, i.e.

M := {C 2 D | dist(C, @D) � dist(C 0, @D) for all C 0 2 D}
= {C 2 D | min

P2@D
kC � Pk

2

� min
P2@D

kC 0 � Pk
2

for all C 0 2 D}.

We assume M ⇢ C and approximate a center point C 2 M. Because @D is unknown,
we cannot determine dist(C, @D). Thus we use the knowledge that for each pair (t

k

, h
k

)
there exists a point P 2 E

t

k

,h

k

\ @D where E
t

k

,h

k

is given by Definition 4.1.1. For a
given set of points {t

k

, h
k

}N
k=1

we can now approximate

dist(C, @D) ⇡ min
k

dist(C,E
t

k

,h

k

) =: R(C)

with R : Rn ! R
+

. We seek for a point C 2 M where the distance to the boundary @D
is maximal, hence we want to find a local maximum of R(C). Note that for kCk

2

! 1
also R(C) ! 1 and thus R has no global maximum. To avoid this problem, we multiply
R with an indicator function I : Rn ! [0, 1] where I(C) is a probability function that
has to be defined a-priori. It should be chosen in a way such that I(C) is great for
C 2 D and R(C) · I(C) is bounded. Figure 8.4 illustrates R, I and R · I for the
two dimensional area of size 10mm⇥ 10mm. We have chosen the pairs {(t

k

, h
k

)}4
k=1

=
{(1.35µs, 0mm), (0.84µs, 5mm), (1.35µs, 10mm), (2.7µs, 5mm)} and x

E

(h
k

) = x
R

(h
k

) =
(h

k

, 0mm). For the left example we neglected the last point (2.7µs, 5mm). We observe
that the function R(C) in both cases is unbounded for kCk

2

! 1 while R(C) · I(C) has
a global maximum where we chose I as an exponential decreasing function that has its
maximum in the center of the plane.

We now can derive C 2 C by

C = arg max
C

02Rn

R(C 0)I(C 0)

= arg max
C

02Rn

min
k

dist(C 0, E
t

k

,h

k

)I(C 0)

= arg min
C

02Rn

max
k

�dist(C 0, E
t

k

,h

k

)I(C 0).

This is a so called minimax problem. To solve this problem one uses the fact that
for continuous di↵erentiable functions {f

k

}N
k=1

the directional derivatives of q(x) :=
max
k

f
k

(x) exists and can be determined. Thus solving the minimax problem means

solving the problem min
x

q(x) what can be done by applying an iterative method using the
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8 Inversion 3 - Defect Reconstruction

Fig. 8.4: Top: The function R(C), C 2 R2 for N = 3 (left) and N = 4 (right) given pairs
{(tk, hk)}Nk=1. Middle: The function I(C). Bottom: R(C) · I(C).
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8.2 Spiderweb Algorithm for Defect Reconstruction

direction of steepest descend that can be derived with help of the directional derivatives.
For more information about minimax problems, its theory and numerical algorithms we
refer to [114–116] and the references therein.

We have now introduced three di↵erent methods to approximate a point C 2 C. One
may also think of other heuristic ideas e.g. for other testing set-ups. However, we may
stay with those three examples and change to the second part of reconstruction step 3,
the reconstruction of the points {P

k

}M
k=1

with P
k

= C + r
k

⇣
k

where r
k

, ⇣
k

and M are
unknown.

8.2 Spiderweb Algorithm for Defect Reconstruction

In the last section we discussed the reconstruction of C 2 C and due to Corollary 8.1.2
we assume in this section that C is exactly given. According to (8.4) we obtain the
discrete problem: Given C 2 C and {t

k

, h
k

}N
k=1

, find {r
j

}M
j=1

and {⇣
j

}M
j=1

such that

8k  N : 9j  M : P
j

2 E
t

k

,h

k

(8.5)

where P
j

= C + r
j

⇣
j

. Note that we do only need one point P
j

for each pair (t
k

, h
k

)
and hence our algorithm will reconstruct not more than M  N points. Due to the
characteristic visualization of its iteration (see Figure 8.5) we like to call our method the
spiderweb algorithm. We will introduce the method in several steps. First we deduce
a minimization problem from the above stated problem and analyse its solution. In a
second step we show that for exactly given {⇣

j

}M
j=1

the solution of the minimization
problem correlates with the solution of (8.5). Furthermore we show that our algorithm
is stable in the sense that given an approximation of {⇣

j

}M
j=1

the reconstructed points
will be an approximation to the solution of (8.5). We denote the scenario of (approxi-
matively) given {⇣

j

}M
j=1

as supervised minimization. In a last step we discuss the case

of unsupervised minimization where {⇣
j

}M
j=1

is not given. We can prove that, taking a
dense sampling of S as input for our method, our algorithm will automatically reduce
the number of directions and determine a subset that is an approximation to {⇣

j

}M
j=1

.

8.2.1 Reconstruction as Minimization Problem

One can easily see that the problem (8.5) has no unique solution. For a given set of
points {P

j

}M
j=1

that satisfies (8.5) we can add a point P
M+1

and obtain another solution

{P
j

}M+1

j=1

. Hence, we need to specify the solution we want to reconstruct. Let us therefore
define
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8 Inversion 3 - Defect Reconstruction

Fig. 8.5: Two visualizations of the iterations of our algorithm in R2. The shape is formed like
a spiderweb. Here marked: The starting polygon (thick outer line) and the returned
solution (thick inner line).

Definition 8.2.1:

We call {P
j

}M
j=1

an irreducible solution for {(t
k

, h
k

)}N
k=1

if

8k  N : 9j  M : P
j

2 E
t

k

,h

k

(8.6)

but for all j0  M the set {P
j

}M
j=1,j 6=j

0 does not satisfy (8.6). Furthermore let P be

the set of all irreducible solutions and V : P ! R. We say that {P
j

}M
j=1

is minimal
according to V if

V ({P
j

}M
j=1

) = min
P

V.

Note that for every set {t
k

, h
k

}N
k=1

the points {P
k

}N
k=1

with P
k

2 E
t

k

,h

k

generate a
solution for (8.5). It follows directly that there always exists a irreducible solution
since we can remove points from the set {P

k

}N
k=1

until the solution is irreducible. Now
we assume that a defect normally has a small size, and we design the algorithm to
reconstruct an irreducible solution that is minimal according to a function V that will
be discussed more precisely later. For a better understanding the reader might think
of V being the volume of the approximation .̂ (P

1

, . . . , P
M

). We thus assume that the
desired reconstruction is also a solution of the problem

min
{P

j

}M
j=12P

V ({P
j

}M
j=1

). (8.7)

We will use this minimization approach to construct the spiderweb algorithm that de-
termines a set of radii {r

j

}M
j=1

for a given set of directions {⇣
j

}M
j=1

. Thus, assume the

directions {⇣
j

}M
j=1

are given and fixed. Then the point P
j

lies on the ray {C+r⇣
j

| r > 0}.
The condition P

j

2 E
t

k

,h

k

, i.e. P
j

is in the intersection of a line and a spheroid, becomes
a non-linear equation with respect to r. We can define
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8.2 Spiderweb Algorithm for Defect Reconstruction

Definition 8.2.2:

Let the set {t
k

, h
k

}N
k=1

, the center point C and the directions {⇣
j

}M
j=1

be given. Fur-
thermore let B

kj

= {r | C + r⇣
j

2 E
t

k

,h

k

} be the set of all solutions of the equation
P
j

2 E
t

k

,h

k

. We define

b
kj

= min((B
kj

\ R
+

) [ {1})

as the smallest, real and positive solution in B
kj

or 1 if no positive real solution exists.

Note that for (t
k

, h
k

) being a di↵raction signal, the set B
kj

will contain positive and
negative solutions as C is inside the ellipsoid E

t

k

,h

k

while it is outside for reflection
signals. Thus the algorithm will automatically distinguish between both cases. Figure
8.6 illustrates the value b

kj

for di↵erent cases in two dimensions. Moreover, if x
E

(h
k

) =
x
R

(h
k

), the set E
t

k

,h

k

is a sphere and thus B
kj

is explicitly given by

B
kj

=

8
<

:hx
E

(h
k

)� C, ⇣
j

i±

s

hx
E

(h
k

)� C, ⇣
j

i2 � kx
E

(h
k

)� Ck2
2

+
c2t2

k

4

9
=

; .

C

⇣
j

b
kj

E
t

k

,h

k

(a)

C

⇣
j

b
kj

E
t

k

,h

k

(b)

C
⇣
j

b
kj

= 1

E
t

k

,h

k

(c) C

⇣
j

b
kj

= 1

E
t

k

,h

k

(d)

Fig. 8.6: The solution bki for di↵erent cases: (a) Bkj contains two positive solutions, bkj is the
smaller one; (b) Bkj contains one negative and one positive solution, bkj is the positive
solution; (c) Bkj contains two negative solutions, bkj is set to 1; (d) Bkj contains no
(real) solution, bkj is set to 1.

Furthermore we denote r = (r
j

)M
j=1

and b
k

= (b
kj

)M
j=1

. As the directions {⇣
j

}M
j=1

and
the center point C are fixed, we can rewrite the function V as function in the radii,
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8 Inversion 3 - Defect Reconstruction

i.e. V : RM ! R with V (r) = V ({P
j

}M
j=1

). Using Definition 8.2.2 we can rewrite
minimization problem (8.7) as

min{V (r) | r 2 RM , 8k  N : 9j  M : r
j

2 B
kj

}. (8.8)

Having in mind that V will favour small defects, i.e. defects with small radii r, we relax
the constraints of the above stated problem and instead consider

min{V (r) | r 2 RM , 8k  N : 9j  M : r
j

� b
ki

}
,min{V (r) | r 2 RM , 8k  N : r 6< b

k

} (8.9)

where r 6< b
k

is meant in a component-by-component comparison sense. Note that for
a solution r of (8.9) and a solution er of (8.8) V (r)  V (er) holds. We will show in the
next subsection that the solutions of both problems are equal under special conditions.
However, motivated by problem (8.9), we define

Definition 8.2.3:

For k = 1, . . . , N let Q
k

:= {r 2 RM | r < b
k

} be the set of all vectors that are smaller
than b

k

in a component-by-component sense. We define Q = [N

k=1

Q
k

[ (RM \ RM

+

) as
the union of all Q

k

and all vectors in RM with at least one negative component. We can
rewrite (8.9) as

min
r2RM\Q

V (r). (8.10)

Furthermore, for j = 1, . . . ,M let e
j

2 RM be the j-th canonic unit vector. We call
r 2 RM a concave corner of Q if r 62 Q but r�"e

j

2 Q for all " > 0 and all j = 1, . . . ,M .
Figure 8.7 illustrates this for M = 2, N = 4 (top) and M = N = 3 (bottom). Moreover
for j = 1, . . . ,M we define

b
kj

:=

(
1 k = N + 1, . . . , N +M , j 6= k �N,

0 k = N + 1, . . . , N +M , j = k �N.

Then Q = [N+M

k=1

Q
k

with Q
k

= {r 2 RM | r < b
k

} = {r 2 RM | r
k�N

< 0} for
k = N + 1, . . . , N +M . This will simplify theoretical considerations as we do not need
to examine di↵erent cases.

Note that Q is not convex (see e.g. Figure 8.7) and hence we cannot use convex opti-
mization algorithms to solve (8.10). However, Q has a very special structure that is the
key in solving this problem. Therefore, let us now consider the connection between the
solution of (8.10) and the function V . We prove the following two statements:
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Fig. 8.7: The sets Qk (k = 1, . . . , N) and the concave corners of Q (dots) with M = 2, N = 4
(top) and M = N = 3 (bottom).
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8 Inversion 3 - Defect Reconstruction

Theorem 8.2.4:

Let V : RM ! R be (strictly) monotonically increasing on RM \Q in each component,
i.e. V (r)  V (r+ "e

j

) for each " > 0 and j = 1, . . . ,M where e
j

is the j-th canonic unit
vector. Then the concave corners of Q are the (only and strict) local minima of V on
RM \Q.

Proof:
Let r be a concave corner of Q and ⇣ 2 S. Denote ⇣� = min{0, ⇣} and ⇣

+

= max{0, ⇣}
where min and max are evaluated component-wise. It follows that ⇣ = ⇣� + ⇣

+

and for
" > 0 and k⇣�k2 > 0

r + "⇣ = r + "⇣�| {z }
2Q

+"⇣
+

.

Because Q is open we obtain that r + "⇣ 2 Q for " small enough. Hence for feasible
directions ⇣ 2 S it holds that k⇣�k2 = 0, i.e. ⇣ =

P
M

j=1

z
j

e
j

with z
j

� 0 for all
j = 1, . . . ,M . Thus we obtain

V (r + "⇣) = V

0

@r +
MX

j=1

z
j

e
j

1

A � V

0

@r +
MX

j=2

z
j

e
j

1

A � . . . � V (r)

and consequential r is a local minimum.

Now consider V being strictly monotonic. We obtain that r is a strict local minimum
in the same way. For er 62 Q being no concave corner the existence of " > 0 and e

j

such that r � "e
j

62 Q follows by definition. Hence er is no local minimum because of
V (r) > V (r � "e

j

).

Corollary 8.2.5:

The following functions are monotonically increasing in each component on RM

+

:
• All p-norms krk

p

with p 2 [0,1].
• The two-dimensional volume function of the polygonal line

V (r) =
1

2

X

P

j

P

k

2 .̂ (P1,...,P
M

)

r
j

r
k

q
1� h⇣

j

, ⇣
k

i2.

• The three-dimensional volume function of the triangulation

V (r) =
1

3

X

4P

j

P

k

P

l

2 .̂ (P1,...,P
M

)

r
j

r
k

r
l

|h⇣
3

, ⇣
1

⇥ ⇣
2

i|.

where ⇣
1

⇥ ⇣
2

denotes the cross product in Rn.
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8.2 Spiderweb Algorithm for Defect Reconstruction

Proof:
For p 2 (0,1) this follows from rp

j

 (r
j

+ ")p for all " > 0 and r
j

� 0. For p = 0 this is
easy to see because of kr + "e

j

k
0

= krk
0

+ 1 for r
j

= 0 or kr + "e
j

k
0

= krk
0

otherwise,
and for p = 1 we obtain kr+ "e

j

k1 = max{max
k 6=j

r
k

, r
j

+ "} � max{max
k 6=j

r
k

, r
j

} = krk1.

The volume functions are linear with positive coe�cients in each r
j

and hence mono-
tonically increasing.

As we see, the concave corners of Q are highly related to the solution of our minimization
problem (8.10). Thereby, it seems to be less important which function V we want
to minimize since the “most usual” functions all have their local minima at the same
points. We assume from now on that the function V is monotonically increasing in
each component and hence the minima are the concave corners of Q. We will return
to the discussion of V at the end of this section to obtain some improvements of the
basic algorithm. Much more important is the question, how the concave corners can be
computed. Let us discuss the following statement:

Theorem 8.2.6:

Let the coe�cients {b
kj

}N+M,M

k,j=1

from Definition 8.2.3 be given. Then it holds:
1. A concave corner r satisfies 8j : 9k : r

j

= b
kj

and r
l

< b
kl

for l 6= j.
2. For r 2 RM let 8j : 9k : r

j

= b
kj

hold. Furthermore for {j | r
j

> 0} define the

vectors rj 2 RM with rj
i

= r
i

for j 6= i and rj
j

= max
k

{b
kj

| b
kj

< r
j

}. Note

that the upper index corresponds to the vector while the lower index denotes the
coe�cient. Then r is a concave corner if and only if rj 2 Q for {j | r

j

> 0}.
3. For two concave corners r 6= er neither r  er nor er  r is true.
4. Q has only a finite number of concave corners.

Proof:
The first statement is true since by definition r� "e

j

2 Q for all j = 1, . . . ,M and hence
r � "e

j

< b
k

for a k  N +M . It follows with r 62 Q and thus r 6< b
k

that r
j

= b
kj

and
r
l

< b
kl

for all l 6= j.

Let us consider the second statement. Note that since r 2 RM we have r < 1 in each
component. For a concave corner r it holds rj 2 Q by definition since rj = r�"e

j

for an
" > 0. Now let rj 2 Q for all j 2 {j | r

j

> 0}, i.e. there exists a k for each j such that
rj < b

k

. We obtain for all j 2 {j | r
j

> 0} that b
kj

> max
k

0
{b

k

0
j

| b
k

0
j

< r
j

} and hence

b
kj

� r
j

. Since r and rj only di↵er in the j-th component it follows that r� "e
j

2 Q for
all " > 0. Moreover, for j 2 {j | r

j

= 0} the vector r � "e
j

is not in RM

+

. Thus r is a
concave corner.

For the next statement assume the contradiction. Given concave corners r 6= er it should
hold that r  er. Now it follows that there exists a j  M with r

j

< er
j

and hence
r  er � "e

j

2 Q.

105



8 Inversion 3 - Defect Reconstruction

With the first statement we obtain that the concave corners are combinations of the
finite coe�cients of {b

kj

}N+M,M

k,j=1

, i.e. {b
kj

}N,M

k,j=1

[{0}, and hence their number is limited

by (N + 1)M .

Thus, theoretically, we now have everything at hand to solve the problem (8.10). Al-
though this minimization problem is non-convex, we have shown that the local min-
ima of V form a finite set of points. Hence, the global minimum can be found by
calculating all concave corners of Q and evaluating the function V at these points.
Theorem 8.2.6 shows that the concave corners are a subset of the M -dimensional grid
G := {x 2 RM | 8j : 9k : x

j

= b
kj

}. Unfortunately, this set contains (N + 1)M points.
Therefore, the naive approach to test each point on the concave corner properties will
have exponential runtime in M . This becomes even more crucial as M � N in the
case of unsupervised minimization. However, according to Theorem 8.2.6 we only need
to evaluate several comparisons of the type b

kj

{<,=, >}b
k

0
j

to determine if r 2 G is a
concave corner. Use e.g. the fact that

r concave corner , 8j 2 {j | r
j

> 0} : rj 2 Q (8.11)

, 8j 2 {j | r
j

> 0} : 9k : rj < b
k

. (8.12)

Note that all {b
kj

}N+M,M

k,j=1

are known and thus the comparisons can be evaluated before-
hand. As we need the comparisons between b

kj

and b
k

0
j

for all j  M and all k, k0  N
this is equivalent to sorting the sets {b

kj

}N
k=1

for each j  M . Further, we do not need
to evaluate the comparisons for k > N or k0 > N as these are trivial. Hence we have
a numerical e↵ort of O(MN logN). Once all the comparisons are determined, we only
need to prompt the required comparisons. Nevertheless, the naive approach will fail
again. A naive point based method that considers each point of the set G on its own will
have exponential runtime in the number of requests. On the contrary, a request based
method that only asks once for the comparison result of each pair (b

kj

, b
k

0
j

) and passes
the information forward to each a↵ected point, has exponential memory requirements
as it has to save information for each point in G.

The spiderweb algorithm that we will introduce in this work is a point based method that
uses the information obtained by analysing one point to successively reduce the number
of possible concave corners. Inspired by equation (8.11) the method will not directly
check if r is a concave corner, but only analyse if a point r is in Q or not. Furthermore,
the algorithm will only return one concave corner, i.e. a local minimum of V and does
not calculate the set of all concave corners to reconstruct the global minimum of V . In
this way we are able to reduce the costs to a linear runtime. Thereby the spiderweb
algorithm is based on
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8.2 Spiderweb Algorithm for Defect Reconstruction

Theorem 8.2.7:

Given {b
kj

}N+M,M

k,j=1

with b
k

6= (1)M
j=1

for each k  N +M it holds:
Existence: Q has a concave corner.
Starting Point: The point r 2 G with r

j

= max
k

{b
kj

| b
kj

< 1} is not in Q.

Test: If r 62 Q, then sj with sj
i

= r
i

for i 6= j and sj
j

= min
k

{b
kj

| b
kj

> r
j

} is no
concave corner.
Memory e↵ect: If r � "e

j

2 Q, then er � "e
j

2 Q for er  r.
Descending direction: For er 62 Q there exists a concave corner r  er.

Proof:
Existence: This follows from the Starting Point and the Descending direction property.

Starting Point: For r 2 Q there has to be a b
k

with r < b
k

. By definition of r it follows
that b

k

= (1)M
j=1

what is the contradiction.

Test: This follows from (2) of Theorem 8.2.6.

Memory e↵ect: For r � "e
j

2 Q there exists b
k

such that r � "e
j

< b
k

. We obtain
er � "e

j

 r � "e
j

< b
k

and hence er � "e
j

2 Q.

Descending direction: Let er 62 Q and without loss of generality we assume that er is no
concave corner. Then there exists a j  M such that er � "e

j

62 Q for " small enough.
Since Q is open we can define "

j

= max{" > 0| er � "e
j

}. Update er1 = er � "
j

e
j

62 Q.
By definition of "

j

it follows that er1 � "e
j

2 Q for all " > 0. If er1 is a concave corner,
then we are done. Otherwise repeat the procedure for er1, i.e. there exists a j1  M
with er1 � "e

j

1 62 Q. Because of the memory e↵ect j1 6= j holds and hence we obtain a
concave corner latest after M iterations.

Now we introduce

Algorithm 8.2.8 (Spiderweb algorithm):

Given {b
kj

}N+M,M

k,j=1

with b
k

6= (1)M
j=1

for each k  N +M perform the procedure:
Initialize r 2 G with r

j

= max
k

{b
kj

| b
kj

< 1} for j = 1, . . . ,M .

Set I = {1, . . . ,M}.
Iterate

• If I = ; return r.
• Choose j0 2 I (randomly).
• Define er by er

j

= r
j

for j 6= j0 and er
j

0 = max
k

{b
kj

0 | b
kj

0 < r
j

0}.
• If er 2 Q, then set I = I \ {j0} else set r = er.

The spiderweb algorithm iteratively decreases the components of r until a concave corner
is reached. The iteration in r is illustrated in Figure 8.8. If we visualize the set {P

j

}M
j=1

with P
j

= C+r
j

⇣
j

for each iteration we obtain the typical spiderweb structure shown in
Figure 8.5. Note that the algorithm chooses the descending direction at random. One
may discuss also other criteria depending on the application. However, in our numerical
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8 Inversion 3 - Defect Reconstruction

experiments the best results were achieved by choosing the direction randomly where
the probability for each direction is equal. Before we go on to the next subsection to
discuss the use of this algorithm in supervised minimization, we prove

Theorem 8.2.9:

The spiderweb algorithm calculates a concave corner in at most O(MN) iterations.

Proof:
We use Theorem 8.2.7 to prove this theorem. Due to the starting point property the
algorithm starts with a point outside Q. In each iteration we evaluate er by er

j

= r
j

for
j 6= j0 and er

j

0 = max
k

{b
kj

0 | b
kj

0 < r
j

0}. If er 62 Q, then r is no concave corner due to

the test property. On the other hand, if er 2 Q for a chosen j0 2 I then r might be
a concave corner. Since er  r holds, the algorithm produces a decreasing sequence in
each component and hence we can remove j0 from I due to (2) of Theorem 8.2.6 and the
memory e↵ect. It follows that if I = ; then r � "e

j

2 Q for each j = 1, . . . ,M and thus
r is a concave corner.

The number of coe�cients b
kj

< 1 for each j is limited by N+1 (N coe�cients obtained
by the data and b

N+j,j

= 0). This means, starting at r 2 G with r
j

= max
k

{b
kj

| b
kj

< 1}
for j = 1, . . . ,M , we can decrease each component upto N times before it is set to 0 and
consequently r = 0 after O(MN) iterations. Since r 62 Q, r � "e

j

= 0 � "e
j

62 RM

+

and
hence r � "e

j

2 Q this is a concave corner.

Q

r
1

r
2

0
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b
1,1

b
2,1

b
3,1

b
4,1

b
4,1

b
3,1

b
2,1

b
1,1

Fig. 8.8: The spiderweb algorithm starts at the “greatest” point of the grid and iterates down-
wards until a concave corner is reached, illustrated here for N = 4 and M = 2.

8.2.2 Supervised Minimization

We have shown how to find a local minimum of the function V on RM \Q with the help of
the spiderweb algorithm. However, to deduce the discrete minimization problem (8.10)
from the original reconstruction problem we used several assumptions. Thus, we now
analyse the connection between the solutions of both problems. In this subsection we
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8.2 Spiderweb Algorithm for Defect Reconstruction

will consider the supervised minimization problem where {⇣
j

}M
j=1

or an approximation

of it is known. Let us first analyse the case where {⇣
j

}M
j=1

is exactly given. We can prove

Theorem 8.2.10:

Let D ⇢ Rn and {(t
k

, h
k

)}N
k=1

given such that

ct
k

= sup
P2@D

(kx
E

(h
k

)� Pk
2

+ kx
R

(h
k

)� Pk
2

) (8.13)

or

ct
k

= inf
P2@D

(kx
E

(h
k

)� Pk
2

+ kx
R

(h
k

)� Pk
2

) (8.14)

holds, i.e. the measured signals result either from the nearest or most distant point.
Note that these signals are the di↵raction that is latest in time or the reflection that is
earliest in time. Then it holds:

1. There exists a representation {P
j

}M
j=1

of @D that is also an irreducible solution for

{(t
k

, h
k

)}N
k=1

.
2. Given C 2 C, the directions {⇣

j

}M
j=1

of this representation and Q, r with r
j

=
min
k

{b
kj

| b
kj

> 0} is a concave corner of Q with P
j

= C+r
j

⇣
j

for all j = 1, . . . ,M .

Proof:

1. Since @D is closed and k · k
2

is continuous, there exists a point eP
k

2 @D with

ct
k

= kx
E

(h
k

)� eP
k

k
2

+ kx
R

(h
k

)� eP
k

k
2

.

Hence { eP
k

}N
k=1

is a representation of @D and a solution for {(t
k

, h
k

)}N
k=1

. If

{ eP
k

}N
k=1

is not irreducible then there exists k0  N such that { eP
k

}N
k=1,k 6=k

0 is also

a solution. In this way we reduce the set { eP
k

}N
k=1

until we obtain an irreducible
set {P

j

}M
j=1

.

2. Choose r with r
j

= min
k

{b
kj

| b
kj

> 0}. Assume that r 2 Q. It follows that r < b
k

0

for some k0  N and hence b
k

0
j

> min
k

{b
kj

| b
kj

> 0} for all j  M . Furthermore,

following from Definition 8.2.2, there exists j0  M and ek such that P
j

0 = C + s⇣
j

0

with s � b
k

0
j

0 > be
kj

0 . Because CP
j

0 is in the interior of D (excluding P
j

0), we

obtain that eP = C + be
kj

0⇣j is in the interior of D. Moreover, this means that

E
te
k

,he
k

\ (D \ @D) is non-empty and hence E
t,he

k

\ (D \ @D) is non-empty for some
" > 0 and |t� t

k

| < ". Thus (te
k

, he
k

) does neither hold (8.13) nor hold (8.14).

Next we show that P
j

= C + r
j

⇣
j

. Therefore assume that P
j

= C + s⇣
j

. By
definition of b

kj

it follows that s � min
k

{b
kj

| b
kj

> 0} = r
j

. For s > r
j

, i.e. s > b
kj
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8 Inversion 3 - Defect Reconstruction

for some k, the point P = C + b
kj

⇣
j

is in the interior of D and hence as above
(t
k

, h
k

) is not the first reflection or last di↵raction. Thus s = r
j

.

Now assume that r is not a concave corner. Following (2) in Theorem 8.2.6 there
exists j0  M with r � r

j

0e
j

0 62 Q and hence {P
j

}M
j=1,j 6=j

0 is also a solution for

{t
k

, h
k

)}N
k=1

. This is a contradiction to {P
j

}M
j=1

being irreducible.

As we see, for exactly given center point C 2 C and directions {⇣
j

}M
j=1

, we do not
even need the spiderweb algorithm. The radii can be directly reconstructed using the
formula r

j

= min
k

{b
kj

| b
kj

> 0}. However, if {⇣
j

}M
j=1

is only approximatively given, the

reconstruction is not as simple as in the exact case. In the remaining part of this section
we want to analyse how the concave corners of the approximated directions are related
to the exact solution.

Before we introduce a more general definition for the coe�cients b
kj

, we anticipate a

slightly confusion notation. In the following definition, we will introduce the sets b⇣
j

for

j  M and the set of sets {b⇣
j

}M
j=1

. At first that might be irritating since ⇣
j

and the

later introduced notation e⇣
j

are directions, i.e. elements of the unit sphere S ⇢ Rn.

However, we want to stay with this notation since ⇣
j

, e⇣
j

and b⇣
j

are highly related as we

will see soon. The reader should keep in mind that b⇣
j

denotes a set while ⇣
j

and e⇣
j

are

vectors, i.e. b⇣
j

⇢ S and ⇣
j

, e⇣
j

2 S. Figure 8.9 illustrates the sets {b⇣
j

}5
j=1

, the original

directions ⇣
j

2 b⇣
j

for j = 1, . . . , 5 and the directions e⇣
j

2 b⇣
j

which will later be used as
representatives for this set.

e⇣
1

e⇣
2

e⇣
3

e⇣
4 e⇣

5

⇣
1

⇣
2

⇣
3

⇣
4

⇣
5

b⇣
1

b⇣
2

b⇣
3

b⇣
4

b⇣
5

S

Fig. 8.9: The original (unknown) directions ⇣j , the sets b⇣j with ⇣j 2 b⇣j (gray) and arbitrary

chosen representatives e⇣j 2 b⇣j for j = 1, . . . , 5 in S ⇢ R2.
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Definition 8.2.11:

Let {b⇣
j

}M
j=1

be M subsets of S = {x 2 Rn | kxk
2

= 1}, i.e. b⇣
j

⇢ S for all j = 1, . . . ,M .

For " > 0 we call {b⇣
j

}M
j=1

a separation if b⇣
j

\ b⇣
j

0 = ; for j 6= j0. Furthermore, we call

{b⇣
j

}M
j=1

an "-separation if it is a separation and

max
⇣,⇣

02b
⇣

j

k⇣ � ⇣ 0k
2

 ".

We call {b⇣
j

}M
j=1

complete if

M[

j=1

b⇣
j

= S.

otherwise we say that {b⇣
j

}M
j=1

is incomplete. Now for given C 2 C, {(t
k

, h
k

)}N
k=1

and
k = 1, . . . , N define the sets B

k

(⇣) := {r | C + r⇣ 2 E
t

k

,h

k

} and

eb
kj

= inf
⇣2b
⇣

j

(min {(B
k

(⇣) \ R
+

) [ {1}}) .

Furthermore with eb
k

= (eb
kj

)M
j=1

define eQ
k

:= {r 2 RM | r < eb
k

} and eQ := [N

k=1

eQ
k

[
(RM \ RM

+

).

We first note that this is a more general definition as Definition 8.2.2 and 8.2.3 since eb
kj

=

b
kj

and hence eQ = Q for b⇣
j

= {⇣
j

} for j  M . For a better understanding of Definition
8.2.11 and the aim of this subsection, we introduce the following considerations.

Let the directions {⇣
j

}M
j=1

be given approximatively by the directions {e⇣
j

}M
j=1

, i.e.

k⇣
j

� e⇣
j

k
2

 " for an " > 0. Then ⇣
j

2 B
"

(e⇣
j

) where B
"

(e⇣
j

) = {⇣ 2 S | k⇣ � e⇣
j

k
2

 "}.
Hence, we could also say that the sets B

"

(e⇣
j

) for j = 1, . . . ,M with ⇣
j

2 B
"

(e⇣
j

) are given

or more general: For {⇣
j

}M
j=1

let the sets {b⇣
j

}M
j=1

with ⇣
j

2 b⇣
j

be given. Assuming now

that the sets {b⇣
j

}M
j=1

have special properties, we can show some approximation results

as e.g. the connection between the concave corners of Q and eQ. As the sets B
"

(e⇣
j

)
will normally not have these properties, the analysis we will present for the supervised
minimization is more of theoretical nature. However, for unsupervised minimization we
will design a complete "-separation that has those properties. Because this "-separation
covers S, there exists a subset of sets {b⇣

j

}M
j=1

such that ⇣
j

2 b⇣
j

holds and thus we can

apply the analysis of supervised minimization. To analyse the concave corners of eQ we
need the following definition.
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8 Inversion 3 - Defect Reconstruction

Definition 8.2.12:

Let {b⇣
j

}M
j=1

be a (complete or incomplete) separation. We say that {b⇣
j

}M
j=1

is adapted

to {t
k

, h
k

}N
k=1

if for all k  N and all j  M one of the conditions

a) B
k

(⇣) \ RM

+

= ; for all ⇣ 2 b⇣
j

b) B
k

(⇣) \ RM

+

6= ; for all ⇣ 2 b⇣
j

holds. This means there is either for no direction or for all directions ⇣ 2 b⇣
j

an inter-
section between the ray {C + r⇣ | r � 0} and the spheroid E

t

k

,h

k

. To avoid notational

clutter, we also say that {b⇣
j

}M
j=1

is adapted to the measurements if we consider the case

of arbitrary given {t
k

, h
k

}N
k=1

.

The sets defined in both definitions are illustrated in Figure 8.10. Here an incomplete
"-separation as well as a complete separation that is adapted to the measurements is
shown for the two-dimensional case. With the help of these definitions we are able to
prove our first result.

S

E
t1,h1

E
t2,h2

SC

Fig. 8.10: An incomplete "-separation with 6 sets that does not fill the complete sphere S
(left); an complete separation with 4 sets that is adapted to {(t1, h1), (t2, h2)}, here
the center of S is set to the center point C to illustrate the connection to Et1,h1 , Et2,h2

(right).
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8.2 Spiderweb Algorithm for Defect Reconstruction

Theorem 8.2.13:

For a center point C let {⇣
j

}M
j=1

be the directions of the exact solution and for " > 0 let

{b⇣
j

}M
j=1

be a (complete or incomplete) "-separation adapted to {t
k

, h
k

}N
k=1

with ⇣
j

2 b⇣
j

for all j = 1, . . . ,M . Then there exists e" > 0 such that

b
kj

�eb
kj

 e"

holds for all k = 1, . . . , N and j = 1, . . . ,M with eb
kj

< 1. Furthermore, it holds that

lim
"!0

e" = 0.

Proof:
Since {b⇣

j

}M
j=1

is adapted to {t
k

, h
k

}N
k=1

it follows that b
kj

< 1 for eb
kj

< 1. We define
the sets

Y
k

:= {⇣ 2 S | 9r > 0 : C + r⇣ 2 E
t

k

,h

k

}

and the function

y
k

: Y
k

! R
+

, y
k

(⇣) = min{r > 0 | C + r⇣ 2 E
t

k

,h

k

}.

It directly follows that for each j = 1, . . . ,M there exists a k  N with b⇣
j

⇢ Y
k

.

Moreover b
kj

= y
k

(⇣
j

) and eb
kj

= y
k

(e⇣
j

) with some e⇣
j

2 b⇣
j

where b⇣
j

is the closure of
b⇣
j

. Since E
t

k

,h

k

is continuous, we obtain that y
k

is continuous and furthermore it is

uniformly continuous because Y
k

is compact. Since e⇣
j

, ⇣
j

2 b⇣
j

we obtain ke⇣
j

� ⇣
j

k
2

 "
and with the uniform continuity it follows the existence of e" > 0 such that

b
kj

�eb
kj

< e"

holds where lim
"!0

e" = 0 also follows from the uniform continuity.

Note that in the general case the connection between " and e" is quite complicated and
cannot be given by an exact analytical expression. However, during the reconstruction
process the function y

k

has to be analysed anyway since eb
kj

= inf
⇣2b
⇣

j

y
k

(⇣). From

b
kj

�eb
kj

 sup
⇣2b
⇣

j

y
k

(⇣)�eb
kj

we can derive numerically the upper bound

e"  max
kN

max
jM

bA

kj

6=1

 
sup
⇣2b
⇣

j

y
k

(⇣)� inf
⇣2b
⇣

j

y
k

(⇣)

!
(8.15)
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8 Inversion 3 - Defect Reconstruction

during the process. Moreover, this estimate is sharp if the exact directions {⇣
j

}M
j=1

are
unknown since for indices k, j where the maximum of (8.15) is reached, y

k

is continuous
and hence there exists a sequence {z

l

}1
l=1

⇢ b⇣
j

such that

lim
l!1

y
k

(z
l

) = sup
⇣2b
⇣

j

y
k

(⇣).

For "0 < e", it follows that

lim
l1

y
k

(z
l

)�eb
kj

= e" > "0.

Now choose ⇣
j

= z
l

with l large enough, then it follows that

b
kj

�eb
kj

= y
k

(z
l

)�eb
kj

> "0.

Hence Theorem 8.2.13 holds for

e" = max
kN

max
jM

bA

kj

6=1

 
sup
⇣2b
⇣

j

y
k

(⇣)� inf
⇣2b
⇣

j

y
k

(⇣)

!
.

Note that this is a worst case estimation and e" might be much smaller depending on the
unknown exact directions {⇣

j

}M
j=1

. Hence the approximation error will often be smaller
in applications as e" may convey.

With the results obtained above we are able to analyse the connection between the
concave corners of eQ and the exact solution (2) in Theorem 8.2.10. This will be done
in the following two theorems. Given a concave corner er = (er

j

)M
j=1

the first theorem
will provide a su�cient condition for er being an approximation of the exact solution r.
In the second theorem we will prove the existence of a concave corner that satisfies the
su�cient condition.

Theorem 8.2.14:

For a given center point C let r = (r
j

)M
j=1

and {⇣
j

}M
j=1

be the radii and directions of

the exact solution. Moreover, for " > 0 let {b⇣
j

}M
j=1

be a (complete or incomplete) "-

separation with ⇣
j

2 b⇣
j

that is adapted to the measurements. Now let er = (er
j

)M
j=1

be a

concave corner of eQ and e" > 0 be given by Theorem 8.2.13. If

er
j

�eb
kj

 e"

holds for all k = 1, . . . , N and j = 1, . . . ,M (where we define er
j

�1 = �1), then

ker � rk1  e"

and hence er is an approximation of r in the maximum-norm.
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8.2 Spiderweb Algorithm for Defect Reconstruction

Proof:
We will prove this theorem for the j-th component where j = 1, . . . ,M is arbitrarily
chosen. The result then follows directly for the complete vector. With (2) in Theorem
8.2.10 we obtain

r
j

+ e" = min
kN

b
kj

+ e" � min
kN

eb
kj

+ e" � er
j

.

Furthermore, there exists a k such that with Theorem 8.2.13 it follows that

er
j

= eb
kj

� b
kj

� e" � r
j

� e"

because r
j

= min
k

0N

b
k

0
j

 b
kj

.

Theorem 8.2.15:

Using the notations of Theorem 8.2.14, there always exists a concave corner er of eQ such
that

er
j

�eb
kj

 e"

holds for all k = 1, . . . , N and j = 1, . . . ,M .

Proof:
Let r be the exact solution. Since r 62 Q, for each j = 1, . . . ,M there exists a k  N
such that

r
j

� b
kj

� eb
kj

and hence r 62 eQ. Now consider the point x = (x
j

)M
j=1

with x
j

= min
kN

eb
kj

+ e". It follows
that

x
j

= min
kN

eb
kj

+ e" � min
kN

b
kj

= r
j

and thus x 62 eQ. Following from the memory e↵ect of Theorem 8.2.7 there exist a concave
corner er of eQ with er  x. We obtain for all j = 1, . . . ,M

er
j

�eb
kj

 x
j

�eb
kj

= min
kN

eb
kj

+ e"�eb
kj

 e".

With these results we are now able to design an algorithm that solves the supervised min-
imization problem. Because this algorithm will need a specially designed (complete or
incomplete) "-separation, it is most unlikely that one can use it in practice. However, the
algorithm is the basis for our reconstruction method for the unsupervised minimization
and hence we will consider it here.
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8 Inversion 3 - Defect Reconstruction

Algorithm 8.2.16 (Supervised minimization):

Given the measurements {t
k

, h
k

}N
k=1

and a (complete or incomplete) "-separation that
is adapted to the measurements, perform the following procedure

1. Calculate eb
kj

= inf
⇣2b
⇣

j

(min {(B
k

(⇣) \ R
+

) [ {1}}).

2. Initialize e" := max
kN

max
jM

bA

kj

6=1

 
sup
⇣2b
⇣

j

y
k

(⇣)� inf
⇣2b
⇣

j

y
k

(⇣)

!
.

3. Use the spiderweb algorithm 8.2.8 to reconstruct a concave corner er of eQ where
the initialization step is changed to:

Initialize r 2 G with r
j

= max
k

{eb
kj

| eb
kj

 min
k

eb
kj

+ e"} for j = 1, . . . ,M .

Here, the change of the initialization of the spiderweb algorithm will not only ensure that
the determined concave corner holds the approximation property ker � rk1  e" where
r is the exact solution, but it also reduces the number of performed iterations since the
starting point is nearer to the concave corner as the point chosen before. In Figure 8.5
we illustrated the iterations of the spiderweb algorithm where we used the starting point

r
j

= max
k

{eb
kj

| eb
kj

< 1}

on the left side and

r
j

= max
k

{eb
kj

| eb
kj

 min
k

eb
kj

+ e"}

on the right side for the same defect. As one can see, the left figure is much more
zoomed out due to the fact that the iteration starts at a point that is far away from the
solution. The di↵erent sizes of both reconstructions are caused by the di↵erent scales of
both figure parts. We can prove

Theorem 8.2.17:

Let r0 be the solution for the exact directions {⇣
j

}M
j=1

. Then Algorithm 8.2.16 returns a
concave corner er with

kr0 � erk1  e".

Proof:
For the initialization r 2 G with r

j

= max
k

{eb
kj

| eb
kj

 min
k

eb
kj

+ e"} for j = 1, . . . ,M the

existence of a concave corner er 2 G with er  r follows by Theorem 8.2.10 and hence
r 62 Q. Thus, the initialization for the spiderweb algorithm is correct and the algorithm
will return a concave corner er. Since

er
j

�eb
kj

 r
j

�eb
kj

 r
j

�min
k

eb
kj

 e"

the statement follows by Theorem 8.2.14.
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8.2 Spiderweb Algorithm for Defect Reconstruction

Hence, we now have an algorithm to solve the supervised minimization problem. The
algorithm may not be applicable in practise as we need an "-separation that is adapted
to the measurements. However, we will expend the procedure to the unsupervised min-
imization problem. Here it will be possible to chose the "-separation and thus it can
be designed in a way such that all conditions hold. Before we continue with the next
subsection, let us point out another result that estimates the total error between the
original representation {P

j

}M
j=1

and its approximation { eP
j

}M
j=1

.

Theorem 8.2.18:

For measurements {t
k

, h
k

}N
k=1

and a center point C 2 C let r and {⇣
j

}M
j=1

be the exact

radii and directions of the representation {P
j

}M
j=1

, i.e. P
j

= C+r
j

⇣
j

for all j = 1, . . . ,M .

Furthermore, for an "-separation {b⇣
j

}M
j=1

with ⇣
j

2 b⇣
j

that is adapted to the measure-

ments let er be the approximated radii. Now choose e⇣
j

2 b⇣
j

then it follows that

kP
j

� eP
j

k
2

 e"+ er
j

"

with eP
j

= C + er
j

e⇣
j

.

Proof:

kP
j

� eP
j

k
2

= kC + r
j

⇣
j

� C � er
j

e⇣
j

k
2

= kr
j

⇣
j

� er
j

⇣
j

+ er
j

⇣
j

� er
j

e⇣
j

k
2

 |r
j

� er
j

|+ er
j

k⇣
j

� e⇣
j

k
2

 e"+ er
j

"

8.2.3 Unsupervised Minimization

In the last subsection we have discussed the case of supervised minimization in detail.
Now we want to consider the unsupervised case where no approximation of the directions
{⇣

j

}M
j=1

is given. Therefore, we will analyse two considerations. First, we will discuss

the connection between the concave corners of two sets Q1, Q2 where both sets were
obtained considering the same measurements but Q1 is obtained using the incomplete "-
separation {b⇣

j

}M
j=1

while Q2 uses an "-separation with more sets {b⇣
j

}M 0
j=1

where M 0 > M .

We will see that the concave corners of Q1 directly correlate with concave corners of Q2.
This result will allow us to use more directions as needed in the beginning and select a
subset of them at the end. Although we do not know the exact directions, we know that
they are contained in a subset of the "-separation. Hence, we can start with a complete
"-separation, choose a subset i.e. an incomplete "-separation and apply the theory
obtained for the supervised minimization. The second result of this subsection will give
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8 Inversion 3 - Defect Reconstruction

a guidance, how one can design an "-separation that is adapted to the measurements.
Therefore, we will compose it out of two sets where one is an "-separation and the
other is adapted to the measurements. Combining both results we will be able to adapt
Algorithm 8.2.16 to the unsupervised case. Let us now consider the first result, namely

Theorem 8.2.19:

Let the measurements {t
k

, h
k

} and the center point C 2 C be given. Furthermore, let Q1

be obtained considering the incomplete "-separation {b⇣
j

}M
j=1

and Q2 is obtained using

an "-separation with more sets {b⇣
j

}M 0
j=1

with M 0 > M where the first M sets for Q1 and

Q2 are equal. Then r1 2 RM is a concave corner of Q1 if and only if

r2 =

0

BBB@

r1

0
...
0

1

CCCA
2 RM

0

is a concave corner of Q2.

Proof:
For k = 1, . . . , N we denote by eb1

k

2 RM and eb2
k

2 RM

0
the vectors defined in Definition

8.2.11 belonging to Q1 respectively Q2. By definition it is clear that

eb2
k

=

✓eb1
k

x
k

◆
2 RM

0

with x
k

2 RM�M

0
and x

k

> 0. Now let r1 2 RM be a concave corner of Q1, this
especially means r1 6< eb1

k

holds for all k = 1, . . . , N . Then for

r2 =

0

BBB@

r1

0
...
0

1

CCCA
2 RM

0

it follows that r2 6< eb2
k

for all k = 1, . . . , N . Thus r2 62 Q2. Furthermore for "0 > 0 it
holds that r2 � "0e0

l

2 Q2 for l > M because it will contain a negative component where
e0
l

is the l-th unit vector of dimension M 0. Since r1 is a concave corner, for eachl  M

there exists a k  N such that r1�"0e
l

< eb1
k

where e
l

is the l-th unit vector of dimension

M . It follows that also r2 � "0e0
l

< eb2
k

and moreover r2 is a concave corner of Q2.
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Now let

r2 =

0

BBB@

r1

0
...
0

1

CCCA
2 RM

0

be a concave corner of Q2. This means for all l  M and "0 > 0 there exists a k  N such
that r2 � "0e

l

< eb2
k

. Considering only the first M inequalities we obtain r1 � "0e
l

< eb1
k

and hence r1 is a concave corner of Q1.

Note that Theorem 8.2.19 also holds if the additional sets are not added at the end, e.g.
Q1 uses the "-separation {⇣

2j

}M
j=1

while Q2 uses {⇣
j

}2M
j=1

. We just used this presentation
form for simplicity. For our next result we need the following definition.

Definition 8.2.20:

Let A = {A
i

}M1
i=1

and B = {B
j

}M2
j=1

be two complete separations of S. We call

A uB :=

8
<

:Y ⇢ S

������

9i  M
1

, j  M
2

: Y ⇢ A
i

\B
j

,
Y connected,
@⇣ 2 S \ Y : (Y [ {⇣}) ⇢ (A

i

\B
j

) is connected

9
=

; .

the common refinement of A and B, i.e. A u B is the set of all connected components
of intersections between sets of A and B.

Figure 8.11 shows an example for the common refinement of an "-separation and a
complete separation that is adapted to some measurements (see also Figure 8.10). We
will use such refinements in our algorithm. The following theorem will proof that both
properties, "-separation and being adapted to the measurements, will be preserved when
building a common refinement.

S S S

Fig. 8.11: A complete "-separation (left), a separation that is adapted to some measurements
(middle), see also Figure 8.10, and their common refinement (right).
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8 Inversion 3 - Defect Reconstruction

Theorem 8.2.21:

Let A = {A
i

}M1
i=1

and B = {B
j

}M2
j=1

be two complete separations of S. Then it holds:
• A uB is a complete separation of S.
• If A or B is an "-separation, then A uB is an "-separation.
• If A or B is adapted to {t

k

, h
k

}N
k=1

, then A uB is adapted to the measurements.

Proof:

• For each ⇣ 2 S there exists i  M
1

and j  M
2

such that ⇣ 2 A
i

and ⇣ 2 B
j

. It
follows that ⇣ 2 A

i

\B
j

, hence there exists Y 2 AuB such that ⇣ 2 Y and hence

[

Y 2AuB
Y = S.

For Y
1

, Y
2

2 A uB with Y
1

6= Y
2

there exists i, i0  M
1

and j, j0  M
2

such that

Y
1

⇢ A
i

\B
j

Y
2

⇢ A
i

0 \B
j

0 .

If i 6= i0 or j 6= j0 it follows that

Y
1

\ Y
2

= (A
i

\B
j

) \ (A
i

0 \B
j

0) = (A
i

\A
i

0) \ (B
j

\B
j

0) = ;.

For i = i0 and j = j0 assume Y
1

\ Y
2

6= ;. Then Y
1

[ Y
2

⇢ A
i

\ B
j

is connected.
Thus Y

1

, Y
2

62 A u B by the third condition of the definition. Hence A u B is a
complete separation of S.

• Without loss of generality let A be an "-separation. Now choose Y 2 A u B with
Y ⇢ A

i

\B
j

. Then for all ⇣, ⇣ 0 2 Y it holds that k⇣ � ⇣ 0k
2

 " because ⇣, ⇣ 0 2 A
i

.
Thus A uB is an "-separation.

• Without loss of generality let B be adapted to {t
k

, h
k

}N
k=1

. This means for all
k  N and all j  M

2

one of the conditions

a) B
k

(⇣) \ RM

+

= ; for all ⇣ 2 B
j

b) B
k

(⇣) \ RM

+

6= ; for all ⇣ 2 B
j

holds. Then A u B is also adapted to the measurements since the conditions also
hold for ⇣ 2 A

i

\B
j

.

With the above obtained results, we are able to design an algorithm that solves the unsu-
pervised minimization problem. Because this will be the most common case in practice,
we directly present an expanded version of the algorithm that not only reconstructs a
concave corner but also includes the reconstruction of C 2 C and the points { eP

j

}M
j=1

.
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8.2 Spiderweb Algorithm for Defect Reconstruction

Algorithm 8.2.22 (Defect reconstruction):

Given the measurements {t
k

, h
k

}N
k=1

perform the following reconstruction steps:
1. Calculate C 2 C with e.g. one of the heuristic methods presented in Section 8.1.
2. Choose " > 0 and determine a complete "-separation A of S.
3. Determine a set of sets B that is adapted to the measurements {t

k

, h
k

}N
k=1

.

4. Set {b⇣
j

}M
j=1

= A uB where M � N should hold.

5. Choose arbitrary points {e⇣
j

}M
j=1

with e⇣
j

2 b⇣
j

for all j  M .

6. Calculate eb
kj

= inf
⇣2b
⇣

j

(min {(B
k

(⇣) \ R
+

) [ {1}}).

7. Initialize e" := max
kN

max
j ,

e
b

kj

6=1

 
sup
⇣2b
⇣

j

y
k

(⇣)� inf
⇣2b
⇣

j

y
k

(⇣)

!
.

8. Use the spiderweb algorithm 8.2.8 to reconstruct a concave corner er of eQ where
the initialization step is changed to:

Initialize r 2 G with r
j

= max
k

{eb
kj

| eb
kj

 min
k

eb
kj

+ e"} for j = 1, . . . ,M .

9. Remove all 0-radii, i.e. set er = (er
j

)M
j=1,er

j

6=0

2 RM

0
with M 0  M .

10. Return { eP
j

}M 0
j=1

with eP
j

= C + er
j

e⇣
j

.

As we will see next in this section, the algorithm provides an approximate solution for
the defect reconstruction problem. However, the proof will be di↵erent to the previous
results. While in earlier results we have assumed that the directions were approxima-
tively given and thus we are able to give approximation properties according to the exact
radii, this is no longer possible for the unsupervised case. The problem here is not only
that the exact directions are unknown. Moreover, since the reconstruction problem has
no unique solution, there may exist more than one exact solution e.g. {P

j

}M
j=1

with

P
j

= C + r
j

⇣
j

and {P
l

}M 0
l=1

with P
l

= C + r0
l

⇣ 0
l

. Hence, we cannot show approxima-
tion properties according to the concave corners because it is not clear which of the
exact solutions will be approximated. For this reason we will back down on the given
measurements for the following approximation result.

Theorem 8.2.23:

Let { eP
j

}M 0
j=1

be a point set obtained by Algorithm 8.2.22. If kC � x
E

(h
k

)k
2

+ kC �
x
R

(h
k

)k
2

< ct
k

(di↵raction) holds, then

8j  M 0 : k eP
j

� x
E

(h
k

)k
2

+ k eP
j

� x
R

(h
k

)k
2

 ct
k

+ 2e"
9j  M 0 : k eP

j

� x
E

(h
k

)k
2

+ k eP
j

� x
R

(h
k

)k
2

� ct
k

� 2e"

for all k  N . If kC � x
E

(h
k

)k
2

+ kC � x
R

(h
k

)k
2

> ct
k

(reflection) then

8j  M 0 : k eP
j

� x
E

(h
k

)k
2

+ k eP
j

� x
R

(h
k

)k
2

� ct
k

� 2e"
9j  M 0 : k eP

j

� x
E

(h
k

)k
2

+ k eP
j

� x
R

(h
k

)k
2

 ct
k

+ 2e"

for all k  N . This means, the measurements are approximated with an accuracy of 2e".
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Proof:
We first show that the algorithm reconstructs a concave corner and hence is well-defined.
Step 1 was discussed in Section 8.1. According to Theorem 8.2.21 steps 2-4 return a
complete "-separation {b⇣

j

}M
j=1
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8 Inversion 3 - Defect Reconstruction

8.3 Summary

Let us summarize the results obtained in this chapter. In the third step of our method
we had to reconstruct the defect boundary @D for given measurements {t

k

, h
k

}M
k=1

such
that

Z

@D\E
h

k

,t
k

a(t
k

, y, h
k

)dy 6= 0

holds. To construct a discrete version of this problem we defined a representation
{P

j

}M
j=1

⇢ @D of @D and assumed that @D can be approximated by the polygonal

line (n = 2) or the triangulation (n = 3) .̂ (P
1

, . . . , P
M

). In Theorem 8.0.2 it was
shown that this assumption leads to a good approximation of defect boundaries @D that
can be described by a Lipschitz-continuous function. Considering only star-shaped de-
fects we introduced the center point C, the directions {⇣

j

}M
j=1

⇢ S and the radii {r
j

}M
j=1

with P
j

= C + r
j

⇣
j

. Hence, to find an approximation of the defect boundary @D, we
have to reconstruct C, {⇣

j

}M
j=1

and {r
j

}M
j=1

. We first analysed the question how to find
a center point C in Section 8.1. Since the set of possible center points C highly depends
on the defect boundary, the reconstruction of C is a complicated problem. However, we
presented heuristic methods using a-priori information about the measurement set-up
that provide good approximations for C in numerical experiments. Moreover, according
to Theorem 8.1.1 and Corollary 8.1.2 it is suitable to assume that the reconstructed
point C 2 C is an exact center point.

Next in Section 8.2 we discussed the reconstruction of {⇣
j

}M
j=1

and {r
j

}M
j=1

for a given
center point C. Therefore, the reconstruction problem was reformulated as a non-convex
minimization problem w.r.t. {r

j

}M
j=1

with parameters {⇣
j

}M
j=1

. The spiderweb algorithm
8.2.8 was introduced that is able to find a local solution of this minimization problem.
Since the directions {⇣

j

}M
j=1

are parameters that have to be chosen, we first analysed the

case where {⇣
j

}M
j=1

were given exactly. This analysis was expanded to the case where the
directions were only approximatively given and then further expanded to the situation
of unknown directions {⇣

j

}M
j=1

. We provided approximation results for all three cases
and finally represented Algorithm 8.2.22 which can be used to reconstruct P

j

= C+r
j

⇣
j

for j = 1, . . . ,M with an approximation accuracy of 2e" with respect to the measure-
ments {t

k

, h
k

} (see Theorem 8.2.23). Figure 8.12 illustrates the reconstruction of a defect
boundary with two di↵erent "-separations. For further and more detailed numerical ex-
amples we refer to the next chapter.
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8.3 Summary

Fig. 8.12: Reconstruction of the defect boundary using Algorithm 8.2.22. Original boundary
(left) and reconstruction using an "-separation withM = 500 (middle) andM = 1200
(right) sets.
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9 Numerical Results

After having introduced our inversion method in the last three chapters, we want to
analyse some numerical results for the presented methods. In Chapter 6 we have dis-
cussed some theoretical approximation results for MP. This will now be confirmed with
some numerical examples in the first section. Furthermore, the parameter estimation
with the Newton-HOMP algorithm 6.3.1 will be discussed here. In the later sections of
this chapter we will also discuss the other steps of the inversion method and finally give
some reconstruction examples where all three steps are applied consecutively.

9.1 Approximation Results for OMP and Newton-HOMP

Analysing the deconvolution results of OMP and Newton-HOMP using simulated or real
NDT-data is a complicated task. Although parameters of the transmitted ultrasound
impulse might be known, these parameters might change due to e↵ects in the steel
component. Moreover, most signals like the lateral wave and the back wall echo are
not the result of a single reflected or di↵racted impulse but consist of several strongly
overlapping impulses. The deconvolution method will therefore not reconstruct each
impulse echo separately but approximate the complete lateral wave or back wall echo
with one impulse that is most likely somewhere “in the middle” of the original impulses.
Compared with the ideal u of the form

u = f ⇤X

where f is a sampled ultrasound impulse and X is a vector obtained by e.g. our geomet-
rical model, this means that the sparse deconvolution methods applied to NDT-data will
not reconstruct f and X but find vectors f̃ and X̃ where f̃ ⇤X̃ ⇡ f ⇤X. Hence, analysing
the approximation results for OMP or Newton-HOMP on NDT-data is futile as we know
beforehand that the reconstruction will di↵er from the original data. However, in this
section we show three examples where the overlapping e↵ect does not occur and thus we
can test the approximation properties of the deconvolution methods on this data (see
also the numerical examples in [80]).

Let us first consider an example signal consisting of 4 ultrasound impulses where one
impulse approaches towards one of the three fixed impulses, i.e. a function X(t) in time
that is only non-zero at t = 0.5, 3.4, x, 7.2 and we choose x = 6.96, 7.07, 7.15, 7.18, 7.19.
Hence, the third impulse is approaching towards the fourth one and the correlation
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9 Numerical Results

between both will get stronger the larger x is chosen. The function X is then convolved
with an ultrasound impulse that has a bandwidth of 50Mhz2, a frequency of 4Mhz and
a shift of 0.52. The result is shown in Figure 9.1. Then we use OMP to reconstruct
the times and amplitudes, i.e. we use HOMP with "

0

= 0, t
k

= t
k

= 0.01µs, w = 1,
L = 5, "

1

= 0 and "
2

= 1.25/kuk
2

. The original and reconstructed amplitudes and
times are shown in Table 9.1. As one can see, OMP is able to reconstruct times and
amplitudes of the two non-interfering impulses. Moreover, it can even distinguish the
interfering signals upto a time di↵erence of 13µs. However, if x comes too close to 7.2,
OMP can only reconstruct one impulse that approximates both original impulses. The
reconstructed amplitude then gets close to the sum of both amplitudes.

Fig. 9.1: Function u with four ultrasound impulses at time 0.5, 3.4, x, 7.2 where x = 6.96 (left),
x = 7.07 (middle) and x = 7.15 (right); time in microseconds.

original arrival times (µs) amplitudes
signal 0.50 3.40 x 7.20 3.0 -2.0 2.5 4.0
time x arrival times (µs) amplitudes

obtained by OMP obtained by OMP
6.96 0.50 3.40 6.96 7.20 3.0028 -1.9937 2.5001 3.9988
7.07 0.50 3.40 6.95 7.21 3.0023 -2.0012 -1.3483 2.4355
7.15 0.50 3.40 7.18 2.9950 -1.9958 5.1517
7.18 0.50 3.40 7.19 3.0030 -1.9950 6.2750
7.19 0.50 3.40 7.20 2.9996 -2.0000 6.3707

Table 9.1: Parameter estimation results for four interfering echoes when one arrival time gets
close to another.

In a second example we want to analyse the behaviour of OMP on noisy data. Again, we
consider a peak function X with peaks at time t = 0.5, 3.4, 3.75, 7.2 and corresponding
amplitudes 3.0,�2.0, 4.0, 2.5. Now, before X is convolved with an ultrasound impulse
with bandwidth 20Mhz2, frequency of 8Mhz and a shift of 0.52, we add Gaussian noise
to the data. Using the OMP with settings as in the last experiment we reconstruct the
original peaks for di↵erent noise levels. Figure 9.2 shows the original signal without
noise and two signals that are obtained using di↵erent noise levels. Table 9.2 lists the
reconstructed times and amplitudes. For a better comparison we have also evaluated the
SNR of the noisy convolved data and of the reconstructed peak signal convolved again
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9.1 Approximation Results for OMP and Newton-HOMP

with the impulse f . The data shows that while the amplitudes are influenced by the
noise level, the times are nearly perfectly reconstructed even for high noise levels. This
confirms our assumption that our reconstruction method should base upon the peaks’
positions and neglect the amplitude itself.

Fig. 9.2: Obtained signal u = f ⇤ X for di↵erent noise levels on X: without noise (left), with
SNR of 19.34 (middle) and with SNR of 4.75 (right); time in microseconds.

original arrival times (µs) amplitudes
signal 0.50 3.40 3.75 7.20 3.0 -2.0 4.0 2.5
SNR arrival times (µs) amplitudes estimation

obtained by OMP obtained by OMP SNR
19.34 0.50 3.40 3.75 7.20 3.1000 -1.9727 3.9863 2.4562 34.22
13.10 0.50 3.40 3.75 7.20 3.1071 -1.9352 3.9093 2.4312 30.88
8.15 0.50 3.40 3.75 7.20 3.1085 -1.7118 3.9806 2.4363 25.37
4.75 0.50 3.40 3.75 7.19 4.0206 -2.5048 3.4768 1.9641 10.33

Table 9.2: Parameter estimation results for four echoes with di↵erent SNR with OMP.

In a last example we want to analyse the use of the Newton-HOMP technique to re-
construct the ultrasound impulse parameters. Therefore we consider a peak function X
with peaks at t = 0.1, 0.8, 1.8 microseconds and corresponding amplitudes 1, 0.4,�0.7.
We have added Gaussian noise with di↵erent noise levels to X before convolving with
the ultrasound impulses. The obtained data is used to reconstruct the impulse param-
eters with the Newton-HOMP method where we set w = 1, "

0

= 1 (i.e. we use MP),
"
1

= "
2

= 0 and L = 3 (i.e. we reconstruct exactly three peaks). For a better accuracy of
the method we analysed three di↵erent time samplings, i.e. t

k+1

�t

k

= 0.01, 0.005, 0.0033
microseconds. Figure 9.3 illustrates three examples of the obtained data u = f ⇤X. Ta-
bles 9.3, 9.4 and 9.5 show the starting parameter obtained as described in subsection
6.2.1 and the parameters obtained with Newton-HOMP for di↵erent discretizations t

k

where each table presents the data for a fixed ultrasound impulse. As one can see, the
approximation accuracy seems to dependent highly on the impulse parameters while the
discretization distance has no big influence on the results. The starting guess is quite
accurate for all three impulses and for low noise levels Newton-HOMP is often not able
to improve the results. For higher noise levels the method is able to reconstruct a good
parameter estimation. Nevertheless, while the frequency is always approximated quite
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well, the algorithm may fail to reconstruct bandwidth and shift if the noise level is too
high. However, note that although the parameters might di↵er a lot, the reconstructed
impulse is quite similar to the original one as illustrated in Figure 9.4 (see also Table
9.4, starting guess for highest noise level). We will use the Newton-HOMP method with
the same parameter set-up and a discretization distance of t

k+1

� t

k

= 0.005 in the next
sections to approximate the unknown impulse function parameters. Note that this only
needs to be done once for each testing set-up. The obtained parameters can then be
used to deconvolve the data using the HOMP algorithm only. Hence we do not count the
runtime of Newton-HOMP to the overall runtime of our reconstruction method. Never-
theless, each result shown in Table 9.3, 9.4 and 9.5 was obtained in less then 3, 6 or 10
seconds depending on the chosen discretization distance 0.01, 0.005 or 0.0033 and thus
the method is fast enough to be used as a calibration before the real testing.

Fig. 9.3: Obtained signal u = f ⇤X for di↵erent noise levels on X and di↵erent impulse param-
eters: bandwidth 40Mhz2, frequency 7Mhz, shift ⇡/2 without noise (left), bandwidth
30Mhz2, frequency 5Mhz, shift ⇡/4, SNR of 13.31 (middle), bandwidth 50Mhz2, fre-
quency 4Mhz, no shift, SNR of 8.55 (right).

Fig. 9.4: Two impulse functions with parameters: bandwidth 30Mhz2, frequency 5Mhz and
shift ⇡/4 (solid); bandwidth 17.3008, frequency 5.2236 and shift 3.1175 (dashed).
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original bandwidth ⇢ Mhz2 frequency  Mhz shift �
signal 40 7 ⇡/2
SNR starting guess final estimate discretization

⇢  � ⇢  � t

k

� t

k+1

no noise 40 7 1.6346 40.0002 7 1.5722 0.01
40.0002 7 1.5722 0.005
40.0002 7 1.5722 0.0033

19.21 38.0837 6.9432 1.1849 36.1429 6.9879 1.1722 0.01
36.1429 6.9879 1.1722 0.005
36.1429 6.9879 1.1722 0.0033

13.81 37.1189 6.9597 1.2305 34.5467 6.9725 1.1207 0.01
34.4296 6.9592 1.1554 0.005
33.5692 6.9784 1.2744 0.0033

5.86 67.962 6.7924 1.546 40.1333 7.0088 1.5912 0.01
40.0346 6.9671 1.6359 0.005
39.933 6.9575 1.5156 0.0033

Table 9.3: Impulse parameter estimation results with di↵erent SNR with the Newton-HOMP
method.

original bandwidth ⇢ Mhz2 frequency  Mhz shift �
signal 30 5 ⇡/4
SNR starting guess final estimate discretization

⇢  � ⇢  � t

k

� t

k+1

no noise 30.0003 5 0.8164 29.9982 5 0.7863 0.01
29.9982 5 0.7863 0.005
29.9982 5 0.7863 0.0033

21.58 27.698 5.0756 1.03 29.5583 5.0238 1.1136 0.01
29.7268 5.0259 0.9617 0.005
29.6801 5.0254 1.0118 0.0033

13.31 28.8636 5.119 0.7114 30.1959 5.107 0.6232 0.01
30.4795 5.1128 0.7245 0.005
30.3882 5.1113 0.6907 0.0033

5.62 17.3008 5.2236 3.1175 19.018 5.1615 0.0529 0.01
19.8805 5.1661 0.0045 0.005
19.4016 5.1631 3.1252 0.0033

Table 9.4: Impulse parameter estimation results with di↵erent SNR with the Newton-HOMP
method.
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original bandwidth ⇢ Mhz2 frequency  Mhz shift �
signal 50 4 0
SNR starting guess final estimate discretization

⇢  � ⇢  � t

k

� t

k+1

no noise 50 4 0.0095 50 4 0.0002 0.01
50 4 0.0002 0.005
50 4 0.0002 0.0033

20.24 52.6904 4.1412 0.0724 51.5772 4.0499 0.0036 0.01
51.2958 4.0462 0.0933 0.005
51.4034 4.048 0.0634 0.0033

13.74 56.4492 4.0348 0.1026 58.2268 3.9613 0.1095 0.01
58.1558 3.9617 0.0529 0.005
58.179 3.9592 0.116 0.0033

8.55 52.86 4.1184 2.9861 56.0173 4.1511 2.9556 0.01
55.8008 4.1537 2.9953 0.005
55.8705 4.1533 2.982 0.0033

Table 9.5: Impulse parameter estimation results with di↵erent SNR with the Newton-HOMP
method.

9.2 Clustering Results for DBSCAN and DBCLAN

Now let us analyse the second step of our inversion method. Therefore, we first analyse
the adapted DBSCAN algorithm 7.2.1 that can be used for non-overlapping clusters.
We use the parameters P

min

= 2 and � = c2 = 5.922 for an equal treatment of time and
space variables. As input data we use a sparse logical matrix containing four clusters
simulating a deconvolved ToFD image with lateral wave, back wall echo, a cluster typical
for pore defects and a cluster representing a crack defect. Furthermore, we randomly set
elements of the data to 1 to simulate noise. Figure 9.5 illustrates the input data without
noise, 0.1% noised, 0.5% noised and 1% noised. We reconstruct the di↵erent clusters
using the DBSCAN algorithm with " = 0.16 for the highest noise level and " = 0.26
otherwise. The di↵erent reconstructed clusters are shown in Figures 9.6 to 9.9 where we
have neglected minor clusters with only a few points. We observe that with increasing
noise level also the clusters are corrupted by noise, Table 9.6 lists the number of elements
obtained in the reconstructed clusters. However, the algorithm is still able to separate
the di↵erent clusters.

Now we analyse our clustering algorithm DBCLAN 7.3.1 for overlapping clusters. There-
fore we simulate deconvolved data as a sparse matrix that contains three clusters rep-
resenting the lateral wave, the back wall echo and a pore defect. Here, the pore defect
signal and the back wall echo intersect and hence cannot be separated by clustering
algorithms that only use spatial information. Again we consider di↵erent noise levels
where 0.1%, 0.5% and 1% of the elements are set to 1. The input data is illustrated in
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9.2 Clustering Results for DBSCAN and DBCLAN

Fig. 9.5: Sparse input data with 4 clusters and di↵erent noise levels; lrtb: no noise, 0.1% noise,
0.5% noise and 1% noise.

Fig. 9.6: Reconstructed lateral wave cluster for di↵erent noise levels.
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Fig. 9.7: Reconstructed crack cluster for di↵erent noise levels.

Fig. 9.8: Reconstructed pore cluster for di↵erent noise levels.

134



9.2 Clustering Results for DBSCAN and DBCLAN

Fig. 9.9: Reconstructed back wall cluster for di↵erent noise levels.

noise lateral wave cluster crack cluster pore cluster back wall cluster
0 400 167 122 400

0.1% 418 171 123 426
0.5% 522 201 139 539
1% 536 200 132 532

Table 9.6: Number of elements in the reconstructed clusters.

Figure 9.10. Since for core points with more than two neighbours one or more duplicates
are created during the algorithm, it is crucial to keep the number of neighbours small.
Thus, we use the 8-neighbourhood as already shown in Chapter 7. The results obtained
with di↵erent noise levels are illustrated in Figures 9.11 to 9.13, the number of points
in each cluster is shown in Table 9.7. We note that the algorithm is able to separate all
clusters even for strong noise. Furthermore, the number of noise peaks added to each
cluster is very small. Nevertheless, for high noise levels the algorithm becomes unstable
in the sense that it may truncate some clusters as it can be seen in Figure 9.12.

noise lateral wave cluster pore cluster back wall cluster
0 400 316 404

0.1% 401 316 407
0.5% 406 308 409
1% 416 323 404

Table 9.7: Number of elements in the reconstructed clusters.
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Fig. 9.10: Sparse input data with 3 clusters and di↵erent noise levels; lrtb: no noise, 0.1% noise,
0.5% noise and 1% noise.

Fig. 9.11: Reconstructed lateral wave cluster for di↵erent noise levels.
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Fig. 9.12: Reconstructed pore cluster for di↵erent noise levels.

Fig. 9.13: Reconstructed back wall cluster for di↵erent noise levels.

137



9 Numerical Results

9.3 Reconstruction with the Spiderweb Algorithm

The approximation properties of the third reconstruction step have already been theo-
retically analysed in Chapter 8. Nevertheless, to get an impression of its approximation
quality, we are going to discuss two examples in this section. In the first example we
analyse the approximation results of the spiderweb algorithm with an "-separation for
decreasing ". Therefore, consider the two-dimensional case with a circle defect at po-
sition (0, 7) with radius 1. For the positions (x, 0) with x = �50,�49.5, . . . , 50 let the
distance to the nearest and the most distant point on the defect be given. Figure 9.14
shows the distances plotted against x. These points form a cluster that can be seen as
a cluster representing a pore defect in a ToFD set-up containing (nearly) perfect infor-
mation. We assume that the center point (0, 7) is exactly given and use the spiderweb
algorithm to reconstruct the defect using di↵erent ". Figure 9.15 illustrates the obtained
results. As one can see, the reconstructions are getting better the smaller we choose ",
therefore see also Table 9.8 where the maximal distance to the center point is listed. For
a good reconstruction, this value should be close to the radius 1.

Fig. 9.14: Minimal and maximal distance to the circle defect for di↵erent positions x. These
points form a cluster that is similar to clusters seen in ToFD set-ups for pore defects.

" 0.08 0.05 0.01 0.005 0.001 0.0005
max
k

kC � P
k

k
2

2.1122 1.3063 1.2370 1.2279 1.2090 1.1966

Table 9.8: Maximal distance between the center point and the reconstructed points.

In the second example we analyse the behaviour of the last reconstruction step when the
input data is noisy, i.e. if the given minimal and maximal distance to the defect is noisy.
This is similar to noisy NDT data where the arrival times of an ultrasound impulse
cannot be determined exactly. We use the same defect as before since here the optimal
center point (0, 7) as well as a suitable error estimation using the maximal distance to
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9.3 Reconstruction with the Spiderweb Algorithm

Fig. 9.15: Reconstructed defect and the original defect (circle) for di↵erent "-separations; lrtb:
" = 0.08, 0.05, 0.01, 0.005, 0.001, 0.0005.

the point (0, 7) is known. Furthermore, we also analyse an approximation method for
the center point C that is based on the general heuristic approach presented in Section
8.1 where

C = arg max
C

02Rn

R(C 0)I(C 0)

with

R(C 0) = min
(x,d)2Cl

|kC � (x, 0)k
2

� d|,

Cl is the cluster and I is a probability function. Given a cluster where the shortest and
the longest distance to a defect is given, i.e. the arrival time for the first reflection and
last di↵raction signal is known, we can choose I in a clever way. We use the assumption
that for two peaks (x, d

1

), (x, d
2

) in the cluster with d
1

< d
2

the first peak (x, d
1

) was
obtained by a point P

1

2 @D that is close to the probe position (x, 0) while the second
peak (x, d

2

) was obtained by a point P
2

2 @D more distant to (x, 0). The center point
C usually is somewhere “in the middle” of the defect and thus, the distance between the
center point C and (x, 0) lies in the interval (d

1

, d
2

). Hence we choose

I(C 0) =

(
1 d

1

< kC 0 � (x, 0)k
2

< d
2

for all (x, d
1

), (x, d
2

) in the cluster with d
1

< d
2

0 otherwise
.

For computational reasons, we will not solve the minimax problem as suggested in Section
8.1 but just sample the functions R and I on a discrete grid. Figure 9.16 illustrates the
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9 Numerical Results

functions R, I and RI in the noiseless case, compare also 8.4. Table 9.9 shows the
reconstructed center points for the cluster where noise is added to the distances. We
consider uniformly distributed noise with maximum absolute value of 0, 0.1, 0.25 and
0.4. As one can see, the approximation of the center point is very stable.

Fig. 9.16: Estimation of the center point C as the maximum of R(C 0)I(C 0) (right) where R is
a distance function (left) and I is a probability function (middle).

Noise 0 0.1 0.25 0.4
C (0, 7) (0, 7) (�0.01, 7) (0, 7.01)

Table 9.9: Reconstructed center points for di↵erent noise levels.

Now we use the spiderweb algorithm to approximate the defect where we choose an
"-separation with " = 0.001. The obtained reconstruction results are shown in Figure
9.17. Table 9.10 lists the maximal distance to the original center point (0, 7). We note
that the size of the reconstructed defect seems to increase with the noise. However, the
approximation is still suitable and the method appears to be stable even for noisy data.

Fig. 9.17: Reconstructed defects for di↵erent noise levels.
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9.4 Numerical Results for the Complete Inversion Method

Noise 0 0.1 0.25 0.4
max
k

kC � P
k

k
2

1.209 1.3159 1.7851 1.8931

Table 9.10: Maximal distance between the center point and the reconstructed points for di↵er-
ent noise levels.

9.4 Numerical Results for the Complete Inversion Method

In the last sections, we have analysed each reconstruction step on its own. Now let us
consider some examples where we apply the complete reconstruction method to simulated
and real data. Furthermore, remembering Chapter 3 we will use the SAFT method for
the simulated data to compare the reconstruction results with our method.

9.4.1 Simulated ToFD Pore

Our first example is a ToFD measurement set-up. We simulate a 20mm thick component
with a weld at position z = 0. The surface of the component is the plane x = 0, y = 0.
A pore with a diameter of 3mm is at position (0mm,�12mm, 0mm) in the weld. The
probes move with a distance of 40mm to the weld alongside it starting at x = �75mm
and stopping at x = 75mm (see Figure 9.18). The emitter is focussing on a point
approximately at 2/3 of the weld height with an angle of aperture of 12 degree, i.e. the
amplitude transmitted into direction s is given by

sinc(2.8 arccos(h(0,� sin 20�, cos 20�), si)).

The emitted ultrasound impulse has a bandwidth of 30Mhz2, a frequency of 5Mhz and
a shift of ⇡/4. A-scans were sampled every 0.5mm starting shortly before the lat-
eral wave arrives at 13µs with a sampling discretization of 0.01µs. We apply the con-
stants c = c

l

= 5.92, c
t

= 3.23 and attenuation � ⇡ ( /50)2. We simulate the mea-
surement data with Gaussian noise on the geometrical model with di↵erent variances
0, 0.005, 0.01, 0.015, 0.02, 0.025 and 0.035 of the maximal amplitude, i.e. the variance is
given by e.g. 0.005kuk1 where u is the data computed without noise. The results are
shown in Figure 9.19.

As a first reconstruction step we approximate the impulse function parameters with the
Newton-HOMP method using the first 50 a-scans of the data and a time sampling of
t

k+1

� t

k

= 0.005. The obtained results are shown in Table 9.11. With the reconstructed
impulse parameters we deconvolve the data using the HOMP algorithm 6.1.1 with the
sampling grid t

k

= t
k

and the parameters L = 5, "
1

= 0.05, "
2

= 0.15. Furthermore, we
decrease "

0

with increasing noise level to counteract the noisy data with more orthogo-
nalisation steps in HOMP, i.e. we set "

0

= 1, 0.5, 0.3, 0.25, 0.2, 0.15, 0 corresponding to
the noise levels 0, 0.005, 0.01, 0.015, 0.02, 0.025, 0.035. This parameter setting has proven
to provide good and stable results in our numerical analysis. However, since the defect
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Fig. 9.18: Simulated testing set-up.

Fig. 9.19: Simulated ToFD measurement without noise (top) and with di↵erent Gaussian vari-
ance 0, 0.005, 0.01, 0.015, 0.02, 0.025, 0.035 multiplied with kuk1 where u is the data
computed without noise (top).
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9.4 Numerical Results for the Complete Inversion Method

signals are close to the lateral wave, separating both signals in two di↵erent clusters in
the second inversion step will be more complicated with increasing noise. In fact, the
clustering will even fail for the two noisiest datasets if we do not apply special weights
w
k

in HOMP. Hence we set

w
k

= e( /50)
2
ct

k max(1� 1.25|hf
k

, f
L

i|� |hf
k

, f
B

i|, 0) (9.1)

where f
L

is the sampled impulse function time shifted by 80/5.92 being the arrival
time of the lateral wave and f

B

is time shifted by the arrival time of the back wall echo
2
p
402 + 202/5.92. This means, the first factor of the weight w

k

makes up for attenuation
while the second part is small for functions f

k

that highly correlate with the lateral wave
or back wall echo. Since the lateral wave is usually a very strong signal we weight its
correlation with a factor of 1.25. Applying the HOMP algorithm to the simulated data,
where we choose w

k

as above for the two highest noise levels and set w
k

= 1 for all
other levels, yields the data shown in Figure 9.20. As one can see, the defect as well as
lateral wave and back wall echo are detected in the deconvolution process except for the
weighted deconvolution where lateral wave and back wall echo are suppressed. However,
with increasing noise also the number of peaks corresponding to noise is increasing.
Hence, these peaks need to be sorted out later in the reconstruction process.

noise ⇢  �
0 29.9962 5 0.8313

0.005 30.0913 5.0104 0.814
0.01 30.2287 4.982 0.9119
0.015 31.3854 4.9655 0.7546
0.02 30.5232 5.0072 0.6988
0.025 25.0391 4.9158 0.8354
0.035 27.906 4.9339 0.7747

Table 9.11: Impulse parameter estimation results for the modelled data shown in Figure 9.19.

After the first reconstruction step has been calculated, we cluster the data to separate
the signal peaks caused by the defect from the lateral wave, the back wall echo and noise.
We use our adaption of the DBSCAN algorithm 7.2.1 with the parameters P

min

= 2,
� = 5.922 and " = 1.54. With increasing noise level the algorithm will also detect some
minor clusters that only consist of noise but these clusters can be easily sorted out as
the number of points in such a cluster is usually too small to correspond to a defect, i.e.
these clusters normally contain less than 10 points. Moreover, we will detect one cluster
for each lateral wave and back wall echo which we also neglect. The remaining main
cluster contains the signal peaks caused by the modelled defect. Figure 9.21 shows the
obtained cluster for each noise level. We note that even for strong noise the clustering
algorithm is able to detect the significant defect peaks. Nevertheless, with increasing
noise level the cluster does also contain more peaks that are caused by noise what will
worsen the reconstruction.
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9 Numerical Results

Fig. 9.20: Non-zero elements of deconvolved data for di↵erent noise levels, special weights were
used for the two highest noise levels (bottom, middle and right).
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9.4 Numerical Results for the Complete Inversion Method

Fig. 9.21: Non-zero elements of the cluster containing the signal peaks of the modelled defect
obtained with DBSCAN applied to the deconvolved data with di↵erent noise levels.
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With the clusters calculated we now apply our last reconstruction step. To reconstruct
the defect, we apply Algorithm 8.2.22. Since the given data is only two-dimensional and
the inspection method aims to find defects in the weld plane, we will limit our recon-
struction to the two-dimensional weld plane, i.e. to the plane z = 0. As a first step we
need to find a center point C applying one of the heuristic methods presented in Section
8.1. Since the reconstructed clusters contain both reflection and di↵raction signals we
can use the same heuristic approach we discussed earlier in Section 9.3. Figure 9.22 il-
lustrates the functions R(C 0), I(C 0) and R(C 0)I(C 0) for the noiseless case. The obtained
points C are shown in Table 9.12. Note that the distance between the reconstructed
center points C and the original centre of the pore is always less than the pore radius
and hence all reconstructed points are suitable.

Fig. 9.22: Estimation of the center point C as the maximum of R(C 0)I(C 0) (right) where R is
a distance function (left) and I is a probability function (middle).

Cluster C kC � (0,�12)k
2

no noise (0,-12.1) 0.1
noise 0.005 (0,-10.6) 1.4
noise 0.01 (0.2,-10.7) 1.3153
noise 0.015 (0.1,-10.7) 1.3038
noise 0.02 (0.2,-12.2) 0.2828
noise 0.025 (-0.4,-12.1) 0.4123
noise 0.035 (0.5,-12.1) 0.5099

Table 9.12: Reconstructed center point and its distance to the original point.

Finally, we are able to reconstruct the defect using the spiderweb algorithm. For an
"-separation with " = 0.001 we obtain the defect approximations shown in Figure 9.23
where the circle illustrates the original defect. As one can see, the reconstructed defects
cannot approximate the sides of the defect well, su↵ering from a lack of information
due to missing signal peaks in the clusters. Moreover, with increasing noise, the ap-
proximation is stretched in the y-direction. However, with respect to the noise level, all
reconstructions contain suitable information about the position and size of the defect.

Now we analyse the overall runtime of our reconstruction method. Table 9.13 shows
the runtime in seconds for all three steps of the inversion method as well as the overall
runtime. The calculations have been performed in Matlab 7 on a Macbook Pro (Mid
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9.4 Numerical Results for the Complete Inversion Method

Fig. 9.23: Reconstruction of the defect in the weld plane with di↵erent noise levels sorted by
increasing order of noise.
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2009), 2.66 GHz Intel Core 2 Duo, 8 GB 1067 MHz DDR3 running OS X 10.8.4. Table
9.13 illustrates nicely that the reconstruction method introduced here can be used for
real time reconstruction since the overall runtime is far below the time needed for the
measurements. Note that while the deconvolution and clustering process have to be
applied for each a-scan, the final reconstruction step only has to be computed for each
cluster found. Moreover, one can reconstruct several defects without increase of the
runtime by using a parallel implementation.

Noise Deconvolution Clustering Reconstruction overall runtime
0 0.1692 0.0820 1.2313 1.4825

0.005 0.2676 0.0782 1.6666 2.0124
0.01 0.2834 0.0744 1.2419 1.5997
0.015 0.2744 0.0744 1.4454 1.7942
0.02 0.3127 0.0818 1.2639 1.6584
0.025 0.1462 0.0124 1.7435 1.9020
0.035 0.3310 0.0297 2.3862 2.7469

Table 9.13: Runtime in seconds of all three inversion steps for di↵erent noise levels.

At the end of this example, we compare the reconstruction results with the approxima-
tions obtained with the SAFT algorithm described in Subsection 3.1.2. Therefore, we
discretize the weld plane into a Cartesian grid and calculate the sum of corresponding
amplitudes for each point. The runtime for SAFT with di↵erent grid step sizes is shown
in Table 9.14, note that it is independent from the noise level since each amplitude is
considered anyway. Figure 9.24 illustrates the reconstructions for the di↵erent noise
levels. First we note that the reconstruction quality of SAFT is mostly independent
from the noise level. This is due to its heuristic idea to suppress the noise by destructive
interference. Hence, the SAFT approximation is slightly better for high noise. However,
SAFT is no real reconstruction method but can only compute an image of the weld plane.
This image also contains the components surface, its back wall and other signals caused
by noise. Thus, a post-processing method is required that can calculate the defect form
out of the given weld image. This may be a crucial step in the reconstruction process
and hence more influenced by the noise level. Moreover, since SAFT maps back the
ultrasonic signals to the weld plane, its vertical resolution is limited by the wave length.
A comparison of the runtime of both algorithms shows that our inversion method is
faster in most cases. Only for a low resolution SAFT might perform faster if the data is
noisy and contains at least one defect cluster.

Step size 0.1 0.075 0.05 0.025
Runtime 0.9004 2.1019 5.7298 23.2237

Table 9.14: Runtime of SAFT for di↵erent grid step sizes.
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Fig. 9.24: SAFT reconstruction of the defect in the weld plane with di↵erent noise levels sorted
by increasing order of noise.
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9.4.2 Real ToFD Data

In our next example we apply our reconstruction method to real ToFD data shown in
Figure 9.25. The data has been obtained from a sample of a large-diameter pipe (outer
diameter 1066mm, wall thickness 23.3mm). For the left data, the weld seam has been
tested with a ToFD system (Olympus Omniscan iX) with a 5MHz transducer, 6mm
diameter (Olympus C543-SM) while for the right dataset a 10MHz transducer, 6mm
diameter (Olympus C563-SM) with the same system has been used. Both transducers
were applied with a wedge with 70� angle of incidence. The data contains two pore
defects (left) and a lack of fusion at the end of the pipe, where the last part of the weld
seam has been ground (right). All a-scans have an unknown non-linear sampling grid
but we assume a resolution of 0.01 microseconds in time. Moreover, an a-scan was taken
every 0.5mm.

Fig. 9.25: ToFD real data including two pore defects (left) and a lack of fusion (right).

We use the Newton-HOMP method with the same parameters as in the example before
to reconstruct the impulse function. The obtained results are shown in Table 9.15.
Afterwards we apply the HOMP method to deconvolve the data. Thereby we use the
discretization distance 0.01 and the parameters L = 5, p = 5, "

0

= 0.3, "
1

= 0.05 and
"
2

= 0.15. For the data containing the pore defects we use no weights while for the
lack of fusion we apply the weights described in (9.1). The deconvolved data is shown
in Figure 9.26. Next, we use the DBSCAN algorithm with P

min

= 2, � = 5.922 and
" = 1.54 to estimate the defect clusters shown in Figure 9.27 where the first two clusters
correspond to the pore defects and the last cluster represents the lack of fusion.

Dataset ⇢  �
Pores 10.0653 2.3397 1.6061

Lack of fusion 25.5838 4.8050 0.5951

Table 9.15: Impulse parameter estimation results for real data shown in Figure 9.25.

Now we apply our last reconstruction step to each cluster. First, we recover a center
point C using the heuristic approach 8.1.3 with " = 0.5 and � = 0. Table 9.16 presents
the reconstructed points where we assume the point (0, 0, 0) to be in the upper left
corner of the weld plane. Given these approximations of the center point we use the

150



9.4 Numerical Results for the Complete Inversion Method

Fig. 9.26: Non-zero elements of the deconvolved data.

Fig. 9.27: Clusters obtained with DBSCAN: 2 clusters representing the pore defects in the first
data set (left/middle) and one cluster corresponding to the lack of fusion in the second
dataset.

spiderweb algorithm to reconstruct the defects where we choose an "-separation with
" = 0.001. The reconstructed defects are illustrated in Figure 9.28 and the total runtime
is listed in Table 9.17. Note that we do not have any information about the real defects
inside the tube and thus cannot make a statement about the approximation properties.
However, with the results obtained in the previous examples we suppose that the defect
is reconstructed at an approximately right position. Moreover, the pore reconstructions
may be smaller than the original defect since their clusters contain only view points while
the lack of fusion is certainly be stretched in the vertical direction due to the noise.

Cluster Pore (left side) Pore (middle) Lack of fusion
C (13.2500,15.7763) (107.75,15.9413) (146.6290,13.1111)

Table 9.16: Reconstructed center points C for all three clusters.

Cluster Deconvolution Clustering Reconstruction overall runtime
Pore (left side) 0.2118 0.0727 1.9731 2.2576
Pore (middle) 0.2118 0.0727 0.9849 1.2694
Lack of fusion 0.3411 0.0713 5.3106 5.723

Table 9.17: Runtime in seconds of all three inversion steps for di↵erent noise levels.
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Fig. 9.28: Reconstructed defects: two pores (top) and a lack of fusion (bottom); units in mm.

9.4.3 Simulated Back Wall Defect

In our next example we consider a wall thickness measurement set-up with a simulated
elliptic defect that lies diagonal in the back wall. More precisely, we assume a 20mm
thick steel component with its surface in the y = 0mm plane and the back wall in the
y = �20mm plane. The back wall has a defect in it that has its highest value y = �17mm
along a line between the points (x, z) = (20mm, 20mm) and (x, z) = (50mm, 75mm) and
then decreases rapidly until it reaches y = �20mm. We use an "-discretization with
" = 0.5mm, the defect is illustrated in Figure 9.29. We simulate the obtained ultrasound
data for one probe being emitter and receiver at once with a focussing direction (0,�1, 0)
aiming directly onto the back wall. The angle of aperture is set to 12 degrees and
the emitted impulse has a bandwidth of 40Mhz2, a frequency of 7Mhz and a shift of
⇡/2. The attenuation coe�cient is set to � = 0.0196 = ( /50)2. The a-scans were
measured on a grid with grid size 0.5mm starting at (x, y) = (5mm, 5mm) and stopping
at (x, y) = (65mm, 90mm). The a-scan itself has a sampling discretization of 0.01µs.
We used Gaussian noise with di↵erent variances 0, 0.001, 0.01, 0.02, 0.035, 0.05 multiplied
with the strongest back wall amplitude. The simulated data is three-dimensional as the
probe moves along the surface in x- and z-direction. Figure 9.30 shows the obtained b-
scan for x = 35mm and di↵erent noise levels where we have cut o↵ the surface reflection
for a better contrast.

We use the Newton-HOMP method on the first 25 a-scans to calculate the impulse pa-
rameters where we choose the weights w

k

= 1, p = 2, "
0

= 1, "
1

= "
2

= 0. Furthermore,
we cut o↵ the surface reflection and set L = 1, i.e. we seek for a 1-sparse representation.
The obtained parameters are listed in Table 9.18. Afterwards we use the HOMP algo-
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Fig. 9.29: Simulated elliptical back wall defect.

Fig. 9.30: Simulated b-scan for x = 35mm and variances 0, 0.001, 0.01, 0.02, 0.035, 0.05 multi-
plied with the strongest back wall amplitude.
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rithm with a discretization t

k+1

� t

k

= 0.01µs, L = 2, p = 5, "
1

= 0.05, "
2

= 0.15 and
decreasing "

0

= 1, 0.5, 0.3, 0.25, 0.2, 0.15 to counteract the increasing noise. Furthermore,
we use the weights

w
k

= e( /50)
2
ct

k

that make up for attenuation since we know that the important information about the
back wall is late in time and thus more influenced by attenuation. Figure 9.31 illustrates
the deconvolved data for the b-scans with x = 35mm shown in Figure 9.30.

Noise ⇢  �
0 33.4728 6.6761 0.9132

0.001 33.4489 6.6795 0.9129
0.01 34.8525 6.5854 0.7261
0.02 32.1995 6.5482 0.8285
0.035 34.3915 6.3046 0.7315
0.05 24.0681 6.5576 0.8829

Table 9.18: Impulse parameter estimation results for the simulated data with di↵erent noise
levels.

Fig. 9.31: Deconvolved b-scans for x = 35mm and di↵erent noise levels.

Before we use our clustering algorithm to detect the defect signals, we reduce the amount
of data by neglecting all found peaks that belong to the back wall. This can easily be
done by counting the number of peaks found per time sampling point t

k

. Figure 9.32
shows the number of points found for each index k for data with no noise (left) and
with a noise level of 0.05 (right). As one can see, the index k0 that corresponds to the
back wall has by far the largest value. After this has been done, we use the adapted
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DBSCAN method as before to calculate the defect cluster. Thereby we set P
min

= 2,
� = 5.922, " = 1.54 for the four lower noise levels and " = 1.42 for the datasets with
the two highest noise levels. The obtained defect clusters are illustrated in Figure 9.33
where again some minor clusters were neglected.

Fig. 9.32: Number of found peaks per index k corresponding to a time sampling point tk.

Fig. 9.33: Obtained clusters using DBSCAN on the deconvolved data for di↵erent noise levels
where the back wall peaks are neglected; x- and y-axis in mm, z-axis in µs.

In this 3D-case the third reconstruction step is computationally challenging. Although
our Algorithm 8.2.22 is designed to reconstruct both two- and three-dimensional defects,
the number of sets M in {b⇣

j

}M
j=1

= AuB, where A is an "-separation and B is adapted
to the measurements, is drastically increasing for a suitable small ". While the number
of sets in A can be reduced by choosing " larger, the crucial factor is the number of sets
in B. It depends on " as well as on the number of points in the cluster. While in the
previous examples, a defect cluster usually consists of about 50 � 200 points, the here
reconstructed clusters contain about 6000 peaks. In order to keep a reasonable compu-
tation time, we have to choose " � 0 yielding only a rough approximation. However,
we will overcome this problem by applying Algorithm 8.2.22 for each b-scan with fixed
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position x of the data. The two-dimensional reconstructions are combined afterwards to
obtain a three-dimensional approximation. Indeed, in this way the connection between
neighbouring b-scans is lost but the algorithm can be performed in reasonable time and
the approximation results are quite accurate. Using the heuristic approach 8.1.4 to ap-
proximate the center point C and choosing an "-separation with " = 0.001 the algorithm
yields the reconstructions shown in Figure 9.34 as a point cloud and 9.35 as triangu-
lation. As one can see, the top of the defect is reconstructed quite well depending on
the noise level while the sides su↵er from a loss of information. This is due to the fact
that the sides are nearly parallel to the focussing direction. The total runtime of our
inversion algorithm is listed in Table 9.19. Note that due to the huge number of points
in a cluster, the runtime is quite long. However, as the data consist out of 121 b-scans,
the runtime per b-scan is less then 2 seconds.

Fig. 9.34: Reconstructed defect for di↵erent noise levels as point cloud.

Noise Deconvolution Clustering Reconstruction overall runtime
0 51.6399 5.3277 182.0422 239.0098

0.001 33.6790 5.3718 182.2971 221.3479
0.01 38.9569 6.5460 188.2486 233.7515
0.02 35.0077 12.3092 191.7488 239.0657
0.035 39.3868 10.6761 173.0896 223.1525
0.05 20.3176 9.7962 148.7618 178.8756

Table 9.19: Runtime in seconds of all three inversion steps for di↵erent noise levels.

For comparison, we also performed SAFT on the original three-dimensional data. As our
algorithm, SAFT also su↵ers from the huge amount of data. Hence, we set the discretiza-
tion grid size to 0.5mm. Figure 9.36 shows the largest amplitudes of the reconstructed
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Fig. 9.35: Reconstructed defect for di↵erent noise levels as triangulation.

SAFT image. The calculation for each dataset took about 330 seconds. One can identify
four structures in Figure 9.36. The largest structure at the top is the reconstruction of
the surface. The structure at the bottom illustrates the back wall while the structure
second from the bottom is the upper part of the defect. However, the structure second
from the top seems to be an echo of the defect caused by the wave structure. Although
SAFT has been applied to the three-dimensional data at once, the algorithm was not
able to produce results comparable to our algorithm that only used the two-dimensional
information.

Fig. 9.36: Largest reconstructed amplitudes using SAFT on the 3d data.
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9 Numerical Results

9.4.4 Real Wall Thickness Measurement Data

As a last example in this chapter, we want to consider real wall thickness measurement
data obtained from a 14mm thick steel tube. Figure 9.37 shows exemplary a b-scan of
the data. As one can see, there is a defect in the back wall of the tube. An imprint of
this defect has been produced, sized and digitalized, see Figure 9.38. Hence, we do know
the form and size of the defect approximately.

Fig. 9.37: B-scan out of the given real data.

Fig. 9.38: Digitalized imprint of the back wall defect extended by zero outside.

Using the Newton-HOMP approach to reconstruct the impulse parameters, we obtain
a bandwidth of 57.8695Mhz2, a frequency of 6.2916Mhz and a shift of 0.0228. For
deconvolution of the data, we use the HOMP algorithm with a discretization t

k+1

� t

k

=
0.01µs, L = 2, p = 5, "

0

= 0.75, "
1

= 0.05 and "
2

= 0.15. Furthermore, we apply the
weights w

k

= e( /50)
2
ct

k as in the last example. Figure 9.39 exemplarily illustrates the
deconvolved data for the b-scan shown in Figure 9.37 where the surface reflection has
been truncated. Again, before applying a clustering algorithm, we remove all back wall
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peaks from the data. Then we reconstruct the defect cluster shown in Figure 9.40 using
DBSCAN with P

min

= 2, � = 5.922, " = 1.54.

Fig. 9.39: Non-zero elements of the deconvolved data for the b-scan shown in Figure 9.37; the
surface reflection has been truncated.

Fig. 9.40: Cluster corresponding to the back wall defect obtained with DBSCAN.

In a last step we reconstruct the defect applying Algorithm 8.2.22 on each b-scan. We use
the heuristic method 8.1.4 and set " = 0.001 for the "-separation. The result is illustrated
in Figure 9.41. Note that the sampling grid di↵ers from that in Figure 9.38 since the
imprint could be sampled more detailed. Moreover, although we may assume that Figure
9.38 shows an reasonable image of the back wall defect, it is not quite clear how big
the approximation error due to the imprinting, sampling and digitalization is. Since the
defect cluster in this example only contains about 600 points, the complete reconstruction
of the defect took 29.8707 seconds, including all three steps of our inversion method.
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Fig. 9.41: Reconstructed defect as points cloud (top) and triangulation (bottom).
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Let us summarize the results of this thesis. As we have learned from the first chapters,
ultrasonic non-destructive testing is a complicated task with many unsolved problems.
Surely, today the behaviour of ultrasound in material is well understood and many
simulation and reconstruction methods are known. However, the industrial framework
implicates the challenging issue to balance the resources of time and accurate information
reconstruction. Due to the very fast production process both of these resources are
strictly limited. In many cases, only few ultrasound measurements can be taken to
analyse the component. This leads to inverse problems with highly incomplete data and
to the task of finding a reconstruction method that is fast and stable.

In this thesis, we presented a new model based reconstruction approach. The introduced
model was kept as simple as possible to allow a fast inversion algorithm. Nevertheless,
a close connection to inverse scattering via the Born approximation was shown. Based
on this model, we were able to introduce our reconstruction idea that mainly consists of
three parts: Extraction of information, assignment of information and reconstruction.
The great benefit of this idea is to use the valuable resource time only as much as neces-
sary. In a first step, the amount of input data is drastically reduced and only important
information is kept. This allows the following steps to operate on a small amount of data
admitting a vast decrease of runtime. The second step classifies the data into di↵erent
groups such as noise, back wall, lateral wave or defect. Such a classification is crucial
for real time computation. The third step is the actual reconstruction of the defect.
The method used for this step is often time consuming as the defect reconstruction is a
complicated problem. Hence it is important that the amount of data is reduced by the
first two steps of our reconstruction idea. Thus, the time expensive operations are only
computed if needed. Independent of the here presented explicit method for those three
steps, the basic idea behind this method is a fundamental step to overcome the problem
of high dimensional data. Today’s known methods such as SAFT are su↵ering from this
high dimensionality with a high computational e↵ort and thus cannot be performed in
real time especially in the 3D case.

After having introduced the basic idea of our method, we presented algorithms for all
three reconstruction steps. We used a sparse deconvolution method to extract the im-
portant information out of the input data. Thereby, we made special use of so called
Greedy methods which often have a very low complexity. As it was shown in the nu-
merical examples, the introduced HOMP algorithm is even able to handle data with
high noise levels. Furthermore, an extension of this approach, the Newton-HOMP al-
gorithm, is also able to reconstruct the unknown impulse parameters. For the second
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step, we used clustering algorithms to classify the data. More precisely, an adaption of
DBSCAN was used, an algorithm that was especially designed to handle noisy data. In
addition, we also introduced DBCLAN, another adaption of DBSCAN that is able to
separate overlapping clusters which may appear if two defects are close to each other.
The numerical results show that both algorithms are capable of classifying the data into
di↵erent clusters, here the DBCLAN was more prone to noise then DBSCAN. For our
last step we introduced a completely new reconstruction method based on a simple al-
gorithm that we call spiderweb algorithm. This method is able to reconstruct an object,
or part of it, from given distances between the object’s boundary and positions outside
the object. Thereby, it automatically adapts to the given information and reconstructs
those parts of the object where information is given while the other part is neglected.
Another advantage of this method is that it directly reconstructs a number of points rep-
resenting the defect while e.g. SAFT can only reconstruct an image of the component
that has to be interpreted. The stability of our new method has not only been confirmed
by the numerical examples shown in this thesis but we were also able to derive several
theoretical results that prove approximation properties for this algorithm.

Altogether, the presented methods combined to a reconstruction technique form a fast
and stable algorithm. The numerical examples have shown that the method is able
to beat SAFT in both runtime and approximation accuracy. Although the individual
methods can surely be improved, the ideas of data reduction and defect reconstruction
as point cloud are an important step forward to real time computation and defect re-
construction. Thus, the algorithm can be seen as construction kit for a new type of
inversion methods where each of the three parts can be exchanged, improved or adapted
according to the underlying application.
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[71] U. Harten. Physik - Eine Einführung für Ingenieure und Naturwissenschaftler.
Springer New York, 2011.

[72] D. T. Blackstock. Fundamentals of Physical Acoustics. John Wiley & Sons, Inc.,
New York, 2000.

[73] A. Schoch. Schallreflexion, Schallbrechung und Schallbeugung, volume 23 of Ergeb-
nisse der Exakten Naturwissenschaften. Springer Berlin, 1950.

[74] R. Demirli and J. Saniie. Model-based estimation of ultrasonic echoes part I: Anal-
ysis and algorithms. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 48(3):787–
802, 2001.

[75] F. Natterer. An error bound for the Born approximation. Inverse Probl., 20(2):447–
452, 2004.

[76] S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE
Trans. Signal Process., 41(12):3397–3415, 1993.

[77] J. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE
Trans. Inf. Theory, 50(10):2231–2242, 2004.

[78] G. Prony. Essai expérimental et analytique sur les lois de la dilatabilité des fluides
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Einführung in Klassifikationsverfahren. Oldenbourg München, 2010.

[105] N. A. Rathod and S. A. Ladhake. Review of data clustering algorithms. IJCIS,
2(3):56–58, 2011.

[106] R. C. T. Lee. Clustering analysis and its applications. Advances in Information
Systems Science, 6:169–292, 1981.

[107] C. Elkan. Using the triangle inequality to accelerate k-means. Proc. ICML, pages
147–153, 2003.

169



Bibliography

[108] K. Hwang, S. Mandayam, S. S. Udpa, L. Udpa, W. Lord, and M. Atzal. Char-
acterization of gas pipeline inspection signals using wavelet basis function neural
networks. NDT & E International, 33(8):531–545, 2000.

[109] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discov-
ering clusters in large spatial databases with noise. KDD, 96:226–231, 1996.

[110] M. Kryszkiewicz and P. Lasek. TI-DBSCAN: Clustering with DBSCAN by means
of the triangle inequality. Lect. Notes Comput. Sci., 6086:60–69, 2010.

[111] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press New York, 1981.

[112] L. A. Zadeh. Fuzzy sets. Inf. Control, 8(3):338–353, 1965.

[113] Z. Xiong, R. Chen, Y. Zhang, and X. Zhang. Multi-density DBSCAN algorithm
based on density levels partitioning. J. Inf. Comput. Sci., 9(10):2739–2749, 2012.

[114] W. F. Demjanov and W. N. Malozemov. Einführung in Minimax-Probleme. Geest
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