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Abstract

In image compression, the discrete cosine transform of type IT (DCT-II)
is of special interest. In this paper we use a new approach to construct
an integer DCT-IT first considered in [14]. Our method is based on a
factorization of the cosine matrix of type II into a product of sparse,
orthogonal matrices. The construction of the integer DCT of length 8
works with lifting steps and rounding—off. We are especially interested in
the normwise error and the componentwise error when the integer DCT
is compared with the exact DCT-II.

1 Introduction

The discrete cosine transform of type II (DCT-II) has found a wide range of
applications in signal and image processing (see [16,17]), especially in image
compression. It has become the heart of international standards in image
compression such as JPEG and MPEG. In some applications, the input data
consist of integer vectors or integer matrices. Then the output of DCT-II
algorithm consists no longer of integers. For lossless coding it would be of
great interest to be able to characterize the output completely again with
integers. Lossless coding schemes are hardly based on integer DCT-II which
have been studied in recent years (see [2,3,4,5,7,8,9,12,14,15,18,19]). Especially,
integer DCT-II of length 8 and 16 and integer wavelets (see e.g. [1]) have been
proposed.

An integer DCT-II of length n is a nonlinear, left-invertible mapping which
acts on Z™ and approximates the classical DCT-II of length n. Integer DCT—II
possesses some features of the classical DCT-II, whereas its computational cost
is not higher than in the classical case. As known the JPEG compression al-
gorithm divides the source image into 8 x 8 blocks. Then the two—dimensional
DCT-II of each block is performed and the result is compressed by a quan-
tization step. Hence n = 8 is the most interesting case which we consider
in detail. Note that in the JPEG—-2000 proposal [11], the use of the integer
DCTII for lossless image coding is recommended. One method for developing
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an integer DCT-II algorithm is based on the idea to approximate the compo-
nents of the cosine matrix C!! of order n by dyadic rationals (see e.g. [18]),
paying attention that the symmetry relations are kept. This method destroys
the orthonormality of the matrix and the challenge is to find an invertible ap-
proximation C), of CIT guch that its inverse C'n_l again only consists of dyadic
rationals. For this reason, suitable approximations of the cosine matrix C'/ of
order n = 8 or n = 16 have only been given.

In [3,5,7,9,19], different factorizations of the transform matrix into products of
so—called lifting matrices and simple matrices are applied. Here a lifting matrix
is a matrix whose diagonal elements are 1, and only one nondiagonal element is
nonzero. Simple matrices are permutation matrices or sparse matrices whose
nonzero entries are only integers or half integers. Then the noninteger entries
of the lifting matrices are rounded to dyadic rationals, and the inverse matrix
factors are easy to determine. This method has the advantage that it works
for arbitrary radix—2 lengths.

Due to the rounding of matrix entries, these two methods can lead to high
errors, if one compares the integer DCT-II output with the classical DCT-II
result, especially if the range for the components of the input vector is large.
Explicit error estimates for these algorithms have not been considered.

In this paper, we use a new approach to integer DCT-II introduced in [14].
Note that we are not building integer DCT-II in integer arithmetic. Thus
the computations are still done with floating point numbers, but the result is
guaranteed to be an integer and the invertibility is preserved. Our algorithms
are based on a factorization of C{ (see [13]) into sparse orthogonal matrices of
simple structure. By suitable permutations, each matrix factor can be trans-
ferred to a block—diagonal matrix, where every block is an orthogonal matrix
of order 2. Now the idea for construction of integer DCT—II of length 8 is very
simple. For each block R, of order 2 and for arbitrary x € Z2, find a suitable
integer approximation of Ryx such that this process is left—invertible.

The paper is organized as follows. In Section 2 we introduce the cosine matrix
of type I and present a factorization of C¢! into products of sparse, orthogonal
matrices. In Section 3, we present integer transforms of length 2. Applying
the lifting technique (see e.g. [6]) and rounding-off, we construct an integer
approximation of Ryx for arbitrary x € Z? and estimate the truncation error.
Further, we give some properties of the corresponding nonlinear mapping which
allow the conjecture that vanishing components of the exact vector 2 C{x with
x € 7% are preserved in the proposed integer DCT-II algorithm.
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The results of Sections 2 and 3 are applied to integer DCT-II of length 8 (in
Section 4) and to two-dimensional integer DCT-II of size 8 X 8 (in Section
5). We present algorithms for the integer DCT-II and estimate the normwise
error as well as the componentwise error when the integer DCT-II result is
compared with the exact DCT-II. Our worst case estimates for the absolute
error show that the proposed integer DCT-II algorithm is very close to the
exact DCT-II and hence preserves the features of frequency decorrelation. In
particular, a detailed consideration of the componentwise error will lead us to
better error estimates than given in [14]. The numerical results illustrate the
performance of our new integer DCT-II algorithm.

2 Factorization of Cosine Matrix

Let n > 2 be a given integer. In the following, we consider the cosine matriz
of type 11 with order n which is defined by

cH = \/% (én(j) cos M)n_l (2.1)

o Jjk=0"

where €,(0) := v2/2 and ¢,(j) := 1 for j € {1,...,n — 1}. In our notation
a subscript of a matrix denotes the corresponding order. Observe that these
matrices are orthogonal (see e.g. [16], pp. 13 — 14; [17]). The discrete cosine
transform of type 11 (DCT-11) with length n is a linear mapping of R™ onto IR",
which is generated by C'I7. In [13], simple split-radix algorithms are proposed
for these transforms of radix—2 length n. They are based on factorization of
CITinto a product of sparse, orthogonal matrices. In this paper, we want to
restrict ourselves to n = 8 and use the orthogonal factorization of C{! in order
to present an integer DCT-II of length 8, which is very close to the original
DCT-II and maps integer vectors to integer vectors (see also [14]). Naturally,
this integer DCT-II is not longer a linear mapping.

First, we introduce some notations. Let I, denote the identity matrix and
Jp =00 +k—n+ 1))Z;i0 the counteridentity matrix, where § means the
Kronecker symbol. Blanks in a matrix indicate zeros. The direct sum of two
matrices A, B is defined to be a block-diagonal matrix A& B := diag (A4, B).
For even n > 4, P, denotes the even-odd permutation matriz (or 2-stride
permutation matriz) defined by

P.x = (20,22, ..., %p_2, 21,23, .. .,xn_l)T, X = (xj)?:_(}.
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An orthogonal factorization of the cosine matrix C4 looks as follows (see [13]):
C§h = Bs (I & A4(1)) (C37 & €3V & €31 @ C31) (T4(0) & T4(1)) Ts(0)  (2:2)

with the bit reversal matrix By := PJ (Py @ Py), determined by

_ T _ Y
Bsx = (20, 74, ¥2, T, T1, T5,23,27)", X = (¥;)i_0,
s M s
V2 oS 15 , , sin {5
yis M yis
Lam=2| 1 ] mo= e 7
/s —sin 75 cos {§
M s s
sin {5 —cos {5

1 (12 )2 o1 (1 s
T4(0)_ﬁ<12 —Jz)7 TS(O)_E<I4 —J4)7

1 1 cos T sin Z
CII:L< )7 CIV§:< 8 8)‘
2 V21l -1 2 sin% —COS%

and with

Let us denote the five orthogonal matrix factors of C4 in (2.2) in this order by

CI = Bg Ag(0,1) T(0, 1,0, 0) T3(0, 1) T(0). (2.3)

Note that the factorization (2.3) implies a fast algorithm for computing the
DCTII of length 8 with 11 multiplications and 29 additions (see [13]). This
algorithm is very similar to that of C. Loeffler et al. [10].

3 Integer Transforms of Length 2

Considering the factorization (2.3) of C!, we observe that each of the matrix
factors possesses at most two nonzero entries in one row. The main idea to
obtain an integer DCT—II is now as follows. First we consider rotation matrices

of the form )
cosw sinw )

—sinw cosw

Ra(w) =

For the selected case n = 8 we need Ry(w) for w € {{5, 5, 15, §J only.

For Ry(w) and for arbitrary x € Z? we want to find a suitable integer approx-
imation of Ry(w)x such that this process is left-invertible. Afterwards, we
construct an integer DCT-II of length 8 from these partial algorithms.
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We use the following notations. For a € R let [a] := max{z < a; 2 € Z}.
Further let rd (a) := |a + 1/2] be the integer next to a.

Let s € IR with s # 0 be given. Then matrices of the form

b))

are called lifting matrices of order 2 (see e.g. [3,4,5,6,9,14,19]). Note that the
inverse of a lifting matrix is again a lifting matrix:

G =6 G0 =)

Every rotation matrix Ra(w) of order 2 can be represented as a product of
three lifting matrices (see [6]):

RQ(M)Z((l) talll%) (—silnw (1)) ((1) taIll%)' (3.1)

Note that the above factorization of Ry(w) consists of nonorthogonal matrix
factors. This factorization is used as follows.

A‘_lsx
Y=o 1

with x = (29, #1)7 € Z* can be approximated by y = (yo, y1)? € Z* with

A lifting step of the form

yo=1x0+ [se1+ 5| =wo+rd(szy),  yi =2
This transform is left—invertible and a left—inverse reads as follows
xO:yO—LsyH—%J:yo—rd(syl), 1 =1
Indeed, we have that
yo— sy + 3] =20+ [sar+ 5] — [se1 + 5] = 2.
We obtain
Theorem 3.1. Let Ry(w) with w € (0, 5] be a rotation matriz. Then for

arbitrary x = (zg,21)7 € Z?, a suitable integer approvimation y = (yo,y1)! €
Z? of ¥ == Ry(w)x is given by yo = 29, y1 = 21, where

29 = xo+rd (2 tan y),

z1 = a1 +rd(—2 sinw), (3.2)

29 = zp+rd(z tan%).



6 (. Plonka, M. Tasche

This integer transform is left—invertible and a left—inverse reads xg = ws, v1 =

wy, where

wo = yo—rd (y; tan ),
wy =y —rd (—wp sinw),
wy = wg—rd(w; tan §).

Further, the error estimates
(o — y0)2 + (41 — y1)2 < %(3 +4sinw + 2cosw + (tan %)2) (3.3)
and

(14 tan % + cosw), (3.4)
(14 sinw)

ﬁo—yo|
|§1 —y1|

IN A
[ SIS

hold.

Proof. The formulas for yg, y; directly follow by applying the lifting steps to
the three matrices in (3.1). Using the inverse of (3.1), we obtain the formulas
of 2o, 1 analogously. For a proof of the error estimates see [14]. The estimates
for the componentwise errors in (3.4) directly follow from the proof of Theorem

3.8 in [14]. O

Remark 3.2. (1) Let y := Ry(w)x with arbitrary x € Z* and y its integer
approximation constructed via (3.2). The special values for the error ||y — y||2
and the componentwise absolute errors ||y — y||~ via the lifting procedure for
we{Z, I, L 323 follow by inserting into formulas (3.3) — (3.4). In particular,

4787 167 16
we obtain
1.361453 for w = 7,
. 1.266694 for w = g,
Iy = yllz < -
1.199128  for w = £,
_ 37
1.320723 for w = 5%,
1.060660 for w = 7, 0.853553 for w = 7,
1.061396  for w = g, 0.691342  for w = %,
190 — yol < g1 — | <

0.597545 for w =
0.777785 for w =

1.039638 for w =
1.067408 for w =

& 5k
5k

—_

o]
=
o]
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(2) In particular, for w = 7, we have

5 =41 1)

such that y := v/2R»(%)x remains to be an integer vector for arbitrary x € Z2.
The multiplication of v2R,(Z) with x € Z? is left-invertible and moreover,
it does not produce any rounding error. Further, this procedure to handle
rotation matrices with angle 5 requires 2 additions only instead of 3 multipli-
cations and 3 additions for 3 lifting steps. Thus we shall use the multiplication
of V2Ry(%) with x € Z? instead of the lifting method of Theorem 3.1 for the

integer DCT-II as often as possible, when the rotation matrix with angle

4
occurs in the factorization (2.3).

Let us now consider the nonlinear mapping f,, : Z% — Z% with f,((zo,21)7) =
(yo,y1)T where yo 1= 22, y; := 21 and zg, 21, 2o are given in (3.2). Note that
for arbitrary x € Z2, f,(x) is an integer approximation of Ry(w)x. Then we
observe the following properties of f,.

Lemma 3.3. For all w € (0, §] we have

fw((07 O)T) = (07 O)T'

Further, for w = % and xo € Z we have

h) = (d(V2w), 0)7,
= (0, —rd(v2z0) +4),

f7r/4(($07 960)
Frja((wo, —20)T)
where

1 if 2w —rd (V220) € (-4, -1+ 42,
§:=1{ 0 if V2wo—rd(v2x0) € (14 %2, 1 - 2L2),
—1 if 2x9—1d (V2x0) € (1 - @, 5.
Proof. The first assertion follows immediately from the definition of zg, 2z, 22,

since for zg = 1 = 0 we obviously have zy = zy = 25 = 0.

We consider the second assertion. Let € € (—3, 3) be defined by

V2 =rd(V2z0) + €.

Then we obtain for w = % and xg = z; by tan ¢ = V2 — 1 that

20 = zo + rd(zo(vV2 = 1)) = rd(V220) = V220 — €
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and
21 = 2o+ 1d(—20%2) = 20 + 1d((—v20 + €)42) = 20 — 20 + 1d (L) = 0
as well as 29 = 29 = rd(v/2%0).
For x; = —xg we observe that
20 =z + rd(—20(vV2 — 1)) = 220 + rd(—V2z0) = 220 — rd(V220),
since for s € IR \ (3 +Z) we simply find that rd(—s) = —rd(s). Further,

21 = —x0+ rd((=2x0 + rd(v220)) 22)
= —ag+rd(—v2z0 + (V220 — € 22)
= rd(—v2z9— Y e) = rd(—rd(v2z0) — € — 5@6)
= —rd(v2z0) + rd(—(1+ L2)e).
Finally it follows that
7 = 20+1d((vV2-1)2)
= 200 — 1d(v220) +1d (V2 = 1) (=1d (vZro) + 1d(—(1 + )e) ))
= 200+ 1d (—v21d(v2r0) + VZ1d(—(1 + 22)e) — rd(—(1 + L)e))
= 2z9+1d (—2360 +v2e 4+ 2 1rd (= (1 + ?)e)) —rd(—(1+4 @)e)
= rd (\/§€ +v21d(—(1 4+ 5@)6)) —rd (—(1 + 3@)6) .
Now for € € (-1 + ﬁ 1= ﬁ] we have —(1 4+ \/5)6 €[-3.%), e, rd(—(1+4
5@) ) =0, and we ﬁnd 29 = 1d(v/2€) = 0, since
VZe <V2(1-L2)=v2-1< L.

Foree (1- 2 1) we have —%—ﬁ < —(1—|—5QQ)6 < —3,ie., rd(—(l—l—ﬁ)e) =

232 1
—1. Hence we obtain

zp=1d(V2e = V2) +1=0

by V2(e—1) € (-=1,—%2).
Foree (-3, — 3@] we have rd(—(1 —|—5QQ)6) =l and z; = rd(v/2e4+v/2) —
, since \/_(e—l— 1) € (i 1]. a
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Remark 3.4. Lemma 3.3 shows that for the special cases x = (zg,20)7
and x = (20, —20)7, respectively, the error Ry(§)x — fr/a(x) vanishes in the
second (resp. first) component and is smaller than % in the other component.
This property of f, implies the conjecture that the integer DCT-II Algorithm
4.1, presented in the next section, preserves vanishing components, i.e., if a
component §; (j € {0,...,7}) of y = 2C{x vanishes, then the j—th component
of the integer DCT-II equals zero too. Recently it has been shown in [15], that
this conjecture is true indeed.

4 Integer DCT-II of Length 8

Now we present an integer DCT-II algorithm, where the lifting method of
Theorem 3.1 is used. Further, we estimate the truncation errors in the worst
case.

Based on the factorization
205 = BgAs(0,1) (14 & v214) Ts(0,1,0,0) (V214 & 1) Ts(0, 1)vV2T5(0) (4.1)

we apply lifting to the submatrix T4(1) of T(0, 1), to the submatrix C3/ ¢ CIV
of T5(0,1,0,0) and to the submatrix A4(1) of Ag(0,1). The other matrix—
vector products are computed directly. The above factorization (4.1) ensures
that the most rotation matrices with angle 5 can be computed without lifting
using the fact that v/2R5(%) has only £1 as entries (see Remark 3.2, (2)).

Algorithm 4.1.
Input: x € Z8.
1. Compute x(V) := /2 T3 (0) x.
(1) (1) (1))T (1) (1))T

2. Put w® = (g ey ey xy )t w(l) .= (), s
($(71), wél))T. Compute z := v2T4(0)w(®) and

z® = 1d((tan Z & tan ZL)w?) + wt),
zM = rd(((~sin 76) @ (—sin ?—g))z(o)) +w®),
z? = rd((tan & @ tan 2)z)) + 20,

(2) (2) (1) (1))T‘

Put x? = (27, 20, 2,7, 21, -2
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3. Put w® = (2 é ), $(22))T7 wl) = (w(lz), xgz))T, w? =
o289, 2O
Compute z := (v2CI @ 2w and
2 = 1d((tan T @ tan Z)w)) + wl0),
2! rd (((=sin § )@(—Sm $)z2) +wlh),
z(?) = rd ((tan g @ tan —) Y 4200,
Put x®) = (z(()z), —z(() ), zf), —z?), ZT)T.
4. For j=10,...,4 put $§4) = wg?’) and $(74) = xé ) Compute
zg = rd (96(73) tan §) + x(53), $é4) = —rd (—zpsin §) — x(73),
$(54) rd (—z ( Jtan Z 3) T 20

5. Compute y := Bgx(¥.

Output: y € Z® integer approximation of y = 2 C{’x.

Algorithm 4.1 needs only 15 multiplications, 31 additions and 15 rounding
operations. Hence, its arithmetical complexity is nearly optimal, keeping in
mind that best algorithms for DCT-II of length 8 need 11 multiplications and
29 additions without counting the final scaling by 2+/2 (see [10,13,16]).

The left-inverse integer DCT—II algorithm for Algorithm 4.1 simply follows by
going backward and taking the left-inverse lifting procedure of Theorem 3.1.
Now we analyze the error caused by Algorithm 4.1 comparing the resulting
integer vector y with the exact result § = 2C{’x of the DCT-II of length 8. A
detailed consideration of the componentwise error will lead us to better error
estimates than given in [14].

Theorem 4.2. Letx € Z° be an arbitrary vector of integers. Using Algorithm
4.1, the resulting integer approvimation y of ¥ = 2C{  x satisfies the error
estimate

|y — ¥ll2 < 5.743824. (4.2)
Further an analysis of the componentwise error gives
|70 — yo| < 1.060660, |71 — y1] < 2.107046,
|g2 —y2| < 1.061396, |73 — ys| < 3.523072, (4.3)
|74 —ya] < 0.853553, |75 — ys| < 3.315965,
U — ys| < 0.691342, |g7 — yr| < 1.375330,
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and in particular,
1y — ¥llo < 3.523072.

Proof. Let us denote the preliminary results of the exact DCT-II using the
factorization (4.1) by

1V = V2T5(0) x,

x? = (V2L @ 1) T30, DD,

%G = (L@ V2I) Tx(0, 1, 0, 0) %2,
™ Ag(0, 1) %),

Then we have y = 2C{ x = Bsx® . Further, let e(® := x(5) — x(s) (s €
{1,2,3,4}) denote the error of a single step in the algorithm, where x(*) are
defined in Algorithm 4.1, and where X := V27T5(0)x, x® = (V21,4 @
1) T (0, 1)xM, %6 := (I, & /2 Ty) Tx(0,1,0,0)x), %4 := A5(0,1) x®).

Observe that e(!) = x(1) — x(1) = 0. Then for the error ||y — y||2 we find

%@ _ X(4)H2 — H}A((4) i _ e(4)H2
|| As (0, 1)|]2 <3 _ X(S)H2 + He(4)H2

(14 & V2L T5(0, 1, 0, 0) o5 = x Pl + [je )2 + ([t
V2@l + [le®]l2 + [l

With A(t) := 2 +sint + cost + +(tan £)? we find by Theorem 3.1 that

ly = yll2

IAN A

[l < (h(f5) + A(T)!? ~ 1783877,
le@]ly < (R(Z) + h(Z)/? = 1.859588,
le®]ly < A(Z)/? ~1.361453,

and
Iy — yllz < 5.743824.

Let us now estimate the componentwise error using the same notations as
above. After the first step of Algorithm 4.1 we obtain x(1) = x(1), After the
second step of Algorithm 4.1 we find i;z) — w;z) =0 for j € {0,1,2,3} and by
Remark 3.2, (1)

#3 - 2) < 1039638,
(

#3 — 2) < 1.067408,
2 — 2P| < 0777785, (

#3 — 2D < 0.597545.
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After the third step, we obtain by Remark 3.2, (1) that

2P 2B < 1060660, 2 — 2P| < 0.853553,
2P < 1061396, 2% — 2] < 0.691342,
P 2B < 2107046, 128 — 2] < 2.107046,
i -] < 1375330, 2% - o)) < 1.375330.

The multiplication of Ag(0, 1) in the fourth step leads to

W = @D 2P jeq0,1,2,3,4),
W < 75 - 3482376 4 1.060660 = 3.523072,
W W < 75 - 3.482376 4 0.853553 = 3.315965,
# _ W — 159 ) < 1.375330.

Finally, the permutation in the last step provides the componentwise worst
case error as given in (4.3). In particular, we see that in two components,
the error is smaller than 1 always, and in 3 further components, the error can
exceed 1 only slightly. O

In fact, the numerical results imply that Algorithm 4.1 performs really well.

Example 4.3. For given x € Z%, y denotes the integer DCT-II of x computed
by Algorithm 4.1 and y = QCE{IZX is the exact DCT-II of x (scaled by 2 and
rounded to 3 decimal places). In the following table we give some examples for
the performance of the Algorithm 4.1.

x |1 1 2 2 3 3 5 5

¥ 115.556 |-8.000 |1.307 [-1.009 |0 0.674 [-0.541 |1.591
y |16 -8 1 -1 0 0 -1 1

x [121 122 122 127 126 129 120 123
¥1700.036|-3.992 |-11.759 [4.257  |2.828 |-3.607 [4.871 |-8.302
y | 700 4 ~12 5 3 4 5 -8

x [129 ~13 12 45 —23 ~69 ~133 |99
¥133.234 |187.467 |156.260 |-115.689 |320.319 |-28.685 [ 161.058 | -60.160
y |33 188 156 ~115 320 29 161 61

x |22 33 44 55 66 77 88 99

¥ 1342.240 | -141.731 |0 ~14.816 |0 ~4.420 |0 ~1.115
y | 342 ~142 0 15 0 -5 0 -1

For further numerical examples and a numerical consideration of the error
distribution we refer to [14].
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5 Two—Dimensional Integer DCT-II of Size 8 x 8

The two-dimensional (2-d) DCT-II has important applications in image com-
pression (JPEG, MPEG). Therefore we extend our results of Section 4 to the
2-d integer DCT-IL. Let X € Z%*® be given. Then the 2-d DCT-II of size
8 x 8 of X is defined by C3! X (CEN7T. Let Y = 2CE) X (2CE)T. The simple
row—column method for computing of Y is based on the observation

¥ = CIX) 20T = 20T = 0T 27T
with Z := 2CH X. Now we compute integer approximations of Zand Y by

Algorithm 4.1.

Algorithm 5.1.
Input: X = (xo, ..., X7) € Z8%5,

1. For k=0, ..., 7 compute the integer approximation z of z; := 2 C{'x;,
by Algorithm 4.1.

2. Set Z := (zg, ..., z7) and (ug, ..., us) := 77,

3. Fork =0, ..., 7 compute the integer approximation vy of ¥, := 2 C¢'uy
by Algorithm 4.1.

4. Form Y := (vo, ..., vo)T.

Output: Y € Z%*® integer approximation of Y = 4 x (cihT,

Let us consider the (worst case) errors of Algorithm 5.1 estimated in the Frobe-
nius norm and in the maximum norm when the resulting integer matrix Y is
compared with the exact (scaled) 2-d DCT-11 Y.

Theorem 5.2. Let X € Z%7%% be an arbitrary matriz. Using Algorithm 5.1,
the resulting integer approvimation Y € Z8*% of Y = 4C{I X (C{NT satisfies
the error estimate

Y — Y| < 48.737963.



14 (. Plonka, M. Tasche

Further, the componentwise errors can be estimated by the error matriz

6.718 6.187 6.287 6.186 6.718 6.186 6.287 6.186
7.764 7.233 7.333 7.233 7.764 7.233 7.333 7.233
6.718 6.187 6.238 6.187 6.718 6.187 6.288 6.187
) . 9.180 8.649 8.749 8.649 9.180 8.649 8.749 8.649
(936 = yirDin=0 = | 6510 5.979 6.080 5.979 6.510 5.979 6.080 5.979 |’
8.973 8.442 8.542 8.442 8.973 8.442 8.542 8.442
6.348 5.817 5.918 5.817 6.348 5.817 5.918 5.817
7.032 6.501 6.602 6.501 7.032 6.501 6.602 6.501

where Y = (@jk);kzo and Y = (yjk);k:m and in particular

IV = Y |eo < 9.179926.

Proof. By (4.2), we know that the computed vectors z; (k =0, ..., 7) in step
1 of Algorithm 5.1 satisfy the estimate

|z — 2x]]5 < (5.743824)

Summing up, this yields

7
1Z — 213 = ||z — 2&l|3 < 8 - (5.743824)”
k=0

with the matrix Z := (Zo, ..., z7). Hence,
|17 = Z||F < 2V2 - 5.743824.

Set (1, ..., u7)7 := ZT and vy, := 2CH 0y (k= 0, ..., 7). Further let vy,
(k=0,...,7) be the computed vectors in step 3 of Algorithm 5.1. Applying
again (4.2), we get

Vi — vell3 < (5.743824)?

and hence )
Y = Y|lFr <22 - 5.743824

with ¥V := (v, ..., vi)T and ¥V := (3¢, ..., v7)T = Z(2C{HT. Since the
Frobenius norm is unitarily invariant, we have ||Y = Y||r = 2||Z — Z||r. The
Frobenius norm is consistent such that we can estimate

Y =Y|lrp <Y =Y|lp+ Y = Y|l <62 - 5.743824.
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Now we consider the componentwise error. By (4.3) we obtain in step 1 of
Algorithm 5.1 with zg := (zj3)I_y and 2 := (21)]_, the error matrix

(IZjk — 2jk) i pmo < (£, £,.. . f) € R®®
with
f = (f07 flv"'7f7)T
= (1.061, 2.107, 1.061, 3.523, 0.854, 3.316, 0.691, 1.375)T.

Here the errors in (4.3) are rounded to 3 decimal places. In the second step,
the matrix is transposed only, i.e., with 1 := (1,1,..., 1)T € IR® we have

(127 = 20il)j k=0 < (fol, i1, fr1).
In the third step we find with vy, := (vx)’_ and V), := (9;x)7_, that

(o6 — vigl)iheo < (Eoo f) + 2108 (

Zgj — ij|)]7‘,k:0
< (t+2fo|cilL, . f42f|ci),

where

T ikt 7
i) =1 (68(]) | cos =5 |)j,k:o'

Here the error 2fj|C§I|1 is caused by the error of the previous step and f by
the integer DCT-II applied to uy := (ij);:o- By

|CH)1 ~ (2.828, 2.563, 2.613, 2.563, 2.828, 2.563, 2.613, 2.563)7

and (|g;5 — yjk|)]7k:0 = (|01 — vjk|)]7k:0, we finally obtain the error matrix as
given in the theorem. This completes the proof. O

We want to finish with some numerical results for the 2-d integer DCT-II
applying Algorithm 5.1.

Example 5.3. Let X € Z8%® denote the input matrix, Y is the 2-d integer
DCT-II of X computed by Algorithm 5.1, and Y = 4C{ X (CF)7T is the exact
(scaled) 2-d DCT-II of X, where each entry is rounded to the next integer.

For
13 14 14 15 14 12 10 10

14 14 23 32 15 12 9 6
15 20 21 13 12 14 21 R
15 16 16 17 18 19 20 12
15 16 16 16 16 15 15 15
13 16 18 16 17 15 14 15
16 19 17 17 16 15 13 12
16 15 16 16 16 15 12 11
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we obtain that

487 41 -43 -9 -15 14 -7 -1
-9 13 —-18 —-12 —4 21 -5 -4
—24 23 —-14 -7 18 0 7 —10
-12 -9 2 -7 20 —17 6 -5

Y= —-11 -20 13 20 9 -10 2 2
-1 12 21 19 -17 -12 -8 8
-12 -13 25 7 =20 —-11 =2 17
-8 5 24 2 —-14 -7 -5 7
and
488 40 —43 -8 -—16 14 -7 0
-10 15 —-17 -13 =2 20 -3 -4
—24 22 —-14 -8 18 -1 7 —11
Vo -13 -9 2 —12 22 —18 6 —4

—11 -19 14 20 9 -10 1 3
-1 -13 23 19 —-16 —-15 -8 8
—-13 -11 25 8 =20 -9 -1 16
-8 4 23 2 —-13 -7 -6 8
The greatest componentwise error occurs in the (3,3) position of ¥ and is
4.555. O

Finally, we consider the behaviour of the errors HY—YHOO = max;k=o,.7 |Ujk—
y;x| in more detail. As input matrices we use 1000 random matrices in VA
with entries in the range [—127, 128]. We compute the r—th quantiles for
r o= %, j = 1,...,10 for Algorithm 5.1. After sorting the errors of 1000
resulting matrices, the r—th quantile is the smallest value that separates the
errors into two parts; 1000 r of the sorted errors are less than or equal to the
quantile value, the other 1000 (1 — r) errors are greater than the quantile. The
1-th—quantile is the maximal error occurring. In the following table the r—th
quantiles are rounded to 3 decimal places.

r=0.1{r=0.2|r=0.3|r=04|r=0.5|r=0.6 |r=0.7|r=0.8|r=0.9|r=1.0
2.333 2.496 | 2.627 |2.751 |2.860 |2.984 |3.125 |3.365 | 3.655 | 5.654
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