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Prony’s Method for Multivariate Signals
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The problem of recovering translates and corresponding amplitudes of sparse sums of Gaussians out of sampling values as
well as reconstructing sparse sums of exponentials are nonlinear inverse problems that can be solved for example by Prony’s
method. Here, we want to demonstrate a new extension to multivariate input data.
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1 Introduction

Assume we only know equidistant measurements f(k), k = 0, . . . , N , of the signal f(x) =
∑M

j=1 cje
tjx, tj , cj ∈ C. The

task is to recover the parameters tj and the corresponding coefficients cj . Methods that accomplish this problem include
super-resolution [1], Prony’s Method [4], ESPRIT [9], MUSIC [10], Matrix-Pencil-Method [2], or the Annihilating Filter
Method for signals with finite rate of innovation [11], where all but the first method can be seen as Prony-like methods [7].

In [1], it is demonstrated that minimizing total variation is also applicable for multivariate signals. Another way to analyze
multivariate signals is to reduce the problem to a number of one-dimensional problems via projections of the data to multiple
lines through the origin and to apply a Prony-like method to each projection. Recent recovering results in [6, 8] using this
approach work only if the coefficients have equal sign, i.e., cj ∈ R+, since the inherited projection might otherwise cause
cancellation. In contrast, we established a new, fully multidimensional Prony method that is applicable for arbitrary cj ∈ C.
This advantage comes at the price of calculating common zeros of multivariate polynomials, which is a challenging task itself.

2 Reconstructing Multivariate Exponentials

In this section we present a direct generalization of Prony’s method to d dimensions. Note, that setting d = 1 breaks down
the upcoming calculations to the standard Prony method. Instead of the signal f(x), as introduced above, we now consider an
M -sparse sum of d-variate exponentials, f(x) =

∑M
j=1 cje

〈x,tj〉, x, tj ∈ Cd, cj ∈ C. We define d-variate Prony polynomials

P : Cd → C, P (z) :=
∑N

k=0 pkz
nk , nk ∈ Nd, with sufficiently large N ≥M such that P (etj ) = 0 for j = 1, . . . ,M where

P (etj ) :=
∑N

k=0 pk
∏d

`=1(etj,`)nk,` =
∑N

k=0 pke〈nk,tj〉. For arbitrary shifts m` ∈ Nd we observe

N∑
k=0

pkf(nk +m`) =

M∑
j=1

cje
〈m`,tj〉

N∑
k=0

pke〈nk,tj〉 =

M∑
j=1

cje
〈m`,tj〉P (etj ) = 0. (1)

Thus, we have to solve the linear problem Hp = (f(nk + m`))
N
k,`=0(pk)Nk=0 = 0 in order to find the coefficients pk of the

Prony polynomials P (z). The roots etj , j = 1, . . . ,M , of these polynomials carry the information of the unknown parameters
tj . Note that in one dimension we just have to compute the zeros of one Prony polynomial P (z) of order N = M to find
the parameters etj . Polynomials in d variables on the other hand have d− 1-dimensional zero sets, so those sets are too large
to extract the desired values etj . But, by construction, the values etj are contained in the zero set of every Prony polynomial
whose coefficient-vector lies in the kernel of H . The idea is now to construct a matrix H , where the dimension of the kernel
is large enough, such that we can ensure that the intersection of the zero sets of the obtained Prony polynomials is just the
set Ω := {etj | j = 1, . . . ,M}. In [3] it is shown that for suitably chosen sampling points nk and shifts m` the kernel of
dimension (M + 1)d −M of H ensures that the zero sets of the Prony polynomials associated with ker(H) intersect only in
Ω. Note that in the typical case a much smaller kernel of dimension d− 1 suffices.

After extracting the parameters tj out of the roots, we determine the coefficients cj as least squares solution of the
Vandermonde-type system

(
e〈tj ,nk〉

)N,M

k=0,j=1
(cj)

M
j=1 = (f(nk))Nk=0.

3 Reconstructing Translations of Multivariate Gaussians

If the 1-dimensional Gaussian K1,b(x) := e−bx
2

, b > 0, is known beforehand, the 1-dimensional Prony method can also be
used to recover translates tj and corresponding coefficients cj of a signal s(x) =

∑M
j=1 cje

−b(x−tj)2 =
∑M

j=1 cjK1,b(x− tj),
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666 Section 21: Mathematical image processing

x ∈ R, tj ∈ [0, 1], cj ∈ C, from sufficiently many sampling values s(k), k = 0, . . . , N , if the data is transferred to the
Fourier-domain [5]. Here, we want to demonstrate an algorithm for recovering multivariate translates tj ∈ [0, 1]d of the signal

s(x) =

M∑
j=1

cje
−b(x−tj)T(x−tj) =

M∑
j=1

cjKd,b(x− tj), x ∈ Rd, tj ∈ [0, 1]d, cj ∈ C,

directly in the spacial domain, with Kd,b(x) := e−bx
Tx. For the multivariate signal s(x) we consider again multivariate

Prony polynomials P : Cd → C, P (z) =
∑N

k=0 pkz
nk , but now with roots e2btj , i.e., P (e2btj ) = 0, j = 1, ...,M . Let

N = NP := {nk | k = 0, . . . , N} be the set containing all exponents nk of the multivariate monomials znk = z
nk,1

1 · · · znk,d

d

that are active in P (z). For α(m,nk) := e2bn
T
k m and qk := pkebn

T
k nk = Kd,b(nk)−1pk, with nk ∈ N ⊂ Nd and shifts

m ∈ Nd we get

N∑
k=0

qks(nk +m)α(m,nk) =

M∑
j=1

cjKd,b(m− tj)
N∑

k=0

pke2bn
T
k tj =

M∑
j=1

cjKd,b(m− tj)P (e2btj ) = 0

in analogy to the calculation in (1). Thus, we have to solve the linear system Hq = 0, H =
(
s(nk +m`)e

2bmT
` nk

)N
`,k=0

with q = (pkKd,b(nk)−1)Nk=0. Once, we have calculated the coefficients qk, we can evaluate the coefficients pk of the Prony
polynomial P (z). By construction, the translates tj are contained in the (d−1)-dimensional zero set of P (z). Again, we refer
to [3] for a proof that dim(ker(H)) = (M + 1)d −M suffices for unique reconstruction. After finding tj , j = 1, . . . ,M , the
coefficients cj can be determined as a least squares solution of (Kd,b(nk − tj))N,M

k=0,j=1(cj)
M
j=1 = (s(nk))Nk=0.

Algorithm for multivariate exponentials
Input: f(nk +m`), nk,m`, k, ` = 0, . . . , N

1. Calculate all vectors p in the kernel of H =
(f(m` +nk))N`,k=0 and construct the polyno-
mials P (z) =

∑N
k=0 pkz

nk .

2. Find the common zeros etj , j = 1, . . . ,M ,
of at least d+ 1 polynomials P (z).

3. Find a least squares solution of the linear sys-
tem (e〈nk,tj〉)N,M

k=0,j=1(cj)
M
j=1 = (f(nk))Nk=0.

Output: M , tj , cj .

Algorithm for multivariate Gaussians
Input: s(nk +m`), nk,m`, k, ` = 0, . . . , N , b > 0

1. Calculate all vectors q in the kernel of H = (s(nk +

ml)e
2bmT

` nk)N`,k=0 and construct the polynomials P (z) =∑N
k=0(qke−bn

T
k nk)znk .

2. Find the common zeros tj , j = 1, . . . ,M , of at least d+1
polynomials P (z).

3. Find a least squares solution of the linear system
(e−b(nk−tj)T(nk−tj))N,M

k=0,j=1(cj)
M
j=1 = (s(nk))Nk=0.

Output: M , tj , cj .
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