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Abstract. We propose a new algorithm for denoising of multivariate
function values given at scattered points in Rd. The method is based
on the one-dimensional wavelet transform that is applied along suitably
chosen path vectors at each transform level. The idea can be seen as a
generalization of the relaxed easy path wavelet transform in [13] to the
case of multivariate scattered data. The choice of the path vectors is
crucial for the success of the algorithm. We propose two adaptive path
constructions that take the distribution of the scattered points as well
as the corresponding function values into account. Further, we present
some theoretical results on the wavelet transform along path vectors
in order to indicate that the wavelet shrinkage along path vectors can
really remove noise. The numerical results show the efficiency of the
proposed denoising method.
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1. Introduction

Within the last years, wavelet threshold methods have been shown to be
a suitable tool for denoising of functions and images. In particular, using
a translation-invariant filter bank, the visual artifacts in the neighborhood
of discontinuities are well supressed [6]. The basic idea of wavelet denois-
ing methods is a suitable separation of frequencies of a given noisy signal
f . Supposing that the noise corresponds to wavelet coefficients with a small
amplitude, the application of a thresholding procedure to the wavelet ex-
pansion of f removes it form the signal. Compared to other approaches to
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image/signal denoising (as nonlinear diffusion or variational methods), one
advantage of the wavelet denoising method is its numerical efficiency.

However, the traditional (tensor-product) wavelet transform only ap-
plies for equidistant grids. There have been several attempts to generalize
the wavelet transform to functions that are sampled on non-equidistant or
scattered points. In the one-dimensional case, some of these methods apply
a certain approximation in a first step in order to get back the equidistant
design situation [1, 3, 10, 12]. Other approaches that particularly apply in
two or higher dimensions are based on the construction of second generation
wavelets [17] by the lifting scheme, see e.g. [2, 7, 11, 19]. These wavelet con-
structions adaptively depend on the scattered points and the corresponding
function values and therefore lose much of the simplicity and efficiency of the
traditional wavelet transform.

In [13], the easy path wavelet transform (EPWT) has been introduced
by one of the authors for sparse image approximation. The EPWT employs
the one-dimensional wavelet transform along path vectors through the image
values. The path vectors contain all indices (i, j) corresponding to the image
values f(i, j) and are determined in a way such that neighboring indices
in the path are also neighboring in the two-dimensional grid and that the
corresponding image values are well correlated. Obviously, the EPWT can be
simply transferred to the setting of scattered data xj ∈ Rd with corresponding
function values f(xj) ∈ R, where we have just to generalize the notion of a
neighborhood for xj . A similar idea has been already applied in [14] for
data on the sphere. The recently proposed generalized tree-based wavelet
transform (GTBWT) [16] is closely related to the EPWT [13] and generalizes
the Haar-like transform in [9]. In particular, the tree-based wavelet transform
has been combined with a suitable sub-image averaging scheme for image
denoising.

In this paper, we want to propose a new adaptive wavelet threshold
scheme for scattered data denoising. The basic idea of our scheme is very
similar to the EPWT, namely to employ the usual one-dimensional wavelet
transform along suitable path vectors at each level. But we need to determine
the path vectors differently in order to obtain good denoising results. Further,
for resembling the cycle spinning method [6], we apply the wavelet threshold
scheme several times along different path vectors and compute the average
of the results.

The paper is organized as follows. In Section 2 we describe the general
denoising algorithm along given path vectors. In Section 3 we propose two
different methods for determining the path vectors, a deterministic and a
random path construction. The two methods are both adaptive; the choice
of the next path component adaptively depends on the spatial distance of
the involved points xj and the distance of the involved function values f(xj)
(resp. the low pass values at further levels of the wavelet transform). In
Section 4, we explore some theoretical results that support our approach for
scattered data denoising. Finally, in Section 5 we present numerical results
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of our data denoising method in the two-dimensional case. For the special
case of images we also present some comparisons with other image denoising
methods.

2. Description of the algorithm

Let Γ = {x1, . . . , xN} be the data set with scattered data points xj ∈ Rd,
and let f : Rd 7→ R be a function sampled on Γ ⊂ Ω, where Ω is a connected
subset of Rd consisting of a finite union of convex domains. This means, the
measured values f̃(xj) are given, where we assume that

f̃(xj) = f(xj) + zj ,

and zj denotes additive Gaussian noise with zero mean and an (unknown)
variance σ2. For the distribution of the scattered data set Γ, we suppose
quasi-uniformity, i.e., considering the maximal density

δ(Γ) := max
x∈Ω

min
k=1,...,N

|x− xk|

and the minimal spacing

µ(Γ) := min
xj,xk∈Γ

j 6=k

|xj − xk|,

we assume that δ(Γ) < C · µ(Γ), with a constant C independent of Ω and Γ.
Further, we suppose that f is a piecewise smooth function.

Now, the basic idea of the new algorithm is the application of the classi-
cal wavelet shrinkage procedure along one-dimensional path vectors thereby
generalizing the easy path wavelet transform (EPWT), see [13].

The EPWT was introduced for image approximation. Therefore, the
path construction used in [13] is based on the strong correlation of function
values corresponding to neighboring points in the path vector. A new point
in the path vector is taken from the set of neighbor points, such that the
difference of the corresponding function values is minimal. In case of noisy
data, this approach for the path vector construction needs to be changed
since the correlation of function values is now influenced by noise. In our
algorithm, the construction of suitable path vectors turns out to be crucial
for a good denoising performance.

Similarly to [9] and [16], we resemble the ”cycle spinning” method [6] in
order to improve the denoising procedure. For image denoising, it is usual to
apply the tensor product wavelet shrinkage procedure not only to the noisy
image itself but also to all images obtained by up to 7 cyclic shifts in x- and
in y-direction. After application of the wavelet transform to each of the 64
images obtained in this way, an averaging is applied that greatly improves
the denoising result. In our approach, we will just apply the path wavelet
shrinkage procedure repeatedly along different path vectors and then average
the result.

We summarize the complete algorithm before describing the path con-
struction in more detail.
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Algorithm 2.1.

Given: the point set Γ = {x1, . . . , xN} = {x0
1, . . . , x

0
N} = Γ0 ⊂ Rd,

c0j := f̃(xj) = f(xj) + zj , j = 1, . . . , N, N = 2t,

a biorthogonal wavelet filterbank with decomposition filters h̃, g̃ and recon-
struction filters h, g

Iteration: Perform the following 4 steps for l = 1, 2, . . . , L with L < t:

1. Find a suitable path vector pl ∈ RN/2l consisting of a permutation of
{1, . . . , N/2l} that describes a fixed order of points xlpl(j) and of the

corresponding function values clpl(j).

2. Apply the (periodic) low-pass filter h̃ to (clpl(j))
N
j=1 followed by down-

sampling by two to obtain the low-pass data (cl+1
j )

N/2l+1

j=1 . Apply the

(periodic) high-pass filter g̃ to (clpl(j))
N
j=1 followed by downsampling by

two to obtain the vector of wavelet coefficients (dl+1
j )

N/2l+1

j=1 .

3. Apply the normalized low-pass filter 1√
2
h̃ (such that 1√

2

∑
l∈Z h̃l = 1)

to the point vector (xlpl(j))
N/2l

j=1 (i.e., separately to all d components),

followed by downsampling by two to obtain a new vector of scattered

points (xl+1
j )

N/2l+1

j=1 .

Determine the new point set Γl+1 := {xl+1
1 , . . . , xl+1

N/2l+1}.

4. Apply a threshold procedure to the wavelet coefficients (dl+1
j )

N/2l+1

j=1 to
find

d̃lj = Tθ(d
l
j) =

{
dlj if |dlj | ≥ θ,
0 if |dlj | < θ

with a predefined threshold parameter θ > 0.

Reconstruct the values f(xj) by the following iteration, where (c̃Lj )
N/2L

j=1 :=

(cLj )
N/2L

j=1 .
Iteration: Perform the following three steps for l = L,L− 1, . . . , 1:

5. Apply an upsampling by two first and then the low-pass filter h to

(c̃lj)
N/2l

j=1 .
6. Apply an upsampling by two first and then the high-pass filter g to

(d̃lj)
N/2l

j=1 .

7. Add the results of the previous two steps to obtain (c̃l−1
pl−1(j)

)
N/2l−1

j=1 and

apply the reverse permutation to get (c̃l−1
j )

N/2l−1

j=1 .

Output: (c̃0j )
N
j=1 the smoothed function values at scattered points xj ∈ Γ.

As already remarked before, analogously to the cycle spinning approach,
we apply the above algorithm several times and average the results in order
to improve the denoising method.
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Remark 2.2.
1. Observe that, similarly as for the EPWT in [13], the considered algorithm is
usually not just a one-dimensional transform since the path vectors change at
each level of the wavelet transform. This point is crucial for the performance
of the denoising method. In particular, the set of scattered data points related
to the computed low-pass values changes at each level according to step 3 of
the algorithm. For a one-dimensional wavelet transform at equidistant points
xj on a line, step 3 of the algorithm just transforms the point set again into
a (scaled) equidistant point set of half length on the line and needs therefore
not to be considered.
2. In our numerical experiments for bivariate data, we have also obtained
satisfying results by omitting step 3 of Algorithm 2.1 and by relating the

low-pass data (clj)
N/2l

j=1 to a suitable subset of Γ. Here we take Γ1 := {x1
j :=

x0
p1(2j−1) : j = 1, . . . , N/2} ⊂ Γ, and generally

Γl+1 := {xl+1
j := xlpl+1(2j−1) : j = 1, . . . , N/2l+1} ⊂ Γ.

3. It is possible to apply other shrinkage functions in step 4 of the algorithm
as e.g. a firm shrinkage [8].

3. Construction of path vectors

The main challenge in the above denoising algorithm is to construct path
vectors through the point sets Γl. As we will see in the sequel, the choice of
the path vectors is crucial for the success of the denoising algorithm. For the
path construction, we have to answer the following questions:

• How should one determine the neighborhood of scattered points as a
tool for determination of the path vectors?
• How should one determine the distance between scattered points and

between the corresponding function values? How we have to weight the
distance ‖xlj − xlk‖2 and the difference of corresponding function/low-

pass values |clj − clk|?
• Should the path vectors be chosen in a deterministic way or randomly,

based on the point sets Γl and the corresponding data clj?

In the remainder of this section, we shall propose two path vector con-
structions that we will use in our numerical examples.

3.1. Adaptive deterministic path construction

In Rd, let us apply a neighborhood definition of the form

N(xlj) = {xlk ∈ Γl : ‖xlj − xlk‖2 ≤ 2l/d · C1, j 6= k}, (3.1)

where C1 depends on the distribution of the original point set Γ. Observe
that the path vector at level l of the wavelet transform is a permutation of
the indices of the points {xlj : j = 1, . . . , N/2l}. In particular, each point has



6 Dennis Heinen and Gerlind Plonka

to occur exactly once in the path vector. In our numerical examples for d = 2,
we take C1 such that N(x0

j ) with x0
j := xj ∈ Γ contains at least 8 entries for

each j ∈ {1, . . . , N}. The path vectors at the level l of the wavelet transform
are determined by the following procedure.

Algorithm 3.1. (Deterministic path construction)

Given: the point set Γl = {xl1, . . . , xlN/2l} ⊂ Rd,
low pass values clj , j = 1, . . . , N/2l, N = 2t.

Choose the first path component pl(1) randomly from {1, . . . , N/2l}.
Iteration: Perform the following steps for k = 1, . . . , N/2l − 1:

1. For a fixed shrinkage parameter θ, compute the subset

Nθ(x
l
pl(k)) ⊂ Ñ(xlpl(k)) := {xlr ∈ N(xlpl(k)) : r /∈ {pl(1), . . . , pl(k)}}

of points that have not been used in the path vector yet and whose
corresponding function/low-pass values differ at most by θ, i.e.,

Nθ(x
l
pl(k)) := {xlr ∈ Ñ(xlpl(k)) : |clpl(k) − c

l
r| ≤ θ}. (3.2)

2. Choose the next component in the path vector as follows.
• If Nθ(x

l
pl(k)) is not empty, then choose the next path component

pl(k + 1) such that

xlpl(k+1) = argmin
x∈Nθ(xl

pl(k)
)

|‖xlpl(k) − x
l
pl(k−1)‖2 − ‖x

l
pl(k) − x‖2|, (3.3)

where we put ‖xlpl(1)− x
l
pl(0)‖2 := 0 for k = 1. For k > 1, one may

alternatively choose pl(k + 1) such that

xlpl(k+1) = argmax
x∈Nθ(xl

pl(k)
)

〈xpl(k−1) − xpl(k), xpl(k) − x〉
‖xpl(k−1) − xpl(k)‖2 · ‖xpl(k) − x‖2

. (3.4)

• If Nθ(x
l
pl(k)) is the empty set, we randomly choose the next path

component from Ñ(xlpl(k)).

If Ñ(xlpl(k)) is also empty, we choose the next index in the path

vector randomly from the remaining indices of the point set

Ñk,l := {xlr : r /∈ {pl(1), . . . , pl(k)}},

or, if possible, from the subset

Ñk,l,θ := {xlr ∈ Ñk,l : |clpl(k) − c
l
r| ≤ θ} ⊂ Ñk,l.

Output: path vector pl = (pl(k))
N/2l

k=1 .

Remark 3.2.
The parameter θ that has to be chosen for determining the neighborhood
Nθ(x

l
pl(k)) can be taken of the same size as the thresholding parameter for

the wavelet transform in Algorithm 2.1.
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Determining the pl(k + 1) by (3.3) forces that scattered points correspond-
ing to neighboring components in the path have similar distance, while (3.4)
ensures the path to be continued in a similar direction as before, i.e., the
angle between xpl(k−1) − xpl(k) and xpl(k) − xlpl(k+1) is as small as possible.

Theoretically, these requirements are supported by the fact that the poly-
nomial reproduction property of low-pass filters (and the vanishing moment
property of wavelet filters) can be exploited best for equidistantly sampled
functions on a line, see Section 4. Of course, the two conditions (3.3) and
(3.4) can also be coupled.

3.2. Adaptive random path construction

Instead of the adaptive path construction considered above, we may also
apply a procedure, where the next path component is taken randomly from
the remaining indices, and where the probability to choose the next index
depends on the spatial distance of points on the one hand and on the distance
of the corresponding function values on the other hand.

For the path construction at the l-th level, we now consider the vectors
ylj = ((xlj)

T , clj)
T ∈ Rd+1 (with c0j := f̃(x0

j ) = f̃(xj)) and define a symmetric

weight matrix W l = (w(yli, y
l
j))

N/2l

i,j=1, where the weights in the product

w(yli, y
l
j) = w1(xli, x

l
j) · w2(cli, c

l
j)

may be chosen differently, depending on the range of scattered points xli and
of the given (noisy) function values resp. low pass values cli. A possible weight
function, also used in the context of bilateral filtering [18], is

w(yli, y
l
j) = exp

(
−‖xli − xlj‖22

22l/dσ1

)
· exp

(
−|cli − clj |2

2lσ2

)
(3.5)

where σ1 and σ2 need to be chosen appropriately. The normalization by 22l/d

in the definition of the weight is due to the fact that each level of the wavelet
transform involves a decimation of the number of scattered points by two,
and the remaining points have a larger distances of each other. Regarding
the low pass values, the range of these values grows by

√
2 due to the filter

normalization
∑
l∈Z h̃l =

√
2.

While the proposed weight in (3.5) leads to a huge fully occupied weight
matrix, we can strongly reduce the numerical effort by cutting the spatial
weight at a suitable distance, i.e.

w1(xli, x
l
j) =

{
exp(−‖xli − xlj‖22/(22l/dσ1) ‖xli − xlj‖2 ≤ 2l/dD1,

0 ‖xli − xlj‖2 > 2l/dD1,

where we have to choose D1 appropriately to ensure a sufficiently large neigh-
borhood for each point xli. Similarly, the weight wl2(cli, c

l
j) may be just put to

zero if the distance |cli − clj | is greater than 2l/2D2 with a suitable constant
D2. We propose now the following algorithm.
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Algorithm 3.3. (Random path construction)

Given: the point set Γl = {xl1, . . . , xlN/2l} ⊂ Rd, set of vectors ylj = ((xlj)
T , clj)

T ,

low pass values clj , j = 1, . . . , N/2l, N = 2t.

1. Compute the weight matrix W l = (w(yli, y
l
j))

N/2l

i,j=1.

2. Choose the first path component pl(1) randomly from the index set
{1, . . . , N/2l}.

3. Considering the row pl(1) of the weight matrix W l, let

spl(1) :=

N/2l∑
j=1

j 6=pl(1)

w(ylpl(1), y
l
j)

be the sum of weights in this row obtained by disregarding the diagonal
element w(ylpl(1), y

l
pl(1)), and let now for r ∈ {1, . . . , N/2l} \ {pl(1)},

Ppl(1),r :=
w(ylpl(1), y

l
r)

spl(1)

be the probability to choose r as the next component pl(2) in the path
vector. Choose now pl(2) randomly from {1, . . . , N/2l}\{pl(1)} accord-
ing to the determined probability distribution.

4. Generally, proceed with the following iteration for k = 1, . . . , N/2l − 1.
After having fixed the first k components pl(1), . . . , pl(k) in the path
vector, we consider the submatrix W l

k−1 obtained by deleting the pl(1)-

th,. . . , pl(k− 1)-th rows and columns of W l, and apply the same proce-
dure as before. We determine

spl(k) =

N/2l∑
j=1

j /∈{pl(1),...,pl(k)}

w(ylpl(k), y
l
j)

and compute the probability

Ppl(k),r :=
w(ylpl(k), y

l
r)

spl(k)

for r ∈ {1, . . . , N/2l} \ {pl(1), . . . , pl(k)}.

Choose pl(k + 1) randomly from {1, . . . , N/2l} \ {pl(1), . . . , pl(k)} ac-
cording to the determined probability distribution.

Output: path vector pl = (pl(k))
N/2l

k=1 .

Remark 3.4.
1. For the two proposed path constructions, the choice of path vectors de-
pends on the given (noisy) data values c0j = f̃(xj) and the low-pass filtered

values clj and hence is adaptive. One may alternatively construct completely
non-adaptive path vectors by taking into account only the neighborhoods
of the given scattered points xlj at each level l (or only the spatial weights

w1(xli, x
l
j)) and not the data values clj . A non-adaptive denoising procedure

possesses the advantage that all path vectors can be computed beforehand,
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such that a wavelet shrinkage procedure is similarly fast as a tensor product
wavelet shrinkage in the regular case. However, the results of the non-adaptive
denoising approach are worse than the performance using the adaptively de-
termined path vectors, see Section 5.
2. Our proposed adaptive path constructions significantly differ from the
generalized tree constructions in [9] that depend only on the set of scattered
points xj and are hence non-adaptive.
3. The idea for determining the distribution for the random path vector con-
struction is slightly related with the ideas for graph Laplacian constructions,
see [5].

4. Properties of wavelet transform on paths

Usual wavelet filter banks possess a lot of favorable properties as polynomial
reproduction of low-pass filters resp. vanishing moments of wavelet filters.
For a given one-dimensional function f with a certain smoothness, a corre-
sponding decay of wavelet coefficients dlk(f) in the wavelet expansion

f(x) =
∑
l,k

dlk(f)ψl,k(x)

can be shown. Within the last years, this property has been extensively ex-
ploited for function space characterizations by means of wavelet expansions.
Conversely, wavelet coefficients of high magnitude indicate discontinuities (or
points of lower smoothness). The success of wavelet denoising algorithms by
thresholding of wavelet coefficients is based on these properties, since for
(piecewise) smooth functions, small wavelet coefficients are related to noise.
Considering now the case of scattered data {x1, . . . , xN} in the multivari-
ate case and the wavelet transform along certain path vectors, we may ask,
whether the favorable properties of the wavelet transform at least partially
transfer to this setting. Regarding the polynomial reproduction of the low-
pass filters along path vectors of scattered data, we find

Theorem 4.1. Let (h̃k)k∈Z be the low-pass filter of the decomposition step

in a wavelet filter bank of perfect reconstruction with
∑
k∈Z h̃k = 1. Fur-

ther, let p1 = (p1(j))Nj=1 be the path vector for ordering the scattered data

points xj = (xj,1, . . . , xj,d)
T ∈ Rd. Applying the low-pass filter h̃ to the se-

quence (f(xj))
N
j=1, where f(x) = aTx + b is a d-variate linear polynomial

with a ∈ Rd, b ∈ R, the sequence of low-pass coefficients (c1j )
N/2
j=1 obtained

by one decomposition step of the wavelet filter bank along the path p1 again

reproduces f at the points (x1
j )
N/2
j=1 with x1

j =
∑
k∈Z h̃kxp1(2j−1−k), i.e., we

have

f(x1
j ) = c1j .
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Proof. Application of the filter (h̃k)k∈Z to the sequence of function values
along the path p1 gives

(c1j )
N/2
j=1 := (

∑
k∈Z

h̃kf(xp1(2j−1−k)))
N/2
j=1

with

c1j =
∑
k∈Z

h̃k(aTxp1(2j−1−k) + b) = aT (
∑
k∈Z

h̃kxp1(2j−1−k)) + b
∑
k∈Z

h̃k.

Hence the assertion of the theorem follows using the new sequence of scattered
points x1

j with

x1
j =

∑
k∈Z

h̃kxp1(2j−1−k),

where (x1
j )
N/2
l=1 is obtained by (componentwisely) applying the low-pass filter

h̃ and downsampling to the sequence of scattered points (xp1(j))
N
j=1 ordered

along the path p1. �

We suppose that the wavelet filter g̃ = (g̃k)k∈Z in the decomposition step
of the wavelet filter bank satisfies the moment conditions

∑
k∈Z gk = 0 and∑

k∈Z kgk = 0. Considering the wavelet coefficients obtained by applying the

wavelet filter g̃ along the path vector p1 followed by downsampling, we observe
that a constant function f(x) = c, c ∈ R, yields the wavelet coefficients

d1
j =

∑
k∈Z

g̃kf(xp1(2j−1−k)) = c ·
∑
k∈Z

g̃k = 0,

while for a linear polynomial f(x) = aTx + b with a ∈ Rd and b ∈ R, the
wavelet coefficients

d1
j =

∑
k∈Z

g̃k(aTxp1(2j−1−k) + b) = aT (
∑
k∈Z

g̃kxp1(2j−1−k)) + b
∑
k∈Z

gk

can only vanish if the sequence (xp1(2j−1−k))k∈Z is linear in each component.

This observation implies that path vectors pl should locally be chosen such
that the values in the d component sequences (xp1(2j−1−k),ν)k∈Z, ν = 1, . . . , d,
lie approximately equidistantly on a line if f is smooth in this region, see (3.3)
and (3.4) in Algorithm 3.1.

Regarding the decay of wavelet coefficients obtained by a wavelet trans-
form along paths (using a different path at each level), we can apply the re-
sults of [15] for two-dimensional piecewise Hölder continuous functions of or-
der α ∈ (0, 1] thereby supporting our procedure of data denoising via wavelet
transforms along paths.

Let {Ωi}1≤i≤K be a finite set of regions in [0, 1)2 such that
⋃K
i=1 Ωi =

[0, 1)2 and Ωi ∩Ωj = ∅ for i 6= j, and where Ωi is assumed to be a connected
subset of [0, 1]2 for each i = 1, . . . ,K. Further, let us assume that the bivariate
function f satisfies a Hölder condition in each region Ωi, 1 ≤ i ≤ K, i.e.

|f(x)− f(x+ h)| ≤ C‖h‖α2 for x, x+ h ∈ Ωi
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for some α ∈ (0, 1] and C > 0 independent of i. Let the function f be
uniformly sampled on Ω, i.e., we have given f(xj1,j2) with xj1,j2 ∈ I2J :=

{( j1
2J
, j2

2J
), j1, j2 = 0, . . . 2J − 1}, and N = 22J . We can perform up to L = 2J

levels of the wavelet transform along path vectors (EPWT).

For such “cartoon-like” functions, it has been shown in [15] that the
EPWT wavelet coefficients corresponding to one region Ωi satisfy the esti-
mate

|dlk(f)| ≤ 1

2
CDα2−(2J−l)(α+1)/2,

where C is the Hölder constant and α the Hölder exponent. The constant
D measures the uniformity of the scattered points after each level, where we
assume that

min |xlj − xlk| < D2l/2.

This condition is described as ”diameter condition” in [15] and can be in-
terpreted as a condition on the choice of the path vectors. Moreover, it has
been shown in [15] that for J → ∞, the EPWT leads to an asymptotically
optimal N -term approximation fN of f satisfying the estimate

‖f − fN‖2L2(Ω) ≤ C̃ N
−α,

where fN is the two-dimensional function that is reconstructed from the N
most significant EPWT-wavelet coefficients. The above optimal approxima-
tion result holds under the assumption that the path vectors pl at each level
of the EPWT transform satisfy (besides the diameter condition) a second
condition, termed “region condition” [15]. The region condition ensures that
the next index in the path vector pl should be taken from the same region Ωi
if possible, before crossing to another region. The two conditions on the path
vectors required in [15] are both contained in our algorithm. In the adaptive
deterministic path construction, the neighborhood definition in (3.1) ensures
the diameter condition while the neighborhood definition Nθ(x) in (3.2) pro-
vides the region condition. In the random path construction, the two path
conditions are included by the choice of the weight that produces higher
probabilities for those indices to be the next path component whose spatial
distance ‖xlpl(k) − x

l
pl(k+1)‖2 as well as distance of function values/low pass

values |clpl(k) − c
l
pl(k+1)| are small.

Hence the N -term approximation result in [15] can be taken as a fur-
ther evidence, that small wavelet coefficients are rather due to noise than to
important signal structure.

5. Numerical results

We want to apply the proposed scattered data wavelet denoising algorithm
along path vectors to 256×256 pixel images. The noisy images in this subsec-
tion are generated by adding synthetic white Gaussian noise to the original
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natural images. The quality of the denoising results is measured by the peak
signal to noise ratio (PSNR) given by

PSNR = 10 log10

maxj=1,...,N f(xj)
1
N

∑N
j=1(f̃(xj)− f(xj))2

,

where f denotes the original and f̃ the noisy image. In our experiments we
have taken maxj=1,...,N f(xj) = 255.

In Figure 1, we present the original pepper image (a), the noisy pep-
per image (b) with PSNR = 19.97, and the denoising results using several
different algorithms. In particular, we consider the 7-9 biorthogonal tensor-
product wavelet shrinkage (c) with a PSNR of 24.91, the 7-9 biorthogonal
wavelet shrinkage with cycle spinning (d) with 64 shifts and a PSNR of 28.11,
the four-pixel scheme by Welk, Steidl and Weickert [20] (e) using 76 itera-
tions and a step size τ = 0.001 providing a PSNR of 28.26, and the curvelet
shrinkage (e) with best threshold parameter 80 yielding a PSNR of 26.36.
The curvelet denoising result is obtained with the help of the CurveLab soft-
ware that is available at www.curvelet.org, see also [4]. The results of our
algorithm (using a 7-9 biorthogonal wavelet filter bank) with a deterministic
path vector (g) and a random path vector (h) are given in Figures 1(g) and
1(h). For the tensor-product wavelet shrinkage we have used the shrinkage
parameter θ = 74. For the deterministic path vector construction in (3.2) we
have taken C1 = 1.3 and shrinkage parameter θ = 89. For the random path
vectors that perform slightly worse than the deterministic vectors, we have
taken the weight with σ1 = σ2 = 0.2, D1 = 5.0 and θ = 71. Further, we have
64 times applied Algorithm 2.1 and have averaged the results. The parame-
ters for the curvelet transform and for the four-pixel scheme have been taken
such that they perform optimally.

In Figure 2, we present the denoising results for the noisy pepper image
with a PSNR of 16.45. Again, we compare our denoising results with tensor-
product shrinkage, the four-pixel scheme and with curvelet shrinkage. For the
tensor product case with the biorthogonal 7-9 filter bank we have used the
optimal threshold θ = 140 (without cycle spinning) and θ = 115 (with cycle
spinning). The four-pixel scheme works best with a time step of 0.001 and 124
iterations. The curvelet shrinkage uses the optimal thresholds θ = 106. For
our method with the deterministic path we have taken the threshold θ = 127
and C1 = 1.1; for the random path the same threshold and a weight with
σ1 = σ2 = 0.2 and with D1 = 5.

The denoising results for the pepper image and for the cameraman image
of size 256 × 256 are summarized in Table 1, where we have chosen optimal
parameters for each method.

In Figure 3, we illustrate the remaining scattered points obtained after
different levels of our deterministic path algorithm that is applied to the cam-
eraman image. The results show that the points are rather well distributed.
These points are at a time used for constructing the next path vector.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1. Top: (a) original image, (b) noisy image, PSNR 19.97; second row: denoising by

tensor product biorthogonal 7-9 wavelet transform (c) without cycle spinning, PSNR

24.91; (d) with cycle spinning with 64 shifts, PSNR 28.11; third row: four pixel scheme,

PSNR 28.26; (f) curvelet shrinkage, PSNR 26.36; last row: our scheme with (g)

deterministic path, PSNR 29.01; (h) random path, PSNR 27.96.

Finally, we will show a denoising experiment, where we no longer con-
sider a rectangular region but a region with an L-form, see Figure 4. Here
we have used deterministic path vectors with threshold θ = 89 and with
C1 = 1.3. The main advantage of our new scattered data denoising algorithm
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. Top: (a) original image, (b) noisy image, PSNR 16.45; second row: denoising by

tensor product biorthogonal 7-9 wavelet transform (c) without cycle spinning, PSNR

23.20; (d) with cycle spinning with 64 shifts, PSNR 25.86; third row: four pixel scheme,

PSNR 26.13; (f) curvelet shrinkage, PSNR 23.95; last row: our scheme with (g)

deterministic path, PSNR 26.44; (h) random path, PSNR 25.69.

is that we can apply it to denoise functions on any connected region, where
we have to adjust step 3 of Algorithm 2.1 suitably as e.g. given in Remark
2.2.
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noisy tensor cycle [20] curvelet determ. random
image image 7-9 7-9 shrink. path path
pepper 19.97 24.91 28.11 28.26 26.36 29.01 27.96
pepper 16.45 23.20 25.86 26.13 23.95 26.44 25.69

cameraman 19.97 24.74 27.19 27.64 25.48 28.28 27.44
cameraman 16.45 22.86 25.14 25.73 23.73 26.15 24.85

Table 1. Comparison of our scattered data denoising method with deterministic

and random path vectors with other denoising methods, see also Figures 1 and 2.
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Figure 3. Scattered points after the second level (left), the fifth level (middle) and the

eights level (right) of the denoising algorithm.

Figure 4. L-sector of the cameraman image, original (left), noisy image with PSNR of

19.97 (middle) and denoised image with the proposed method using a deterministic path
vector with a PSNR of 27.77.
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