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Abstract

The Easy Path Wavelet Transform (EPWT) [26] has recently been proposed by one
of the authors as a tool for sparse representations of bivariate functions from discrete
data, in particular from image data. The EPWT is a locally adaptive wavelet transform.
It works along pathways through the array of function values and it exploits the local
correlations of the given data in a simple appropriate manner. In this paper, we aim to
provide a theoretical understanding of the performance of the EPWT. In particular, we
derive conditions for the path vectors of the EPWT that need to be met in order to achieve
optimal N -term approximations for piecewise Hölder smooth functions with singularities
along curves.
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1 Introduction

During the last few years, there has been an increasing interest in efficient representa-
tions of large multi-dimensional data, especially for signals. In the one-dimensional case,
wavelets are particularly efficient to represent piecewise smooth signals with point singu-
larities. In two dimensions, however, tensor product wavelet bases are no longer optimal
for the representation of piecewise smooth functions with discontinuities along curves.

Within the last few years, more sophisticated methods were developed to design ap-
proximation schemes for efficient representations of two-dimensional data, in particular
for images, where correlations along curves are essentially taken into account to capture
the geometry of the given data. Curvelets [2, 3], shearlets [13, 14] and directionlets [38]
are examples for non-adaptive highly redundant function frames with strong anisotropic
directional selectivity.

For piecewise Hölder smooth functions of second order with discontinuities along
C2-curves, Candès and Donoho [2] proved that a best approximation fN to a given function
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f with N curvelets satisfies the asymptotic bound

�f − fN�
2
2 ≤ C N−2 (log2N)3,

whereas a (tensor product) wavelet expansion leads to asymptotically only O(N−1) [22].
Up to the (log2N)3 factor, this curvelet approximation result is optimal (see [7, Sec-
tion 7.4]). A similar estimate has been achieved by Guo and Labate [13] for shearlet
frames. These results, however, are not adaptive with respect to the assumed regularity of
the target function, and so they cannot be applied to images of less regularity, i.e., images
which are not at least piecewise C2 with discontinuities along C2-curves. Just recently,
the N -term approximation properties of compactly supported shearlet frames have been
studied also in the 3D case, [20]. Using two smoothness parameters α and β in (1, 2] con-
trolling the classical as well as the anisotropic smoothness, nearly optimal approximation
rates are proven in [20]. In [12], a general framework called “parabolic molecules” has
been presented covering most of the curvelet- and shearlet-like constructions and showing
that these systems all provide the same approximation results.

In the bivariate case, for piecewise Hölder smooth functions of order α �= 2, one may
rather adapt the approximation scheme to the image geometry instead of fixing a basis
or a frame beforehand to approximate f . During the last few years, several different
approaches were developed for doing so [1, 5, 6, 8, 9, 15, 19, 21, 23, 26, 27, 28, 30, 31, 35].
In [21], for instance, bandelet orthogonal bases and frames are introduced to adapt to the
geometric regularity of the image. Due to their construction, the utilized bandelets are
anisotropic wavelets that are warped along a geometrical flow to generate orthonormal
bases in different bands. LePennec and Mallat [21] showed that their bandelet dictionary
yields asymptotically optimal N -term approximations, even in more general image models,
where the edges may also be blurred.

Further examples for geometry-based image representations are the nonlinear edge-
adapted (EA) multiscale decompositions in [1, 15] (and references therein) based on ENO
reconstructions. We remark that the resulting ENO-EA schemes lead to an optimal N -
term approximation, yielding �f − fN�22 ≤ C N−2 for piecewise C2-functions with discon-
tinuities along C2-curves. Moreover, unlike previous non-adaptive schemes, the ENO-EA
multiresolution techniques provide optimal approximation results also for BV -spaces and
Lp spaces, see [1].

In [26], a new locally adaptive discrete wavelet transform for sparse image representa-
tions, termed Easy Path Wavelet Transform (EPWT), has been proposed by one of the
authors. The EPWT works along pathways through the array of function values, where
it essentially exploits the local correlations of image values in an appropriate manner.
We remark that the EPWT is not restricted to a regular (two-dimensional) grid of image
pixels, but it can be extended, in a more general setting, to scattered data approximation
in higher dimensions. In [27], the EPWT has been applied to data representations on the
sphere. In the implementation of the EPWT, one needs to work with suitable data struc-
tures to efficiently store the path vectors that need to be accessed during the performance
of the EPWT reconstruction. To reduce the resulting adaptivity costs, we have proposed
a hybrid method for smooth image approximations in [28], where an efficient edge repre-
sentation by the EPWT is combined with favorable properties of the biorthogonal tensor
product wavelet transform.
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In [29], we have proven optimal N -term approximation rates for the EPWT for piece-
wise Hölder continuous functions of order α ∈ (0, 1]. Our proof in [29] is mainly based
on an adaptive multiresolution analysis structure, which is only available using piecewise
constant Haar wavelets along the pathways.

But the EPWT does not necessarily need to be restricted to Haar wavelets. In fact,
the numerical results in [26, 33] show a much higher efficiency for smoother wavelet bases
as e.g. Daubechies D4 filters and biorthogonal 7-9 filters. These observations motivate us
to study the N -term approximation for Hölder smooth functions of order α > 1 in this
paper. In particular, we will derive conditions for the path vectors leading to optimal
N -term approximation by the EPWT. More precisely, we present three conditions for the
“optimal” path vectors that imply optimal N -term approximations of the form

�f − fN�
2
2 ≤ C N−α (1.1)

for the application of the EPWT to piecewise Hölder smooth functions of order α > 1,
with allowing discontinuities along smooth curves of finite length. Unfortunately, the three
conditions on the path vectors are very difficult to ensure. We regard these conditions
as an idealized setting which heuristically explains the performance of the EPWT with
higher order wavelets, and which give us a hint on how to construct suitable path vectors.
The path constructions of the “relaxed EPWT” in [26] aimed at a good compromise to
produce many small wavelet coefficients, on the one hand, and low costs for path coding,
on the other hand. Interestingly enough, our results in this paper show that the path
constructions in [26] yield already a fairly good tradeoff to meet the optimal path vector
conditions. In our previous paper [16], we have applied the EPWT in image denoising,
with path vectors that approximatively satisfy the optimal path vector conditions.

With using piecewise constant functions for the approximation of a bivariate function
f , the EPWT yields an adaptive multiresolution analysis when relying on an adaptive
Haar wavelet basis (see [26, 29]). If, however, smoother wavelet bases are utilized in the
EPWT approach, such an interpretation is not obvious. In fact, while Haar wavelets
admit a straightforward transfer from one-dimensional functions along pathways to bi-
variate Haar-like functions, we cannot rely on such simple connections between smooth
one-dimensional wavelets (used by the EPWT) and a bivariate approximation of the “low-
pass” function. Therefore, in this paper we will apply a suitable interpolation method, by
using polyharmonic spline kernels, to represent the arising bivariate “low-pass” functions
after each level of the EPWT. One key property of polyharmonic spline interpolation is
polynomial reproduction of arbitrary order. We will come back to relevant approximation
properties of polyharmonic splines in Section 2.

The outline of this paper is as follows. In Section 2, we first introduce the utilized
function model, some issues on polyharmonic spline interpolation, and the EPWT algo-
rithm. Then, in Section 3, we study the decay of EPWT-wavelet coefficients, where we
will consider the highest level of the EPWT in detail. To achieve optimal decay results for
the EPWT wavelet coefficients at all levels, we require three specific side conditions for the
path vectors in the EPWT algorithm, the region condition, the path smoothness condition

and the diameter condition, see Section 3.2. We also show, why the path smoothness
condition is very restrictive. In fact, it cannot be met for the usual EPWT as described
in [26] for α > 1. Therefore, in this paper we introduce suitable smooth path functions in
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order to derive the path vectors for the EPWT. Finally, Section 4 is devoted to the proof
of asymptotically optimal N -term error estimates of the form (1.1) for piecewise Hölder
smooth functions.

2 The EPWT and Polyharmonic Spline Interpolation

2.1 The Function Model

Suppose that Ω ⊂ [0, 1]2 has a sufficiently smooth Lipschitz boundary. Further, let F ∈

L2(Ω) be a piecewise smooth bivariate function, being smooth over a finite set of regions
{Ωi}1≤i≤K , where each region Ωi has a sufficiently smooth boundary ∂Ωi. In other words,
the boundary curves have bounded derivatives; in particular, they are Lipschitz and of
finite length. Moreover, the set {Ωi}1≤i≤K is assumed to be a disjoint partition of Ω, so
that

K�

i=1

Ωi = Ω,

where each closure Ωi is a connected subset of Ω, for i = 1, . . . ,K.
More precisely, we assume that F is Hölder smooth of order α > 0 in each region Ωi,

1 ≤ i ≤ K, so that every µ-th derivative of F on Ωi with |µ| = �α� satisfies an estimate
of the form

|F (µ)(x)− F (µ)(y)| ≤ C �x− y�α−|µ|
2 for all x, y ∈ Ωi.

Note that this assumption for F is equivalent to the condition that for each x0 ∈ Ωi there
exists a bivariate polynomial qα of degree �α� (usually the Taylor polynomial of F of
degree �α� at x0 ∈ Ωi) satisfying

|F (x)− qα(x− x0)| ≤ C�x− x0�
α
2 (2.1)

for every x ∈ Ωi in a neighborhood of x0, where the constant C > 0 does not depend on x
or x0. But F may be discontinuous across the boundaries between adjacent regions. Note
that the Hölder space Cα(Ωi) of order α > 0, being equipped with the norm

�F�Cα(Ωi) := �F�C�α�(Ωi)
+

�

|µ|=�α�

sup
x �=y

|F (µ)(x)− F (µ)(y)|

�x− y�α−�α�
2

coincides with the Besov space Bα
∞,∞(Ωi), when α is not an integer. Here, we use the

C�α�(Ωi) norm

�F�C�α�(Ωi)
:= sup

x∈Ωi

|F (x)|+
�

|µ|=�α�

sup
x∈Ωi

|∂µF (x)|,

see e.g. [4, Chapter 3.2]. In order to be able to apply the known error estimates and
boundedness estimates for polyharmonic spline interpolation within the next sections,
we slightly strengthen the smoothness condition for F by assuming the F on Ωi is also
contained in the Sobolev space Wα+1

2 (Ωi), where for α = m ∈ N, Wm+1
2 (Ωi) consists of
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all functions f ∈ L2(Ωi) having distributional derivatives Dµf , |µ| ≤ m + 1, in L2(Ωi),
and where for α ∈ (m,m+ 1) we use

�f�Wα+1
2 (R2) =

��

R2
(1 + �ω�22)

α+1
|f̂(ω)|2dω

�2

,

and
�f�Wα+1

2 (Ωi)
= inf{�g�Wα+1

2 (R2) : g ∈ Wα+1
2 (R2), g|Ωi = f}.

Here the Fourier transform of f is given by f̂(ω) :=
�
R2 f(x)e−iωT xdx. The Sobolev em-

bedding theorems state that Wα+1
2 ⊂ Cα, see e.g. [34]. Moreover, the Sobolev embedding

is usually sharp, i.e., the functions inWα+1
2 possessing a pointwise Hölder exponent greater

than α form a so-called HR-small set of Wα+1
2 , where this set is both Haar null and of

first Baire category, see [11].
Now by quasi-uniform sampling, the bivariate function F is assumed to be given by

its function values taken at a finite grid I2J . For a suitable integer J > 1, let {F (y)}y∈I2J
be the given samples of F , where I2J ⊂ Ω with #I2J = 22J , and

min
y1,y2∈I2J

�y1 − y2�2 ≥ κ12
−J , sup

x∈Ω
inf

y∈I2J
�x− y�2 ≤ 2−(J+1/2) (2.2)

with a positive constant κ1 being independent of J . Moreover, let

Γ2J
i := {y ∈ I2J : y ∈ Ωi} for 1 ≤ i ≤ K (2.3)

be the set of grid points that are contained in the regions Ωi, for 1 ≤ i ≤ K, where
we assume J to be large enough, so that the sample points in Γ2J

i are sufficiently dense,
which in turn leads to sufficiently accurate approximations to F on the subdomains Γi by
polyharmonic splines interpolation (see Subsection 2.2). Obviously,

K�

i=1

Γ2J
i = I2J ,

and for the size #Γ2J
i of Γ2J

i we have #Γ2J
i ≤ #I2J = 22J for every i with 1 ≤ i ≤ K.

Remark. Note that our assumption concerning the Lipschitz smoothness of the sub-
domains’ Ωi boundaries is quite restrictive. Indeed, for image partitions, this condition is
rather unlikely to be satisfied. In that case, the boundary curves of the subdomains are
usually only piecewise smooth.

2.2 Polyharmonic Spline Interpolation

Next we compute a (piecewise) sufficiently smooth approximation to F from its given
samples. To this end, we construct a suitable interpolant F 2J satisfying the interpolation
conditions

F 2J(y) = F (y) for all y ∈ I2J . (2.4)

This is accomplished by the application of polyharmonic spline interpolation separately
in each individual region Ωi, in order to first obtain, for every index i, 1 ≤ i ≤ K, a
polyharmonic spline interpolant F 2J

i satisfying

F 2J
i (y) = F (y) for all y ∈ Γ2J

i (2.5)

5



at the interpolation points Γ2J
i ⊂ Ωi. For the required (global) interpolant F 2J , we then

let

F 2J(x) :=
K�

i=1

F 2J
i (x)χΩi(x) for x ∈ Ω (2.6)

to satisfy the interpolation conditions in (2.4), where χΩi is the characteristic function of
Ωi.

Recall that polyharmonic splines, due to Duchon [10], are suitable tools formultivariate

interpolation from scattered data. For further details on polyharmonic splines, especially
for relevant aspects concerning their local approximation properties, we refer to [18, Section
3.8]. We apply the polyharmonic spline interpolation scheme in two dimensions. Then the
interpolant F 2J

i in (2.5) is assumed to have the form

F 2J
i (x) =

�

y∈Γ2J
i

ciy φα (�x− y�2) + pim(x), (2.7)

where, for α ∈ (m,m+1), m ∈ N, we use the fixed polyharmonic spline kernel φα(r) = r2α,
and pim ∈ Pm is a polynomial in the linear space Pm of all bivariate polynomials of degree
at most m. By Theorem 8.16 in [37],

φ̂α(ω) =
22α+1Γ(α+ 1)

Γ(−α)
�w�−2α−2

2 ,

and hence φα is of order �α� = m + 1. For α = m ∈ N, we choose φα(r) = r2m log(r),
such that φα = φm is again of order m+ 1 with the generalized Fourier transform

φ̂m(ω) = (−1)m+122m Γ(m+ 1)m! �w�−2m−2
2 ,

see [37], Theorem 8.17.
Note that the interpolant F 2J

i in (2.7) has #Γ2J
i +dim(Pm) parameters, i.e., the #Γ2J

i
coefficients cin in its major part and another dim(Pm) = (m + 1)(m + 2)/2 parameters
in its polynomial part. However, the interpolation problem (2.5) yields only #Γ2J

i linear
conditions on the #Γ2J

i + (m + 1)(m + 2)/2 parameters of F 2J
i . To eliminate additional

degrees of freedom, we require another set of (m + 1)(m + 2)/2 linear constraints on the
coefficients cin, as given by the vanishing moment conditions

�

y∈Γ2J
i

cin p(y) = 0 for all p ∈ Pm. (2.8)

To compute the coefficients of the polyharmonic spline interpolant F 2J
i , this then amounts

to solving a square linear system with #Γ2J
i + dim(Pm) equations, (2.5) and (2.8), for

#Γ2J
i + dim(Pm) unknowns, given by the parameters of F 2J

i .
According to the seminal work of Michelli [24] on (conditionally) positive definite

functions, this square linear equation system has a unique solution, provided that the set
of interpolation points are Pm-regular, i.e., for p ∈ Pm we have the implication

p(y) = 0 for all y ∈ Γ2J
i =⇒ p ≡ 0, (2.9)
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so that every polynomial in Pm can uniquely be reconstructed from its values on Γ2J
i . In

fact, this complies with earlier results in [10], where the well-posedness of the polyharmonic
spline interpolation scheme is proven via a variational theory concerning (polyharmonic)
splines minimizing rotation-invariant semi-norms in Sobolev spaces.

Therefore, we can conclude that the polyharmonic spline interpolant F 2J
i in (2.7),

satisfying (2.5) and (2.8), is unique provided that the interpolation points Γ2J
i satisfy the

(rather weak) regularity conditions in (2.9). From now we will tacitly assume that the
conditions in (2.9) are fulfilled. In this case, we can further conclude that the polyharmonic
spline interpolation scheme achieves to reconstruct polynomials of degree m.

Concerning the local approximation order of polyharmonic spline interpolation, we refer
to [17]. In the subsequent analysis in this paper, we require one specific approximation
result for polyharmonic spline interpolation concerning its global approximation behaviour.
From Lemma 4.1 in [25], we observe the estimate

�F − F 2J
�L2(Ω) ≤ CF

K�

i=1

hα+1
Ωi

�F�Wα+1
2 (Ωi)

(2.10)

for the interpolation error in Sobolev spaces, where the fill distance

hΩi := sup
x∈Ωi

inf
y∈Γ2J

i

�x− y�2 ≤ 2−J+1/2 for 1 ≤ i ≤ K

measures the density of the interpolation points in Ωi. In particular, we also have

�F − F 2J
�Wα+1

2 (Ωi)
≤ C�F�Wα+1

2 (Ωi)
,

and hence
�F 2J

�Wα+1
2 (Ωi)

≤ (C + 1)�F�Wα+1
2 (Ωi)

,

i.e., the interpolant F 2J is uniformly bounded in the Wα+1
2 (Ωi)-norm independently of

2J , see [25], Corollary 4.3.. Finally, by a continuous embedding of Wα+1
2 (Ωi) in Cα(Ωi),

we ensure the boundedness of �F 2J�Cα independently of J , see e.g. [32], Theorem 3.2.1.

2.3 The EPWT Algorithm

Now let us briefly recall the EPWT algorithm from our previous work [26]. To this end,
let ϕ ∈ Cβ , for β ≥ α, be a sufficiently smooth, compactly supported, one-dimensional
scaling function, i.e., the integer translates of ϕ form a Riesz basis of the scaling space
V0 := closL2span {ϕ(· − k) : k ∈ Z}. Further, let ϕ̃ be a corresponding biorthogonal and
sufficiently smooth scaling function with compact support, and let ψ and ψ̃ be a corre-
sponding pair of compactly supported wavelet functions. We refer to [4, Chapter 2] for a
comprehensive survey on biorthogonal scaling functions and wavelet bases and summarize
only the notation needed for the biorthogonal wavelet transform. For j, k ∈ Z, let

ϕj,k(t) := 2j/2 ϕ(2jt− k) and ψj,k(t) := 2j/2 ψ(2jt− k),

likewise for ϕ̃ and ψ̃. The functions ϕ, ϕ̃ and ψ, ψ̃ are assumed to satisfy the refinement
equations

ϕ(x) =
√
2
�

n

hnϕ(2x− n) ψ(x) =
√
2
�

n

qnϕ(2x− n)
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ϕ̃(x) =
√
2
�

n

h̃nϕ̃(2x− n) ψ̃(x) =
√
2
�

n

q̃nϕ̃(2x− n)

with finite sequences of filter coefficients (hn)n∈Z, (h̃n)n∈Z and (qn)n∈Z, (q̃n)n∈Z. By
assumption, the polynomial reproduction property

�

k

�pm, ϕ̃j,k�ϕj,k = pm for all j ∈ Z,

is satisfied for each polynomial pm of degree less than or equal to m = �α�, and so,

�pm, ψ̃j,k� = 0 for all j, k ∈ Z.

With these assumptions, {ψj,k : j, k ∈ Z} and {ψ̃j,k : j, k ∈ Z} form biorthogonal
Riesz bases of L2(R), i.e., for each function f ∈ L2(R), we have

f =
�

j,k∈Z
�f, ψj,k�ψ̃j,k =

�

j,k∈Z
�f, ψ̃j,k�ψj,k.

For a given univariate function f j , j ∈ Z, of the form f j(x) =
�

n∈Z c
j(n)ϕj,n one

decomposition step of the discrete (biorthogonal) wavelet transform can be represented in
the form

f j(x) = f j−1(x) + gj−1(x),

where
f j−1(x) =

�

n∈Z
cj−1(n)ϕj−1,n and gj−1(x) =

�

n∈Z
dj−1(n)ψj−1,n

with
cj−1(n) = �f j , ϕ̃j−1,n� and dj−1(n) = �f j , ψ̃j−1,n�. (2.11)

Conversely, one step of the inverse discrete wavelet transform yields for given functions
f j−1 and gj−1 the reconstruction

f j(x) =
�

n∈Z
cj(n)ϕj,n with cj(n) = �f j−1, ϕ̃j,n�+ �gj−1, ϕ̃j,n�.

We recall that the EPWT is a wavelet transform that works along path vectors through
point subsets of I2J . For the characterization of suitable path vectors we first need to
introduce neighborhoods of points in I2J . For each point y = (y1, y2) ∈ I2J , we define its
neighborhood by

N(y) := {x = (x1, x2) ∈ I2J \ {y} : �x− y�2 ≤ 2−J+1/2
},

where �x− y�22 = (x1 − y1)2 + (x2 − y2)2.
Now the EPWT algorithm is performed as follows. For the application of the 2J-th

level of the EPWT we need to find a path vector p2J = (p2J(n))2
2J−1

n=0 through the point
set I2J . This path vector is a suitable permutation of all points in I2J , which can be
determined by using the following strategy from [26]. Recall that I2J = ∪K

i=1Γ
2J
i , where

Γ2J
i determines the lattice points in Ωi. Start with one point p2J(0) in Γ2J

1 . Now, for a given
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n-th component p2J(n) being contained in the set Γ2J
i in (2.3), for some i ∈ {1, . . . ,K},

we choose the next component p2J(n+ 1) of the path vector p2J , such that

p2J(n+ 1) ∈ (N(p2J(n)) ∩ Γ2J
i ) \ {p2J(0), . . . , p2J(n)}, (2.12)

i.e., p2J(n + 1) should be a neighbor point of p2J(n), lying in the same set Γ2J
i , that has

not been used in the path, yet.
In situations where (N(p2J(n))∩Γ2J

i )\{p2J(0), . . . p2J(n)} is an empty set, the path is
interrupted, and we need to start a new pathway by choosing the next component p2J(n+1)
from Γ2J

i \ {p2J(0), . . . , p2J(n)}. If, however, this set is also empty, we choose p2J(n + 1)
from the set of remaining points I2J \{p2J(0), . . . , p2J(n)}. For a more detailed description
of the path vector construction we refer to [26].

In particular, for a suitably chosen path vector p2J , the number of interruptions can
be bounded by K̃ = C1K, where K is the number of regions, and where the constant C1

does not depend on J but only on the shape of the regions Ωi, see [29]. The so obtained
vector p2J is composed of connected pathways, i.e., each pair of consecutive components
in these pathways is neighboring.

Now, we consider the data vector

�
c2J(�)

�22J−1

�=0
:=

�
F 2J

�
p2J(�)

��22J−1

�=0

and apply one level of a one-dimensional (periodic) wavelet transform to the function

values of F 2J along the path p2J . This yields the low-pass vector (c2J−1(�))2
2J−1−1

�=0 and

the vector of wavelet coefficients (d2J−1(�))2
2J−1−1

�=0 according to the formulae in (2.11).
Due to the piecewise smoothness of F 2J along the path vector p2J , it follows that most of
the wavelet coefficients in d2J−1 are small, whereas the wavelet coefficients corresponding
to an interruption of the path (within one region or from one region to another) may
possess significant amplitudes. We remark already here that, by contrast to the original
EPWT algorithm described in this subsection, for the case of piecewise Hölder smooth
images of order α > 1, we will introduce a smooth path function p̃2J in Section 3.1. This
path function will determine the components of the path vector p2J and is assumed to
have bounded derivatives almost everywhere. Note that for α > 1, wavelet coefficients
of (arbitrary) large magnitude may occur in situations where the derivatives of the path
function are not uniformly bounded, as e.g. at tight turns of p̃2J .

As regards the next level of the EPWT, the path vector p2J yields a new subset of
points

Γ2J−1 :=
�
p2J(2�) : � = 0, . . . , 22J−1

− 1
�
=

K�

i=1

Γ2J−1
i ,

where Γ2J−1
i := {p2J(2�) : p2J(2�) ∈ Γ2J

i }. At level j = 2J − 1, we first locate a second

connected path vector p2J−1 = (p2J−1(�))2
2J−1−1

�=0 through Γ2J−1, i.e., the entries of p2J−1

form a permutation of the points in Γ2J−1. Similarly as before, we require that p2J−1(n)
and p2J−1(n + 1) are neighbors lying in the same point set Γ2J−1

i . Here, p2J−1(n) and
p2J−1(n+ 1) are said to be neighbors, i.e., p2J−1(n+ 1) ∈ N(p2J−1(n)), iff

��p2J−1(n)− p2J−1(n+ 1)
��
2
≤ 2−J+1.
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Again, the number of path interruptions can be bounded by C1K, where C1 does not
depend on J . Then we apply one level of the one-dimensional wavelet transform to the

permuted data vector (c2J−1(per2J−1(�)))2
2J−1−1

�=0 , where the permutation per2J−1 is de-
fined by per2J−1(�) := k iff p2J−1(�) = p2J(2k) for �, k = 0, . . . 22J−1 − 1. We obtain the

low-pass vector (c2J−2(�))2
2J−2−1

�=0 and the vector (d2J−2(�))2
2J−2−1

�=0 of wavelet coefficients.
We continue by iteration over the remaining levels j for j = 2J − 2, . . . , 1, where at

every level j we first construct a path pj = (pj(�))2
j−1

�=0 through the set

Γj := {pj+1(2�) : � = 0, . . . , 2j − 1} =
K�

i=0

Γj
i

with applying similar strategies as described above. Here, pj(n) and pj(n + 1) are called
neighbors, iff ��pj(n)− pj(n+ 1)

��
2
≤ D2−j/2, (2.13)

where D ≥
√
2 is a suitably determined constant (in the above description of p2J and

p2J−1 we have chosen D =
√
2). Then we apply the wavelet transform to the permuted

vector (cj(perj(�))2
j−1

�=0 , yielding cj−1 and dj−1.

Example. In this example, we explain the construction of the path vectors through
the remaining data points with the low-pass values by a toy example. To this end, let
Ω = [0, 1)2 be divided into only two regions, Ω1 and Ω2. The function F is assumed to
be Hölder continuous in each of these regions, but may be discontinuous across the curve
separating the two regions Ω1 and Ω2. In our toy example, we have J = 3, i.e., an 8 × 8
image with 64 data values. At the highest level of the EPWT, we choose a path p6 through
the underlying point set I6 = {(2−3n1, 2−3n2) : n1, n2 = 0, . . . , 7} = Γ6

1 ∪ Γ6
2, such that

each two consecutive components in the path are neighbors. We first pick all points in Γ6
1,

before jumping to Γ6
2, see Figure 1(a). For the path construction at the next level, we first

determine the set Γ5 = Γ5
1 ∪Γ5

2 (containing only each second component of p6), see Figure
1(b), before we construct a path according to the above description. Figures 1(c) and 1(d)
show the sets Γ4 and Γ3 along with their corresponding path vectors. Besides, we tried
to find the path vectors in a way such that the angles formed by the polygonal line of the
path are as large as possible. In fact, the polygonal lines for p6 and p5 do not contain
angles being smaller than 90 degrees, while the polygonal line of p4 possesses two such
angles, one in each region. In fact, locally straight polygonal lines of the path vectors give
rise to obtain better smoothness bounds for the path functions p̃j that we will introduce
in Section 3. In this example, we have

�p6(n+ 1)− p6(n)�2 ≤
√
5 ≤ D, �p5(n+ 1)− p5(n)�2 ≤

√
5 ≤

√
2D,

�p4(n+ 1)− p4(n)�2 ≤ 4 ≤ 2D, �p3(n+ 1)− p3(n)�2 ≤
√
10 ≤

√
8D

(with one path interruption at each level for the jump from one region to the other), so
that the path construction satisfies the above requirements with D =

√
5. This simple

example also illustrates that the path construction leads at each level to point sets Γj
i with

quasi-uniformly distributed points. See Section 3.2 for more explanation about the used
quasi-uniformity.
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(a) (b)

(c) (d)

Figure 1: Path construction. (a) level six, (b) level five, (c) level four, (d) level three.

Remark 1. Considering the above strategy of the EPWT algorithm, it is heuristically
clear that we are able to reduce the number of significant wavelet coefficients to a multiple
of the number K of regions, where the target function F is smooth. Indeed, only when the
path skips from one region to another, a finite number of significant wavelet coefficients
will occur. This is in contrast to the usual tensor product wavelet transform, where
the number of significant wavelet coefficients is usually related to the total length of the
“smooth regions” boundaries and hence depends on the level j of the wavelet transform.

Remark 2. As shown in [26], the choice of the path vectors in each level is crucial for
the performance of the approximation by means of the EPWT. In particular, it is not a
good idea to take simply the same path vector pj(�) = pj+1(2�) at each level, since one
only exploits the data correlation along this one path and the EPWT is reduced to a one-
dimensional transform. In Section 3.2, we will determine the so called diameter condition

that requires the inequality (2.13) for neighboring components in the path construction
thereby avoiding the above mentioned simple path choice. Our numerical experiments
with the EPWT imply that the constant D should be chosen rather small, e.g. D ≈ 2, see
[33]. On the other hand, a too small D induces a small number of neighborhood points
and hence yields a higher number of path interruptions. In Section 3.2, we will show that
the inequality (2.13) for path construction implies a quasi-uniform distribution of values
in Γj at each level of the EPWT.

Remark 3. Note that the implementation of the EPWT algorithm, as described above,
is rather straightforward. In the original version of the EPWT, we first determine, at
each level, a path vector pj , before we apply a wavelet filter bank to the one-dimensional
data vector that is ordered according to the path vector. In contrast to that strategy
(from our previous work), we now consider using a slightly different approach to obtain
the theoretical estimates of our present paper. To this end, we derive the path vector pj

11



by first determining a piecewise smooth path function p̃j , whose construction is detailed
in the following of this paper. We also consider slightly different data vectors cjp(�) in
the theoretical estimates of Sections 3 and 4, where we will use L2-projection operators
determined by the dual scaling and wavelet functions, ϕ̃ and ψ̃. Further, we will employ
polyharmonic spline interpolation for analytical purpose.
Remark 4. Note that the components of the path vector pj lie in I2J with containing
2d entries, i.e., pj ∈ RI2J×2. This is in contrast to the notation in [26]. Further, unlike
in [26], we do no longer consider index sets but define a neighborhood of points by the
Euclidean distance.

3 Decay of Wavelet Coefficients generated by the EPWT

Before we turn to the technical details, let us first sketch the basic ideas of the proof for
optimal N -term approximations by the EPWT, where we use slightly changed notations.

As explained in the Subsection 2.2, we consider applying polyharmonic spline interpola-
tion, from given image values F (y), separately in the individual domains Ωi, i = 1, . . . ,K.
We assume that F is Hölder smooth of order α on each Ωi, so that the polyharmonic spline
interpolant F 2J in (2.6), being Hölder smooth of order at least α, reconstructs bivariate
polynomials of degree m = �α�. Further, we apply a generalized notion of a path p̃ given
as a sufficiently smooth planar parameter curve.

At the 2J-th level of the EPWT, we first determine a (piecewise) smooth path function
p̃2J : [0, 1] → Ω, such that each value y ∈ I2J can be approximated at sufficient accuracy
by p̃2J( �

22J
), for some � ∈ {0, . . . , 22J − 1}. Consecutive values p̃2J( �

22J
) and p̃2J( �+1

22J
)

should approximate neighboring values in

Γ̃2J := I2J

lying in the same set Ωi (up to O(K) exceptions). Now, a path vector p2J ∈ R22J×2

through all values of I2J is determined by the permutation given by the order in which
p̃2J(�/22J), � = 0, . . . , 22J − 1, approximates the values in I2J .

The path function p̃2J should be constructed such that only at most C1K discontinu-
ities (incurred by possible transitions from one region to another) may occur. In this way,
we can bound the number of “interruptions” in the path vector p2J by C1K.

Next, we consider a one-dimensional function f2J(t) =
22J−1�
k=0

c2Jp (k)ϕ2J,k(t), t ∈ [0, 1),

which approximates the piecewise smooth one-dimensional and scaled restriction of F
resp. F 2J along the path p̃2J satisfying

|F (p̃2J(2−2J�))− f2J(2−2J�)| � 2−Jα.

Then, we apply one level of a smooth wavelet transform to f2J .
In this way, significant wavelet coefficients may only occur at a finite number of lo-

cations on the interval [0, 1) that correspond to discontinuities or to tight turns of the
path function p̃2J . However, the number of such significant coefficients does not depend
on 2J but on the number of regions, K. Therefore, with the performance of one level
of the (periodic) wavelet transform, we will find that most of the wavelet coefficients of
f2J = f2J−1 + g2J−1 occurring in the wavelet part g2J−1, are small.
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At the next j-th level of the EPWT, we consider the set

Γ̃j := {p̃j+1(2−j�) : � = 0, . . . , 2j − 1} = ∪
K
i=1Γ̃

j
i .

By construction, we have #Γ̃j = 2j . Observe that Γ̃j are point sets in Ω. Again, we then
construct a smooth path function p̃j that approximates the values in Γ̃j in a suitable order
and thus determines the path vector pj whose components are the values in Γ̃j in the order
in which they are approximated by p̃j . To obtain sufficiently accurate polyharmonic spline
interpolations F j to F with F j(y) = F (y) for y ∈ Γ̃j , and to apply the same arguments
as at the highest level, three specific conditions on the path functions p̃j need to be
satisfied. We can briefly explain these conditions, termed region condition, path smoothness

condition and diameter condition, as follows (for more details on these conditions we refer
to Subsection 3.2).

Firstly, the region condition requires that the path function should prefer to approxi-
mate all values of one region set Γ̃j

i , before proceeding with the values of the next region.
In other words, the path vector should prefer to traverse the points belonging to one re-
gion set Γ̃j

i , before “jumping” to another region, where jumps within one region should
be avoided. Assuming further that the path function is smooth with suitably bounded
derivatives (path smoothness condition), we can optimally exploit the smoothness of the
function F along the path. Finally, the diameter condition ensures a quasi-uniform dis-
tribution of remaining points in each Γ̃j , and therefore leads to a sufficiently accurate
polyharmonic spline interpolation F j at each level of the EPWT.

We remark that the region condition and the diameter condition can be forced by
using the strategies for the path construction as proposed in Subsection 2.2. The path
smoothness condition cannot be satisfied by the original path construction methods in
[26]. But since the numerical evaluations contain only a few levels of the EPWT, the path
smoothness condition can be forced by avoiding “small angles” in the path vector and by
preferring “path snakes”, see e.g. examples in [26]. The three path conditions will allow
us to estimate the EPWT wavelet coefficients similarly as for one-dimensional piecewise
smooth functions with a finite number of singularities to finally obtain an optimal N -term
approximation using only the N most significant EPWT wavelet coefficients for the image
reconstruction.

3.1 The Highest Level of the EPWT

Let us now explain the 2J-th level of the EPWT in detail. The performance of the
subsequent levels of the EPWT and the corresponding estimates are then derived in a
similar manner.

We consider a sufficiently smooth parameter curve p̃2J(t), t ∈ [0, 1], through Ω ap-
proximating the values in Γ̃2J in a certain order and the corresponding path vector p2J of
length 22J with values in I2J , where we assume that

|p̃2J(2−2J�)− p2J(�)| ≤ µ2−J � = 0, . . . , 22J − 1, (3.1)

and where µ is a fixed small constant (independent of J) with assuming p̃2J(t) ∈ Ωi, for
t ∈ [�/22J , (�+ 1)/22J ], if p̃2J(2−2J�) and p̃2J(2−2J(�+ 1)) are in Ωi. Now, we regard the
function f̃2J that is defined by the one-dimensional restriction of F 2J along the curve p̃2J ,

f̃2J (t) = F 2J
�
p̃2J(t)

�
for t ∈ [0, 1].
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If the path function p̃2J crosses over from one region Ωi to another, there may occur
a discontinuity of f̃2J caused by a discontinuity of F 2J , i.e., there are indices � and
� + 1 in {0, 1, . . . , 22J − 1}, where we have a discontinuity between F 2J(p̃2J(2−2J�)) and
F 2J(p̃2J(2−2J(� + 1))), i.e., a discontinuity of f̃2J in the subinterval [�/22J , (� + 1)/22J ].
Without loss of generality, we assume that we have only discontinuities of f̃2J caused by
jumps from one region to another.

Recall that the trace theorem for Hölder resp. Besov spaces (see [34]) implies that for
F 2J |Ωi ∈ Bα

∞,∞(Ωi), the (scaled) restriction f̃2J(t) along the curve p̃2J(t) is again Hölder
smooth of order α in each subinterval of [0, 1], determined by

Ti = {t ∈ [0, 1] : p̃2J(t) ∈ Ωi}

and with assuming that the corresponding path vector p2J has no interruptions in Ωi. In
particular, for every α ∈ (0, 1), we find the estimate

|f̃2J
|Cα(Ti) = sup

t1 �=t2
t1,t2∈Ti

|F 2J (p̃2J (t1))−F 2J (p̃2J (t2))|
|t1−t2|α

= sup
t1 �=t2

t1,t2∈Ti

|F 2J (p̃2J (t1))−F 2J (p̃2J (t2))|
�p̃2J (t1)−p̃2J (t2)�α2

�p̃2J (t1)−p̃2J (t2)�α2
|t1−t2|α

≤ �F 2J
�Cα(Ωi)�p̃

2J
�
α
C1(Ti)

.

For the case α ∈ (1, 2), the chain rule yields

|f̃2J
|Cα(Ti) = sup

t1 �=t2
t1,t2∈Ti

|∇F 2J (p̃2J (t1))(p̃2J )�(t1)−∇F 2J (p̃2J (t2))(p̃2J )�(t2)|
|t1−t2|α−1

≤ sup
t1 �=t2

t1,t2∈Ti

�
�∇F 2J (p̃2J (t1))−∇F 2J (p̃2J (t2))�2

�p̃2J (t1)−p̃2J (t2)�α−1
2

�p̃2J (t1)−p̃2J (t2)�α−1
2

|t1−t2|α−1 �(p̃2J)�C1(Ti)

+�F 2J�C1(Ωi)
(p̃2J )�(t1)−(p̃2J )�(t2)

|t1−t2|α−1

�

≤ �F 2J
�Cα(Ωi) �p̃

2J
�
α
C1(Ti)

+ �F 2J
�C1(Ωi) �p̃

2J
�Cα(Ti).

In general, we have

Lemma 3.1 Suppose that the parameter curve p̃2J : [0, 1] → Ω satisfies in each subinterval

Ti the smoothness condition

�p̃2J�Cβ(Ti) ≤ C2 2
Jβ (3.2)

for all β ≤ max{α, 1} and with a constant C2 being independent of J , i.e., p̃j ∈ Cα(Ti) for
α > 1 and p̃j ∈ C1(Ti) for α ≤ 1, i = 1, . . . ,K, with strictly bounded derivatives. Then

for the one-dimensional restriction f̃2J(t) = F 2J(p̃2J(t)) along the curve p̃2J we have

�f̃2J
�Cα(Ti) ≤ C̃2Jα�F 2J

�Cα(Ωi), (3.3)

where �F 2J�Cα(Ωi) is bounded by a constant which is independent of J .
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Proof. For α < 2 the assertion already follows from the previous observations. Let
m := �α�. Further, we use the abbreviations F = F 2J , p̃ = p̃2J . In the general case the
formula by Faà di Bruno implies that Dmf̃2J(t) := dm

dtm f̃2J(t) = Dm(F (p̃(t))) is a finite
linear combination of terms

Sν,J(t) := DνF (x)|x=p̃(t) (D
m1 p̃1(t))

b1 · · · (Dmk p̃k(t))
bk ,

where p̃ = p̃2J = (p̃1, p̃2)T , m1, · · · ,mk, b1, · · · , bk ∈ N with m1b1 + · · · +mkbk = m, and
with ν ∈ N2

0, |ν| ≤ m. In the following estimate, limit our attention to the case k = 2, in
order to alleviate notations and without loss of generality. For t1, t2 ∈ Ti with t1 �= t2 we
now obtain with (3.2) the estimate

Sν,J (t1)−Sν,J (t2)
|t1−t2|α−m

≤

�
|(DνF )(p̃(t1))−(DνF )(p̃(t2))|

�p̃(t1)−p̃(t2)�α−m
2

� �
�p̃(t1)−p̃(t2)�α−m

2
|t1−t2|α−m

�
|(Dm1 p̃1(t1))b1(Dm2 p̃2(t1))b2 |

+|(DνF )(p̃(t2))|
�
|(Dm1 p̃1(t1))b1 (Dm2 p̃2(t1))b2−(Dm1 p̃1(t2))b1 (Dm2 p̃2(t2))b2 |

|t1−t2|α−m

�

≤ |F |Cα+|ν|−m(Ωi)
�p̃�α−m

C1(Ti)
�p̃�b1Cm1 (Ti)

�p̃�b2Cm2 (Ti)
+ �F�C|ν|(Ωi)

�
b1�p̃�

b2
Cm2 (Ti)

×�p̃�b1−1
Cm1 (Ti)

�p̃�Cm1+α−m(Ti) + b2�p̃�
b1
Cm1 (Ti)

�p̃�b2−1
Cm2 (Ti)

�p̃�Cm2+α−m(Ti)

�

≤ |F |Cα+|ν|−m(Ωi)
2J(α−m) 2J(m1b1) 2J(m2b2)

+�F�C|ν|(Ωi)
(b12

J(m2b2+m1b1−m1+m1+α−m) + b22
J(m1b1+m2b2−m2+m2+α−m))

≤ Cν2
Jα

�F�Cα(Ωi),

where we have used the inequality |xk−yk| ≤ k|x−y|max{|x|, |y|}k−1 for x, y ∈ R, k ∈ N.
The boundedness of �F 2J�Cα(Ωi) by a constant which is independent of J has already been
shown in Subsection 2.2. Hence, the assertion follows. �

Let us assume in the sequel that the path function p̃ satisfies the smoothness condition
(3.2) in Lemma 3.1. Thus, we obtain for the N -th order modulus of smoothness of f̃2J

the estimate

ωN (f̃2J , h)∞ := sup
|h̃|≤h

�∆N
h̃
f̃2J

�∞ � hα�f̃2J
�Cα(Ti) � (2Jh)α�F 2J

�Cα(Ωi) (3.4)

within the subintervals, where f̃2J is smooth, i.e., for N = �α+ 1� and

Ti,h :=
�
t : p̃2J(t+ kh) ∈ Ωi, k = 0, . . . , N

�
,

see [4]. Next, we consider the L2-projection f2J := P2J f̃2J of f̃2J onto the scaling space

V 2J := closL2[0,1)span{ϕ2J,n : n = 0, . . . , 22J − 1},

where ϕ is assumed to be a sufficiently smooth scaling function, see Section 2.2. Then,

f2J = P2J f̃2J :=
�22J−1

n=0 �f2J , ϕ̃2J,n�ϕ2J,n also satisfies a Hölder smoothness condition of
order α. Following along the lines of [4, Theorem 3.3.3], we obtain in the subintervals
Ti,2−2J the estimate

�f̃2J
− f2J

�L∞(Ti,2−2J ) = �f̃2J
− P2J f̃

2J
�L∞(Ti,2−2J ) � ωN (f̃2J , 2−2J)∞

� (2−2J)α�f̃2J
�Cα(Ti) � (2−J)α�F 2J

�Cα(Ωi). (3.5)
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In particular,

|f̃2J(2−2J�)− f2J(2−2J�)| = |F 2J(p̃2J(2−2J�))− f2J(2−2J�)| � 2−Jα.

In the next step, we decompose the function f2J =
�
�
c2Jp (�)ϕ2J,� with c2Jp (�) := �f2J , ϕ̃2J,��

into the low-pass part f2J−1 and the high-pass part g2J−1. Applying one level of the one-

dimensional wavelet transform to the data set (c2Jp (�))2
2J−1

�=0 , we obtain the decomposition

f2J = f2J−1 + g2J−1 with

f2J−1 =
22J−1−1�

n=0

c2J−1
p (n)ϕ2J−1,n and g2J−1 =

22J−1−1�

n=0

d2J−1
p (n)ψ2J−1,n,

where c2J−1
p (n) := �f2J , ϕ̃2J−1,n� and d2J−1

p (n) := �f2J , ψ̃2J−1,n�. From the Hölder

smoothness of f2J , we find for t ∈ Ti the representation

f2J(t) = qα(t− t0) +R(t− t0)

for t0 ∈ {2−2Jk : k = 0, . . . , 22J − 1} ∩ Ti and |t− t0| ≤ 2−2J , where qα denotes the Taylor
polynomial of degree �α� of f2J at t0, and where the remainder R satisfies the bound
|R(t − t0)| ≤ cϕ(t)2−Jα. Hence, if supp(ψ̃2J−1,n) ∈ Ti for some i, the wavelet coefficients
satisfy

|d2J−1
p (n)| = |�qα(· − t0) +R(· − t0), ψ̃2J−1,n�| = |�R(· − t0), ψ̃2J−1,n�|

≤ cϕ,n 2
−Jα

�ψ̃2J−1,n�1 = c̃ϕ,n 2
(−J+1/2)(α+1),

where we have used �ψ̃2J−1,n�1 = 2−J+1/2�ψ̃�1. Observe that the constant cϕ,n in this
inequality depends on the choice of the wavelet basis but also on the (local) smoothness
properties of f̃2J , and hence on the (local) boundedness properties of the derivatives of
the chosen path function p̃2J in Lemma 3.1.

Now let Λ2J−1 be the set of all n ∈ {0, . . . , 22J−1 − 1}, where the above estimate
for d2J−1(n) is satisfied. Then, the number of the remaining 22J−1 − #Λ2J−1 wavelet
coefficients corresponds to the number of positions, where f̃2J is discontinuous (e.g. caused
by crossing over of the path function to another region) or where derivatives of f̃2J are not
suitably bounded, i.e., the constant cϕ,n is too large (caused e.g. by tight turns of the path
function p̃2J). We assume that this number is bounded by CK, where K is the number
of regions in the original image F , and where the constant C does not depend on 2J .

Now, we consider the low-pass function f2J−1 and reconstruct a bivariate function
F 2J−1 as follows. Taking only the path function values p̃2J(2−2J+1n), we put

Γ̃2J−1
i := {p̃2J(2−2J+1n) : n = 0, . . . , 22J−1

− 1, p̃2J(2−2J+1n) ∈ Ωi}

for each i = 1, . . . ,K and Γ̃2J−1 := ∪K
i=1Γ̃

2J−1
i . We compute the polyharmonic spline

interpolant

F 2J−1(x) :=
K�

i=1




�

y∈Γ̃2J−1
i

ciy φα (�x− y�2) + pim(x)



χΩi(x),
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satisfying the interpolation conditions

F 2J−1
�
p̃2J(2−2J+1n)

�
= f2J−1(2−2J+1n) for all n = 0, . . . , 22J−1

− 1.

Therefore,
��F 2J(p̃2J(2−2J+1n))− F 2J−1(p̃2J(2−2J+1n))

�� = |f̃2J(2−2J+1n)− f2J−1(2−2J+1n)|

= |f̃2J(2−2J+1n)− P2J−1f̃
2J(2−2J+1n)|

� 2(−J+1)α = Dα(2−J+1/2)α, (3.6)

where D =
√
2, and where the last inequality again follows analogously as in (3.5) since

f2J−1 is the orthogonal projection of f̃2J to

V 2J−1 := closL2[0,1)span{ϕ2J−1,n : n = 0, . . . 22J−1
− 1}.

The last inequality implies that F 2J−1 is still a good approximation to F , since the
interpolation points have changed only slightly. However, only half of the interpolation
points are left, which are irregularly distributed in Ω. Moreover, by (3.1) we have

max
x∈Ωi

min
y∈Γ̃2J−1

i

|x− y| ≤ 2−J+1 + µ2−J = D 2−J+1/2. (3.7)

In order to apply the described procedure to the further levels of the EPWT in an
analogous manner we need that again �F 2J−1�Wα+1

2 (Ωi)
is bounded independently of J

and that
�F 2J

− F 2J−1
�L2(Ωi) � 2(−J+1/2)(α+1) for all i = 1, . . . ,K, (3.8)

holds. We assume that these conditions are indeed satisfied.

Remark 1. Unfortunately, we are not aware of a rigorous proof of this assertion in the
literature for polyharmonic spline approximation (other than interpolation). One needs
to show that for a suitably bounded approximation error (as in (3.6)) at the considered
quasi-regular point grid satisfying (3.7) the obtained approximant F 2J−1 has again a
bounded norm in the corresponding native space (here being equivalent to Wα+1

2 (Ωi))
that is independent of the number of grid points. However, our assumption is strongly
supported by the following observations.

Let X ⊂ Ωi be an arbitrary Pm-regular point set of size c022J−1 with fill distance hX ∼

2−J+1 being completely different from the point set Γ2J
i determining the polyharmonic

spline F 2J (i.e., X ∩ Γ2J
i = ∅ and the distance between points of X and Γ2J

i is suitably
bounded from below a.e.). Moreover, let SF 2J ,X be the polyharmonic spline interpolant

of F 2J with F 2J(x) = SF 2J ,X(x) for x ∈ X. Then, by Theorem 11.36 in [37], we have

�F 2J
− SF 2J ,X�∞ ≤ C 2(−J+1/2)α

�F 2J
�Wα+1

2 (Ωi)
, (3.9)

and further, �SF 2J ,X�Wα+1
2 (Ωi)

� �F 2J�Wα+1
2 (Ωi)

� �F�Wα+1
2 (Ωi)

, see [25], Corollary 4.3.

Hence, �SF 2J ,X�Wα+1
2 (Ωi)

is bounded independently of J . On the other hand, there exists

a set Y ⊂ Ωi of points y ∈ Ωi, where the distance between F 2J and its interpolant satisfies

|F 2J(y)− SF 2J ,X(y)| > c 2(−J+1/2)α, (3.10)

17



with some suitable c > 0 being independent of J , since otherwise one could easily derive by
an inverse theorem that F 2J has even a higher Hölder exponent than α, see e.g. Theorem
4.2 in [36].

If we choose the constant c in a way such that Y contains a quasi-uniformly distributed
point set Y 2J−1 with #Y 2J−1 ∼ 22J−1 and with fill distance ∼ 2−J+1, then our argument
works as follows. Consider now a polyharmonic spline interpolant SY 2J−1 of SF 2J ,X with

SY 2J−1(y) = SF 2J ,X(y) for y ∈ Y 2J−1. Then we conclude as in Subsection 2.2 that

�SY 2J−1�Wα+1
2 (Ωi)

� �SF 2J ,X�Wα+1
2 (Ωi)

� �F 2J
�Wα+1

2 (Ωi)

and

�SY 2J−1 −F 2J
�L2(Ωi) ≤ �SF 2J ,Y −SF 2J ,X�L2(Ωi) + �SF 2J ,X −F 2J

�L2(Ωi) � 2(−J+1/2)(α+1),

while for y ∈ Y 2J−1 we have

|F 2J(y)− SY 2J−1(y)| > c 2(−J+1/2)α

by (3.10). If we can choose the point set X such that Y 2J−1 = Γ̃2J−1, then the needed
assumptions on F 2J−1 follow.

We finally show that one is able to choose the constant c in (3.10) independently of J
such that Y contains a point set Y 2J−1 with the desired properties, i.e., with #Y 2J−1 ∼

22J−1 and with fill distance ∼ 2−J+1. This can be seen by a geometric argument. Using
the inverse error estimate in Theorem 5.1 in [25] (with f = F 2J − SF 2J ,X , µ = α+ 1, and

qX = 2(−J+1/2)(α+1)), we see that

�F 2J
− SF 2J ,X�L2(Ωi) ∼ 2(−J+1/2)(α+1).

Considering now a triangulation T of Ωi with the vertex setX, let us consider in each trian-
gle T ∈ T the point xT , where cT := maxx∈T |F 2J(x)−SF 2J ,X(x)||F 2J(xT )−SF 2J ,X(xT )|.

With minx1,x2∈X |x1−x2| ∼ 2−J+1/2, hX ∼ 2−J+1, and recalling that F 2J(x)−SF 2J ,X(x) =

0 for x ∈ X, it follows by linear approximation that
�
T |F 2J(x) − SF 2J ,X(x)|2dx ∼

(cT 2(−2J+1))2, and hence that

�F 2J
− SF 2J ,X�

2
L2(Ωi)

∼ 2−4J+2
�

T∈T
c2T ,

i.e.,
�

T∈T c2T ∼ 2(−2J+1)α 22J−1. Since #T = 22J−1, it follows from (3.9) that cT needs

to be of size ∼ 2(−J+1/2)α for almost all triangles T .

Remark 2. Compared with the original EPWT algorithm in [26], the condition (3.1) is
an important relaxation. Here the scaling and wavelet coefficients are computed from the
function f2J(t) that approximates F 2J(p̃2J(t)), but since p̃2J(2−2J�), � = 0, . . . , 22J − 1,
do not interpolate but only approximate the original grid points I2J , we work with new
function values F 2J(p̃2J(2−2J�)) of the polyharmonic spline function F 2J instead of the
given values F (y), y ∈ I2J . The original EPWT relates to the special case µ = 0, where
we have interpolation in (3.1).
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3.2 Conditions for the Path Vectors

Before we proceed with the error estimates for the further levels of the EPWT algorithm,
we want to fix specific side conditions for the path functions that are required for our error
analysis, and that have been implicitly used already in the estimates at the highest level
in Section 3.1. The side conditions are termed (a) region condition, (b) path smoothness

condition, and (c) diameter condition, as stated below.
The region condition and the diameter condition have been similarly stated already in

[29] to prove the N -term approximation estimates. The region condition ensures that at
each level of the EPWT, the path function “jumps” only C1K times from one region Ωi

to another region or inside a region. The diameter condition ensures that the remaining
points in Γ̃j are quasi-uniformly distributed, such that there is a constantD, not depending
on J or j, satisfying

max
x∈Ωi

min
y∈Γ̃j

�x− y�2 ≤ (1 +
√
2)D2−j/2. (3.11)

Further, at each level j of the EPWT, we assume that we can find a smooth function
p̃j : [0, 1] → Ω with uniformly bounded derivatives that approximates the values in Γ̃j .
This leads us to the vector pj , whose components from Γ̃j are suitably ordered, and we
have |p̃j(2−j�) − pj(�)| ≤ µ2−j for � = 0, . . . , 2j − 1. Further, we assume that p̃j(t) ∈ Ωi,
for t ∈ [�/2j , (�+ 1)/2j ], if p̃j(2−2J�) and p̃j(2−2J(�+ 1)) are in Ωi.

Let us introduce the three conditions more explicitly.

(a) Region condition. At each level j of the EPWT, the path function p̃j is chosen,
such that it contains only at most C1K discontinuities caused by crossing over from
one region Ωi to another region or by jumping within one region Ωi.

(b) Path smoothness condition. The path function p̃j satisfies in each subinterval Ti

the smoothness condition

�p̃j�Cβ(Ti) ≤ C2 2
jβ/2

for all β ≤ max{α, 1} and with a constant C2 being independent of j, i.e., p̃j ∈ Cα(Ti)
for α > 1 and p̃j ∈ C1(Ti) for α ≤ 1, i = 1, . . . ,K, with bounded derivatives.

(c) Diameter condition. At each level of the EPWT, we require for almost all values
2−j�, � = 0, . . . , 2j − 2, the condition

�p̃j(2−j�)− p̃j(2−j(�+ 1))�2 ≤ D 2−j/2, (3.12)

where D is independent of J and j, and where the number of values of p̃j(2−j�) which
do not satisfy the diameter condition, is bounded by a constant C3 not depending
on j. Hence, at each level j, consecutive components p̃j(2−j�) in the path function
should be spatial neighbors.

The conditions (a) and (c) can be enforced by the proposed path construction in
Subsection 2.2, see (2.12) for the region condition and (2.13) for the diameter condition.
Particularly, the diameter condition ensures a quasi-uniform distribution of the points
in Γ̃j . This can be seen inductively as follows. For j = 2J , the assertion (3.11) is obvious,
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Figure 2: Archimedean spiral. A not simply connected domain Ω. The boundary of Ω
is displayed with dashed lines. The smooth path p̃2J (here for J = 3 and displayed with
a solid line) is a planar spiral curve, an Archimedean spiral. The set Γ2J is illustrated by
uniformly distributed points.

see also (3.7). Generally, assuming (3.11) and (3.12) at level j + 1, it follows that

max
x∈Ωi

min
y∈Γ̃j

�x− y�2 ≤ max
x∈Ωi

min
y∈Γ̃j+1

�x− y�2 + max
y∈Γ̃j+1

min
z∈Γ̃j

�y − z�2

≤ (1 +
√
2)D2−(j+1)/2 +D2−(j+1)/2 = (1 +

√
2)D 2−j/2.

Unfortunately, the given path smoothness condition is rather restrictive. We consider
discussing an example, where the conditions for the path p̃j are satisfied for α ∈ (1, 2).

Example. We consider the domain Ω being the difference set between two concentric
disks with radii r1 < r2, a circular ring. In this case, we let the smooth path p̃2J (at
level J and for J large enough) be a planar spiral curve. More precisely, we take an
Archimedean spiral with parametric form (aφ cosφ, aφ sinφ) with a = 2−J/2π for φ ∈

[φ1, φ2] = [2π�2Jr1�, 2π�2Jr2�], see Figure 2. Then each straight line through the origin
intersects the successive turnings of the spiral in points with a constant separation distance
2πa = 2−J . We can assume that we have to approximate O(22J(r22−r21)π) quasi-uniformly
distributed points of Γ2J in the circular ring while the length of the spiral is

a

2

�
φ
�

φ2 + 1 + ln(φ
�
φ2 + 1)

�φ2

φ1

= O(2J(r22 − r21)).

Hence, we find a suitable parameterization for p̃2J , such that each point in Γ2J is approx-
imated sufficiently well by p̃2J(2−J�), i.e., the path p̃2J meets the conditions (b) and (c)
for α ∈ (1, 2). Figure 2 shows an example for a set Γ2J of uniformly distributed points
which can be approximated sufficiently well by points on the Archimedean spiral, e.g., by
their Euclidean projections onto the curve p̃2J .
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Remark 1. To understand the strength of the path smoothness condition (b), we follow
the arguments of one of Jean-Marie Mirebeau and show that the path vector pj can only
be taken straight along a line if µ < 1/4. In particular, if the path function p̃2J is forced
to interpolate the grid points of the form (2−Jn1, 2−Jn2), n1, n2 ∈ Z (regular grid), as
in the situation of the EPWT in [26], the path smoothness condition cannot be satisfied.
Indeed, with (3.1) we find the estimate

�p2J(�+ 1)− 2p2J(�) + p2J(�− 1)�∞

≤ �p̃2J(2−2J(�+ 1))− 2p̃2J(2−2J�) + p̃2J(2−2J(�− 1))�∞ + 2−J
· 4µ.

But the smoothness condition (3.2) implies that

�p̃2J(2−2J(�+ 1))− 2p̃2J(2−2J�) + p̃2J(2−2J(�− 1))�∞

= �(p̃2J(2−2J(�+ 1))− p̃2J(2−2J�))− (p̃2J(2−2J�) + p̃2J(2−2J(�− 1)))�∞

= �

�

I0

(p̃2J)�(t)− (p̃2J)�(t− 2−2J) dt�∞

≤ 2−2J 2−2J(α−1)
|p̃2J |Cα(I) = 2−2Jα

|p̃2J |Cα(I) ≤ C22
−Jα,

where I0 := [2−2J�, 2−2J(� + 1)] ⊂ I, and where I denotes an interval where p̃2J is Cα

smooth. Hence,

�p2J(�+ 1)− 2p2J(�) + p2J(�− 1)�∞ ≤ 2−J(C22
J(1−α) + 4µ).

For α > 1 the term C2J(1−α) tends to zero, as J → ∞. On the other hand, if the
points p2J(� + 1), p2J(�), p2J(� − 1) (being samples from the regular grid (2−Jn1, 2−Jn2),
n1, n2 ∈ Z) do not lie on the same line, then the norm on the left hand side is at least
2−J . Hence, for µ < 1/4 the path conditions are incompatible.
Remark 2. The conditions (a) and (c) can slightly be relaxed the sense that the constants
C1 and C3 may be allowed to depend polynomially on j (but not exponentially). In fact,
considering the proof of Theorem 4.1 (resp. Theorem 3.3 in [29]), one needs to ensure that
a weighted sum of all wavelet coefficients that are only satisfying the estimate (3.15) is
still bounded.

3.3 The Further Levels of the EPWT

Let us now explain the further levels of the EPWT. These are performed following along
the lines of the 2J-th level. We start with the polyharmonic spline interpolant

F j(x) :=
K�
i=1



 �

y∈Γ̃j
i

ciy φα (�x− y�2) + pim(x)



χΩi(x)

that satisfies the interpolation conditions F j(p̃j+1(2−jn)) = f j(2−jn) for all n = 0, . . . , 2j−
1. We fix a suitable path function p̃j approximating the set Γ̃j = {p̃j+1(2−jn) : n =
0, . . . , 2j − 1} with corresponding data values {F j

�
p̃j+1(2−jn)

�
: n = 0, . . . , 2j − 1}, such

that the three path conditions in Section 3.2 are satisfied. Then we determine the one-
dimensional restriction of F j along p̃j , f̃ j(t) := F j

�
p̃j(t)

�
, t ∈ [0, 1]. The piecewise Hölder

smoothness of f̃ j(t) ensures that

ωN (f̃ j , h)∞ � (2jh)α for Ti,h := {t : p̃j(t+ kh) ∈ Ωi, k = 0, . . . , N}.
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Considering the L2-projection Pj f̃ j :=
�2j−1

n=0 cjp(n)ϕj,n with cjp(n) := �f̃ j , ϕ̃j,n� of f̃ j onto
the scaling space

V j := closL2[0,1)span{ϕj,n : n = 0, . . . , 2j − 1},

where ϕ is assumed to be a smooth scaling function as in Subsection 3.1, we have

�f̃ j
− Pj f̃

j
�L∞(Ti,2−j ) � wN (f̃ j , 2−J−j/2) � 2−jα/2,

where we have applied the diameter condition (3.12). We use the decomposition

Pj f̃
j =

�

�

cjp(�)ϕj,� = f j−1 + gj−1 =
�

n

cj−1
p (n)ϕj−1,n +

�

n

dj−1
p (n)ψj−1,n.

Then the Hölder smoothness of Pj f̃ j in the intervals Ti yields the Taylor expansion

Pj f̃
j(t) = qα(t− t0) +R(t− t0) with |R(t− t0)| ≤ cϕ(t)D

α 2−jα/2

for t, t0 ∈ Ti, where D is the constant in the diameter condition (3.12), and this gives the
estimate for the wavelet coefficients corresponding to the region Ωi,

|dj−1
p (n)| = |�R(t− t0), ψ̃j−1,n�| ≤ cϕ,nD

α 2−jα/2 2−(j−1)/2
�ψ̃�1

≤ cϕ,nD
α 2−(j−1)(α+1)/2, (3.13)

where cϕ,n depends on the local smoothness of Pj f̃ j and hence on the derivative bounds

of p̃j in (3.2). Again, let Λj−1 be the set of indices n from {0, . . . , 2j−1−1}, where dj−1
p (n)

satisfies the above estimate. Then the number of wavelet coefficients 2j−1 −#Λj−1 which
are not satisfying this estimate (since supp ψ̃j−1,n �⊂ Ti for some i) is bounded by a
constant independent of J and j.

Finally, we obtain the polyharmonic spline interpolant

F j−1(x) :=
K�
i=1



 �

y∈Γ̃j−1
i

ciy φα (�x− y�2) + pim(x)



χΩi(x),

where Γ̃j−1
i := {p̃j(2−j+1n) : n = 0, . . . , 2j−1 − 1, p̃j(2−j+1n) ∈ Ωi}, Γ̃j−1 := ∪K

i=1Γ̃
j−1
i ,

through the interpolation conditions F j−1(p̃j(2−j+1n)) = f j−1(2−j+1n) for all n = 0, . . . ,
2j−1 − 1. Hence, we obtain the estimate

��F j
�
p̃j(2−j+1n)

�
− F j−1

�
p̃j(2−j+1n)

��� = |f̃ j(2−j+1n)− Pj−1f̃ j(2−j+1n)| � 2−jα/2.

Let us summarize the above findings on the decay of the EPWT wavelet coefficients in
the following theorem.

Theorem 3.2 For j = 2J −1, . . . , 0, let djp(�) = �f j+1, ψ̃j,��, � = 0, . . . , 2j −1, denote the

wavelet coefficients that are obtained by applying the EPWT algorithm to F (according to

the above definitions in Section 3), where we assume that F ∈ L2(Ω) is piecewise Hölder

smooth of order α as prescribed in Subsection 2.1. Further assume that the path functions

p̃j+1
, j = 2J − 1, . . . , 0, in the EPWT algorithm satisfy the region condition (a), the path
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smoothness condition (b), and the diameter condition (c) of Subsection 3.2. Then, for all

j = 2J − 1, . . . , 0 and � ∈ Λj
, the estimate

|djp(�)| ≤ C Dα 2−j(α+1)/2 (3.14)

holds, where D > 1 is the constant of the diameter condition (3.12), α is the Hölder

exponent of F , and C depends on the utilized wavelet basis and on the Hölder constant

in (2.1). Furthermore, for all � ∈ {0, . . . , 2j − 1} \ Λj
, we obtain the estimate

|djp(�)| ≤ C � 2−j/2 (3.15)

with some constant C �
being independent of J and j.

Proof. The proof of (3.14) follows directly from (3.13). Likewise, for all � ∈ {0, . . . , 2j−
1} \ Λj , i.e., for point sets that do not satisfy the diameter, the path smoothness, or the
region condition, we observe at least

|djp(�)| ≤ C � 2−j/2 = C � 2−j/2

since we can assume that F j is bounded, and hence the above estimate (3.14) holds for
α = 0. Thus (3.15) follows. �

4 Optimal N-term Approximation obtained from the EPWT

Consider now the vector of all EPWT wavelet coefficients

dp = ((d2J−1
p )T , . . . , d0p, d

−1
p )T

with djp = (djp(�))
2j−1
�=0 for j = 0, . . . , 2J − 1, and with the mean value

d−1
p = d−1

p (0) := f0(0) = 2−2J
�

y∈IJ

F 2J(y),

together with the side information on the path functions p̃2J , . . . , p̃1 at each iteration step.
With this information the reconstructed image F 2J

rec is uniquely recovered, where F 2J
rec is

the polyharmonic spline interpolation satisfying

F 2J
rec

�
p̃2J(2−2Jn)

�
= f2J(2−2Jn), n = 0, . . . , 22J − 1.

Indeed, reconsidering the (j + 1)-th level of the EPWT procedure, we observe that the
scaling coefficients cjp(n) = �f̃ j+1, ϕ̃j,n� and the wavelet coefficients djp = �f̃ j+1, ψ̃j,n�

determine f j and gj , and hence Pj+1f̃ j+1 uniquely. Further, the polyharmonic spline
interpolation F j+1 is entirely determined by f̃ j+1(2−(j+1)n) and the side information about
the path function p̃j+1(2−(j+1)n).

By the choice of the wavelet basis, it further follows for n = 0, . . . , 2j+1 − 1 that

|F j+1(p̃j+1(2−(j+1)n))− F j+1
rec (p̃j+1(2−(j+1)n))| = |f̃ j+1(2−(j+1)n)− Pj+1f̃

j+1(2−(j+1)n)|

� 2−(j+1)α/2,
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where F j+1
rec is uniquely determined by Pj+1f̃ j+1(2−(j+1)n), n = 0, . . . , 2j+1 − 1 and the

side information about the path p̃j+1.
In order to find a sparse approximation of the digital image F resp. F 2J , we apply

a shrinkage procedure to the EPWT wavelet coefficients djp(�), using the hard threshold
function

sσ(x) =

�
x |x| ≥ σ,
0 |x| < σ,

for some σ > 0.

We now study the error of a sparse representation using only the N wavelet coefficients
with largest absolute value for an approximative reconstruction of F 2J . For convenience,
let S2J

N be the set of indices (j, �) of the N wavelet coefficients with largest absolute value.
Moreover, let F 2J

N,rec denote the polyharmonic spline interpolation determined by the

reconstructed function f2J
N =

�
n c

2J
p,N (n)ϕ2J,n using only the N wavelet coefficients with

largest absolute value, satisfying the interpolation conditions

F 2J
N,rec

�
p̃2J(2−2Jn)

�
= f2J

N (2−2Jn) for n = 0, . . . , 22J − 1.

While the wavelet basis used above is not orthonormal but stable, we can still estimate
the distance of F 2J and F 2J

N,rec by

�N = �F 2J
− F 2J

N,rec�
2
L2(Ω) �

�

(j,�) �∈S2J
N

|djp(�)|
2.

This estimate is a direct consequence of Theorem 3.2. Indeed, at each level of the EPWT,
we observe that

�F j+1
− F j

rec�L2(Ω) ≤ �F j+1
− F j

�L2(Ω) + �F j
− F j

rec�L2(Ω)

�
�

2j−1�
n=0

|djp(n)|2

�1/2

� 2−jα/2,

where the number of wavelet coefficients satisfying (3.14) is 2j −C1K+C3, and where the
constants C1 and C3 do not depend on j, see Section 3.2.

Now we obtain the main result of this paper, showing the optimal N -term approxima-
tion of the EPWT algorithm.

Theorem 4.1 Let F 2J
N be the N -term approximation of F 2J

as constructed above, and let

the assumptions of Theorem 3.2 be satisfied. Then the estimate

�N = �F 2J
− F 2J

N �
2
2 ≤ C̃ N−α (4.1)

holds for all J ∈ N, where the constant C̃ < ∞ does not depend on J .

Proof. The proof can be carried out by following along the lines of the proof of
Theorem 3.3 in [29]. �

Let us finally conclude by stating the following corollary.
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Corollary 4.2 Let F ∈ L2(Ω) be piecewise Hölder continuous (as assumed in Subsec-

tion 2.1). Then, for each � > 0 there exists an integer J(�), such that for all J ≥ J(�) the
N -term estimate

�F − F 2J
N �

2
L2 < C̃N−α + �

holds, where C̃ is the constant in (4.1).

Proof. The proof follows directly from Theorem 4.1 and (2.10). �
Remark. Observe that the above “construction” using polyharmonic spline interpolations
F j and smooth path functions f̃ j is only done for analytical purposes. For a pragmatic
implementation of the EPWT we refer to our previous works [26, 28, 33], where different
versions of the EPWT are tested, relying on various strategies for path construction. In
particular, the relaxed EPWT in [26] already covers the path conditions heuristically,
where in the numerical implementation “path snakes” are preferred approximating the
path smoothness condition.
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