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ABSTRACT

We propose a new regularization method for the sparse representation and denoising

of seismic data. Our approach is based on two components, a sparse data representation

in a learned dictionary and a similarity measure for image patches that is evaluated

using the Laplacian matrix of a graph.

Dictionary learning (DL) methods aim to find a data-dependent basis or a frame

that admits a sparse data representation while capturing the characteristics of the

given data. We propose two algorithms for dictionary learning based on clustering and

singular value decomposition (SVD), called first and second dictionary construction

(FDC and SDC). Besides employing an adapted dictionary we also consider a similarity

measure for the local geometric structures of the seismic data using the Laplacian

matrix of a graph. The proposed method achieves better denoising performance than

existing denoising methods, both in terms of peak signal-to-noise ratio values and

visual estimation of weak-event preservation. Comparisons of experimental results on

field data using traditional FX deconvolution (FX-Decon) and curvelet thresholding

methods are also provided.
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INTRODUCTION

Two critical and widely studied problems in seismic data processing are (1) extract-

ing the fundamental structures of seismic data by sparse representation, and (2) denoising.

The two problems are closely related since for given noisy measurements, the extraction of

the important data structures can be at the same time understood as a denoising process,

where one has to separate the original seismic data from noise. This process is an ill-posed

inverse problem, meaning that there are many significantly different possible solutions that

come close to optimize it. Often, a first linear denoising (usually based on averaging of

measurements) is already applied during the acquisition process in order o achieve data

sets with lower noise level. To improve denoising results, regularization methods are re-

quired that provide stable and unique solutions. A regularization method is a technique for

solving ill-posed inverse problems by formulating a minimization problem, where the ob-

jective function includes besides the fidelity term (that measures the distance to the given

data) additional ”regularization” terms that force special properties of the desired data.

Therefore, regularization methods serve to impose desired features on subsurface images.

The well-known Tikhonov regularization models force smoothness of the data and tend to

produce models where discontinuities are blurred. They have been for instance applied

to solve the acoustic inverse problem of crosshole seismology, see Reiter and Rodi (1996).

Other regularization methods using total variation minimization can provide high-resolution

images of the subsurface, where edges and discontinuities are properly preserved. For ex-

ample, Anagaw and Sacchi (2012) applied total variation minimization to the problem of

estimating acoustic velocity perturbations using a single scattering Born modeling opera-

tor. Another regularization method that has attracted a renewed interest and considerable

attention in signal processing literature is L1-norm regularization. Here a regularization

term is included into the objective function that forces sparsity of the data in the spatial

domain or in a transform domain. This approach is popular for seismic data processing

methods such as seismic data denoising and interpolation, see Herrmann and Hennenfent

(2008). However, the above mentioned methods do not exploit the full geometric structure
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characteristics of the data such as the spatial relative position of the events. To overcome

this issue, additional regularization terms have to be incorporated.

In this paper, we propose a regularization approach with two additional constraints:

a) forcing sparsity of the data in a learned (data-dependent) dictionary, and

b) minimizing a similarity measure that is evaluated by a Laplacian matrix of a graph

(graph regularization). Graphs are mathematical structures used to model pairwise relations

between objects.

In the following, we explain these two new constraints in more detail.

a) In this paper, dictionaries are bases or frames of the finite dimensional space RN of

real vectors of length N or equivalently of Rn×n, the space of digital images with n rows

and n columns, where N = n2. A dictionary with k elements (or atoms) is a set of k

vectors in RN that can be simply represented by a matrix D ∈ RN×k, where in this case

the k columns of length N are the atoms of D. In other words, each column of the matrix

D contains one (vectorized) n × n matrix atom. If k ≥ N and D has full rank N , then

all vectors y ∈ RN can be represented as linear combinations of atoms in D, i.e., there

exists an x ∈ Rk with y = Dx. If k > N and D has full rank N , then the representation

of y by dictionary atoms is not longer unique, and the dictionary is called over-complete.

The dictionary matrix D can be seen as a transform matrix, and one is usually interested

to construct D such that the given seismic data (either vectors or image patches) can be

sparsely represented by this transform, i.e., the main structure can be already presented

by a linear combination of a small number of atoms of the dictionary. Indeed, sparse

transforms offer a nice way to implement sparse representations and denoising of seismic

data. Whether denoising is effective or not strongly depends on dictionary selection or on

the choice of the sparse transform. Wavelet transforms have been often used for solving

seismic data denoising problems in Chanerley and Alexander (2002). Zhang and Ulrych

(2003) presented a physical wavelet frame for seismic data denoising that used the special

characteristics of seismic data. Nowadays, curvelets are one of most popular tools for seismic

data representation and denoising, see Hennenfent and Herrmann (2006), Neelamani et al.
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(2008), Ma and Plonka (2010). In addition to such sparse representation methods, Bonar

and Sacchi (2012) applied a nonlocal means algorithm to seismic data denoising by using

similar samples or pixels within the image regardless of their spatial proximity.

A new, popular, and highly effective approach for solving seismic denoising problems is

the sparse representation of seismic data using a learned dictionary. Learned dictionaries

adapt to the particular structure of the given data. Compared to denoising methods by

Pan et al. (1999) and Starck et al. (2002) based on dictionaries being not data-dependent,

a dictionary trained through a dictionary learning method can provide a sparser represen-

tation of seismic data. Different dictionary learning methods have already been applied to

the seismic data denoising processing see Bechouche and Ma (2014) Engan et al. (1999).

Kaplan et al. (2009) presented a review of sparse coding and its application to random noise

attenuation. Yu et al. (2015) proposed a dictionary learning seismic data denoising method

that used a data driven tight frame (DDTF). However, almost all patch-based dictionary

learning denoising methods convert seismic data patches or volumes into one-dimensional

(1D) vectors for training, and thereby lose the inherent 2D or 3D geometric structures of

the seismic data.

In this paper, we will propose two new methods for dictionary learning using the singular

value decomposition (SVD) and a clustering method. Our approach connects ideas of Zeng

et al. (2015) with ideas borrowed from generalized wavelet constructions. For the two

methods, we will use training patches from the given seismic data to teach the dictionary.

For denoising problems in particular, these patches are often noisy. The two methods are

simple to implement and may be of relevance not only for denoising but also for other

seismic data applications. The first dictionary construction (FDC) employs the SVD of

covariance matrices of similar training patches. The second dictionary construction (SDC)

uses the similarity of training patches and a clustering method. The main idea of our two

dictionary learning algorithms is the following. In the first step, we cluster the training

patches into subsets according to a similarity measure using a binary tree structure. Then

we build average patches (center matrices) for each subset. The dictionary elements are then
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constructed as linear combinations of small-rank approximations of the obtained average

patches.

b) The second ingredient of our proposed regularization method is a term that measures

similarity of patches. This similarity measure is determined by the Laplacian matrix of a

graph and is therefore called graph regularization term. The graph is used as a tool for

presenting the similarity between the training patches. In recent years, graph regularization

has been applied for describing the relationship between image patches, see Elmoataz et

al. (2008), Bougleux et al. (2009), Kheradmand and Milanfar (2014), e.g. by building a K-

nearest neighbor graph to encode the geometric information in the data. Such graph-based

methods have been applied for image denoising by Tang et al. (2013) and Yankelevsky and

Elad (2016), for image representation by Zheng et al. (2011), and for image super-resolution

by Lu et al. (2012). In this work, we will employ the assumption that if two training data

patches are close with respect to the obtained similarity measure then their sparse dictionary

representations are also close. Similar assumptions have been also used in various manifold

learning methods to explore such structures, see Belkin and Niyogi (2003), Liu et al. (2014),

Zheng et al. (2011).

Our denoising method is iterative. First we derive a dictionary of training patches. For

the dictionary we use a randomly selected subset of the set of all patches of the given noisy

seismic data. In the experiments in this paper we have taken 60 % of all patches for the first

field data and 68 % for the second field data. Having fixed the dictionary we present the

noisy data sparsely in this dictionary and solve the minimization problem, where the graph

regularization term is applied to the sparse data in the transformed (dictionary) domain.

We repeat this process with the resulting denoised data patches that now serve in a next

iteration to obtain an improved dictionary etc.

The rest of the paper is organized as follows: In the next section we present our reg-

ularization method. We describe the minimization problem obtained by incorporating the

sparse representation in a dictionary and in particular derive the graph regularization term
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that measures the similarity between image patches. We summarize the complete denoising

algorithm in the section titled DENOISING METHOD (Algorithm 1). This algorithm can

be applied with an arbitrary dictionary D. In the following section titled METHODS FOR

DICTIONARY LEARNING we describe the two new dictionary learning methods FDC and

SDC. Finally we deal with the problem of how to solve the complete minimization problem

arising from this regularization approach in section titled METHODS TO SOLVE THE

MINIMIZATION PROBLEM, (Algorithm 2). The mathematical justification of Algorithm

2 can be found in Appendix A. Experimental results and comparative discussions using

two kinds of field data are provided in the section titled EXPERIMENTS. Conclusions and

final thoughts are provided in the section titled CONCLUSION. Appendix B contains an

extensively described toy example for the two dictionary learning methods.

SPARSE REPRESENTATION BY LEARNED DICTIONARIES AND

GRAPH REGULARIZATION

Let us first introduce some notation. Let {I1, . . . , Im} (e.g. Ij ∈ Rn×n, where j =

1, 2, . . . ,m represent m images, each consisting of n traces with n samples) represent a

given training set of seismic data. Further, let Y := [y1, . . . ,ym] be an N ×m matrix with

N = n2, where the columns yj = vec (Ij) ∈ RN are the vectorized patches, i.e., we stack all

columns of Ij into one vector yj starting with the first. With D := [d1 . . .dk] ∈ RN×k we

denote the dictionary (matrix), where each column di ∈ RN is one atom in the dictionary.

Here, and elsewhere we use the notation := for (mathematical) definitions. The Frobenius

norm of the matrix Y is the square root of the sum of all squared entries of Y, i.e., we have

‖Y‖2F =
∑m

i=1 ‖yi‖22 =
∑m

i=1

∑N
j=1 y

2
i,j , where ‖yi‖2 =

(∑N
j=1 y

2
i,j

)1/2
denotes the usual

Euclidean norm of yi in RN .

Once we have determined a suitable dictionary D, a sparsity promoting optimization

problem can be formulated as

min
X∈Rk×m

(
‖Y −DX‖2F + λ‖X‖0

)
, (1)
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where X = [x1, . . . ,xm] ∈ Rk×m denotes the matrix of sparse coefficient vectors, such

that the set of training patches Y = [y1, . . . ,ym] is sparsely represented by DX. Here,

λ is a regularization parameter, and ‖X‖0 counts the number of non-zero entries of X.

This optimization problem is ”NP-hard” which means that it cannot be exactly solved in

polynomial computation time. Therefore ‖ ·‖0 is usually replaced by the convex norm ‖ ·‖1,

and the relaxed optimization problem reads

min
X∈Rk×m

(
‖Y −DX‖2F + λ‖X‖1

)
, (2)

where ‖X‖1 :=
∑m

i=1 ‖xi‖1 =
∑m

i=1

∑k
j=1 |xi,j | is the sum of absolute values of all entries

in X. The model (2) has been widely used for data denoising in the last decade, and many

algorithms have been developed to solve these optimization problems efficiently, see Beck

and Teboulle (2009), Chambolle and Pock (2011) and Needell and Vershynin (2010).

We extend this model for sparse representation of seismic images by adding two impor-

tant ingredients, dictionary learning and graph regularization.

Dictionary learning. We want to employ a dictionary D that is adaptively learned from

the data. In machine learning and in other applications, see Aharon et al. (2006), Elad and

Aharon (2006) and Dong et al. (2013), the following model has been studied already,

min
X∈Rk×m,D∈RN×k

(
‖Y −DX‖2F + λ‖X‖∗

)
(3)

with ‖ · ‖∗ being either ‖ · ‖0 or ‖ · ‖1, and where K-SVD for dictionary learning is employed.

The notion K-SVD has been coined by Aharon et al. (2006). This well-known dictionary

learning method to solve (3) is a generalization of K-means clustering and combines SVD

and the orthogonal matching pursuit (OMP) method. The approach is based on alternating

optimization: For a fixed D, an improved sparse matrix X is computed e.g. by the OMP

method, a greedy algorithm that provides good solutions for (1). For fixed X, the dictionary

D is updated using singular value decomposition (SVD). However, K-SVD is very expensive,

see Liu et al. (2017). In particular, many iteration steps are needed since the atoms of the

dictionary are updated one by one, and each time the SVD of a large N×N matrix is needed.
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At the same time, two-dimensional structures of the training patches are not explicitly used

but all patches are considered only in vectorized form.

Therefore, other methods for dictionary learning came up aiming at a cheaper technique

to replace the K-SVD. For example, in Cai et al. (2014) and Liu et al. (2017) a priori dictio-

nary structure is imposed to reduce the number of parameters, such as block-wise Toeplitz

structure or (directional) tensor-product frames. Running times of the three methods have

been compared in Liu et al. (2017), and the two new methods are both significantly cheaper

than the K-SVD method.

Motivated by ideas in Zeng et al. (2015), we will propose two different methods for adap-

tive dictionary learning in the Section titled METHODS FOR DICTIONARY LEARNING.

These methods try to exploit the two-dimensional geometric structure of the training data

in a more direct way and are essentially cheaper than K-SVD.

Graph regularization. The second ingredient is an extension of the functional in (3) by

an additional term that measures the similarity between the image patches. Here we follow

ideas in Zheng et al. (2011) and Yankelevsky and Elad (2016), and employ a graph that

represents the internal topology of the training patches. A graph is a structure amounting

to a set of objects in which some pairs of the objects are in some sense ”related”.

For the given set of training patches I1, . . . , Im, we construct a weighted undirected

complete graph G(V,E,W), where the finite set V = {I1, . . . , Im} of m vertices represents

the given patches. We say that a graph is undirected if each edge of a graph is non-

directional. Further, E = V × V is a set of weighted edges, i.e., each two patches Ii, Ij

are connected by an edge, and the corresponding weights are collected in the weight matrix

W ∈ Rm×m. We measure the similarity of the training patches Ii and Ij using the Frobenius

norm of its difference ‖Ii − Ij‖F . For a pre-defined K, we fix the K nearest neighbors of Ii

(being different from Ii itself) by inspecting ‖Ii − Ik‖2F for k ∈ {1, . . . , i− 1, i+ 1, . . . ,m}.

Then, Ij belongs to the K nearest neighbors of Ii if the distance ‖Ii − Ij‖2F belongs to the

K smallest distances of the set of all m − 1 obtained distances. We define the symmetric
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weight matrix W = (Wi,j)
m
i,j=1 by Wi,j = 1 if Ij is among the K nearest neighbors of Ii or

if Ii is among the K nearest neighbors of Ij . Otherwise, we set Wi,j = 0. In particular,

Wi,i = 0 for i = 1, . . . ,m. Thus, each row (or column) of W contains at least K ones. The

process of graph building is illustrated in Figure 1. The degree of each vertex Ii, i.e., the

number of all edges with weight 1 to the vertex Ii is given by ∆i =
∑m

j=1Wi,j . Introducing

the diagonal matrix ∆ = diag(∆1, . . . ,∆m) ∈ Rm×m, the Laplacian matrix of the graph G

is now defined as the matrix L = ∆ −W ∈ Rm×m. By construction, L is symmetric and

positive semidefinite, its non-diagonal entries are non-positive, and the sum of all entries in

each column (or row) is zero.

A direct computation shows that the term

Tr(YLYT ) =

m∑
i,j=1

Wi,j‖Ii − Ij‖2F =

m∑
i,j=1

Wi,j‖yi − yj‖22 =
∑
Ii∼Ij

‖Ii − Ij‖2F

measures the similarity of neighborhood patches in the graph, where we have used the

notation Ii ∼ Ij if Wi,j = 1. In other words, Ii ∼ Ij means that either Ii is one of the K

nearest neighbors of Ij , or Ij is one of the K nearest neighbors of Ii, and in the last sum

all terms with weight Wi,j = 0 are droped. Further, the trace Tr(A) of a quadratic matrix

A denotes the sum of its diagonal entries. For each j, the vector Dxj is assumed to be a

good approximation to yj . Since the (fixed) transform matrix D induces a linear mapping,

we can suppose that the vectors xj , j = 1, . . . ,m possess a similar topological structure as

yj , j = 1, . . . ,m, and particularly that, if yi and yj are K-neighbors with a small distance

‖yi − yj‖2, we also have that ‖xi − xj‖2 is small. Therefore, we incorporate the term

Tr(XLXT ) =

m∑
i,j=1

Wi,j‖xi − xj‖22 =
∑
Ii∼Ij

‖xi − xj‖22

and obtain the new minimization problem

min
X∈Rk×m

‖Y −DX‖2F + αTr(XLXT ) + λ‖X‖1 (4)

with a regularization parameter α ≥ 0, where the Laplacian matrix L and the learned

dictionary D only depend on the training data Y. This model is simpler than the model
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considered in Yankelevsky and Elad (2016), since we have not incorporated the graph Lapla-

cian into the dictionary learning process.

The weight matrix W of the graph G can also be defined differently, as e.g. by

Wi,j =


1

2πh2
exp

(
−‖Ii−Ij‖2F

2h2

)
for i 6= j

0 for i = j

using the Gaussian kernel and some parameter h, or alternatively by employing a thresh-

olded kernel. Note, however, that the weight matrix W and hence the Laplacian matrix L

are already determined by the vectorized training patches, since the Frobenius norm does

not exploit any two-dimensional structures of the training patches I1, . . . , Im that cannot

be observed after vectorization. However, we will propose dictionary learning methods that

also incorporate two-dimensional characteristic features into the dictionary atoms.

DENOISING METHOD

The regularization model in (4) can now be employed to obtain a denoising method

and at the same time a sparse data representation of the given seismic data Y within the

dictionary D. The procedure has three stages. First we derive a dictionary D that is

learned from the given data, see Section METHODS FOR DICTIONARY LEARNING.

Then we fix D and solve the minimization problem with regard to X using Algorithm 2,

see Section METHODS TO SOLVE THE MINIMIZATION PROBLEM. For the special

denoising application we employ the given noisy seismic data themselves to acquire the set

of training patches, i.e., we take patches of the noisy data to obtain the set of training

patches {I1, . . . , Im}. The third stage contains the reconstruction of the denoised data YD

using the learned dictionary D and the computed coefficient matrix X. The new denoising

scheme consists of the following steps that we present in Algorithm 1.
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Algorithm 1: Denoising algorithm based on dictionary learning and

graph regularization

Input

Noisy training data Y = [y1, . . . ,ym]

Number of iterations

Parameters K, α and λ

Algorithm

1: Set YD := Y.

Loop through steps 2-5 until the given number of iterations is achieved:

2: Compute the Laplacian matrix L for the given training set YD.

3: Determine the dictionary D by a dictionary learning algorithm based on YD.

4: Solve the minimization problem min
X∈Rk×m

‖Y −DX‖2F + αTr(XLXT ) + λ‖X‖1.

5: Reconstruct the data YD := DX.

Output

Denoised data YD

In the next sections, we describe the two essential steps 3 and 4 of the algorithm in more

detail.

For step 2 to compute the Laplacian matrix L := (Li,j)
m
i,j=1, we can proceed as follows.

First we compute the symmetric matrix of all distances ‖Ii − Ij‖2F . Then, in each row

i = 1, . . . ,m, we order the nonzero values by size and collect the indices j corresponding to

the K smallest distances in the index set Ii. For i, j ∈ {1, . . . ,m} and i 6= j we put

Li,j :=

 −1 for j ∈ Ii or i ∈ Ij ,

0 otherwise.

Finally, we set Li,i =
m∑
j=1
j 6=i

|Li,j |.



12

METHODS FOR DICTIONARY LEARNING

We will propose here two dictionary learning methods to perform step 3 of Algorithm 1.

Both are based on a special partition tree structure. We construct the dictionaries in two

steps. First we compute a special tree structure to partition the set of our training patches.

Then, we compute the dictionary based on the obtained subset partitions in the tree. The

first step will be different for our two proposed methods, while the method to determine

the dictionary from the tree structure will be the same. The second method uses a simpler

similarity measure for the partition tree construction and is simpler to implement, but also

gives less good results in applications.

The two methods use the set of training patches I1, . . . , Im ∈ Rn×n and we construct the

dictionary elements D`, ` = 1, . . . , k in the form of patches, such that d` = vec D` are the

columns (atoms) of D. The dictionary elements D` will be linear combinations of low-rank

approximations of suitable center matrices, which are averages of subsets of Ij with high

similarity. This approach lets us incorporate 2-D features into the dictionary that cannot

be simply found by employing only the vectorized training patches.

First dictionary construction (FDC). Motivated by the ideas in Zeng et al. (2015),

we employ for the first dictionary learning method a top-bottom two-dimensional subspace

partition (TTSP) as follows.

Step 1: Construction of the partition tree. For the given training set I1, . . . , Im ∈

Rn×n of image patches we compute the mean

C :=
1

m

m∑
i=1

Ii ∈ Rn×n

and the two non-symmetric (n× n)-covariance matrices

CL :=
1

m

m∑
i=1

(Ii −C)(Ii −C)T , CR :=
1

m

m∑
i=1

(Ii −C)T (Ii −C). (5)

Observe that CL and CR possess the same eigenvalues. Now compute the normalized
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eigenvectors u and v for the maximal eigenvalue of CL and CR,

u := argmax
‖x‖2=1

xTCLx, v := argmax
‖x‖2=1

xTCRx,

representing the main structures of the training patches being not captured by the mean

patch C. Compute

si := uT Iiv, i = 1, . . . ,m.

These numbers measure how well each patch correlates with the structure, and will be used

to partition the set of {I1, . . . , Im} into two partial sets. For this purpose we order these

numbers by size,

s`1 ≤ s`2 ≤ . . . ≤ s`m ,

i.e., the new index set {`1, . . . , `m} is a permutation of the index set {1, 2 . . . ,m} such that

s`1 denotes the smallest number of the set {s1, . . . , sm}, s`2 the second smallest, and so

forth. We compute

κ̂ := argmin
1≤κ≤m−1

 κ∑
r=1

(
s`r −

1

κ

κ∑
ν=1

s`ν

)2

+
m∑

r=κ+1

(
s`r −

1

m− κ

m∑
ν=κ+1

s`ν

)2
 . (6)

Using κ̂, the partition {I`1 , . . . , I`κ̂} ∪ {I`κ̂+1
, . . . , I`m} is derived. This is the clustering k-

means method for the special case k = 2, that can be simply solved exactly for the set of

numbers {s`1 , . . . , s`m} by evaluating the term in (6) for each κ.

Having found this first partition, we then partition the two obtained subsets further using

the same scheme. This procedure yields a binary tree. The root node of the tree is associated

with the full set of training patches {I1, . . . , Im} and the two children nodes are associated

with the subsets {I`1 , . . . , I`κ̂} and {I`κ̂+1
, . . . , I`m}. We introduce the corresponding subsets

of indices Λ1 := {1, . . . ,m} associated with the root node and Λ2 := {`1, . . . , `κ̂} ⊂ Λ1,

Λ3 := {`κ̂+1, . . . , `m} ⊂ Λ1 associated with the two children nodes. Applying the partition

to the subsets of image patches, number the index sets at the nodes of the tree by going

through each layer from left to right. We stop the further partition of a subset once it

contains less than a predefined number of elements.
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While this partitioning procedure is equivalent to the first part of the TTSP algorithm

proposed in Zeng et al. (2015), we compose the data-dependent dictionary differently from

Zeng et al. (2015) as follows.

Step 2: Determine the dictionary from the partition tree. Each node in the tree is

now associated with a subset of training patches {Ij}j∈Λk , where Λk ⊂ {1, . . . ,m} denotes

the subset of indices of these patches. Now, for each node of the tree, i.e., for each index

set Λk, we compute the mean (center) matrix

Ck :=
1

|Λk|
∑
i∈Λk

Ii

and the normalized eigenvectors to the maximal eigenvalue of CkC
T
k and CT

kCk,

uk := argmax
‖x‖2=1

CkC
T
k x, vk := argmax

‖x‖2=1
CT
kCkx.

If λk denotes the maximal singular value of Ck then we have CkC
T
k uk = λ2

kuk, CT
kCkvk =

λ2
kvk. Thus, λkukv

T
k is the best rank-1 approximation of Ck, since uk and vk are the first

vectors in the singular value decomposition of Ck.

The dictionary is now determined as follows. We fix the first dictionary element

D1 := u1v
T
1 (7)

capturing the main structure of the mean C = C1. Further, for each pair of children nodes

with index sets Λ2k and Λ2k+1 to the same parent node with center matrices C2k and C2k+1

we set

D̃k := λ2ku2kv
T
2k − λ2k+1u2k+1v

T
2k+1, Dk :=

D̃k

‖D̃k‖F
, (8)

thereby capturing the difference of main structures of C2k and C2k+1. This procedure

differs from Zeng et al. (2015).

Remarks. 1. The construction of the dictionary D can be done simultaneously during the

construction of the partition tree. Having the matrix C = C1, we can already determine

the first dictionary element D1 according to (7). At the second level, after having found the
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partition of training sets into two subsets, we find the two corresponding center matrices

C2 and C3 and can construct the second dictionary element D2 according to (8) etc. In

Appendix B we give an extensive example of this construction and present the tree obtained

by this procedure.

2. Instead of approximating the centers Ck by a rank-1 matrix, we can also use a more

exact approximation with matrices of higher rank using the singular value decomposition.

For sparse representation purposes and if the patches do not contain noise, one may even

use the centers Ck directly instead of their approximations of smaller rank. In this case we

obtain D1 = C1/‖ C1‖F and Dk = (C2k −C2k+1)/‖ C2k −C2k+1‖F .

3. Our construction in (7) and (8) avoids the problem of having dictionary elements

being very similar. Strong similarity of dictionary elements can occur when the center

matrices of the subsets in the nodes of the tree, or a small-rank approximation of these

center matrices are employed as dictionary atoms, see Zeng et al. (2015).

4. Our dictionary construction can be understood as a generalized wavelet approach,

where the dictionary elements for k > 1 are ”wavelet elements” while D1 is the low-pass

element.

Second dictionary construction (SDC). Here we propose a second method for dictio-

nary learning.

Step 1: Construction of the partition tree. This time, we construct the partition tree

in a different way, using the similarity of training patches as we did already for the graph

regularization. We use the weights

wi,j := ‖Ii − Ij‖2F (9)

to measure the similarity between Ii and Ij .

First we order the patches such that I1 has the smallest Frobenius norm. Now, we

compute the weights w1,j for j = 1, . . . ,m according to (9) and order them by size,

w1,`1 ≤ w1,l2 ≤ . . . w1,`m ,
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where `1 = 1 since w1,1 = 0 is the smallest weight. Now, similarly as before in the

first construction, we divide the set of training patches into two subsets {I`1 , . . . , I`κ̂} and

{I`κ̂+1
, . . . , I`m} using

κ̂ := argmin
1≤κ≤m−1

 κ∑
r=1

(
w1,`r −

1

κ

κ∑
ν=1

w1,`ν

)2

+

m∑
r=κ+1

(
w1,`r −

1

m− κ

m∑
ν=κ+1

w1,`ν

)2
 .

We proceed to partition the obtained subsets using the same procedure and obtain a binary

tree, where each node is associated with a subset of training patches.

Step 2: Determine the dictionary from the partition tree. We proceed as in the

first construction and apply the rank-1 approximation of the mean C = C1 as the first

dictionary element as well as the normalized differences of the rank-1 approximations of the

centers of each pair of two children in the partition tree as further dictionary elements.

We consider a toy example to illustrate the two dictionary learning methods in the

appendix B (see also Figure 2).

Let us summarize the computational cost for the two dictionary learning methods FDC

and SDC. For FDC we have to compute for the first partition the matrices CL and CR

and need O(mn3) operations. The computation of κ̂ is the most expensive with O(m2)

operations. All further partition steps are cheaper since the number of patches decays. We

obtain an overall computational cost of at most O(km(m+ n3)) for the first step of FDC,

where O(k) bounds the number of partitions in the tree, and k is the number of wanted

dictionary elements. For the SDC method, we need to compute the weights wi,j in (7) with

an effort of O(m2n2) first. The remaining effort is governed by computing κ̂ with O(m2)

operations in the first partition and with less effort in the further partitions. Since the

weights wi,j have to be computed only once, we get an overall computational cost of at

most O(m2(n2 + k)).

The second step namely the determination of the dictionary from the tree is the same

for both methods and needs at most O(n3k) operations. For an over-complete dictionary

we can assume that k > n2 and the number m of training patches is much larger than k.
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Therefore, both algorithms have a computational cost of O(m2k). The second method is

cheaper than the first if we assume that the weights wi,j in (9) are already known, since

they are also needed for computing the graph regularization term.

METHODS TO SOLVE THE MINIMIZATION PROBLEM

In the fourth step of the proposed denoising Algorithm 1 we have to solve the minimiza-

tion problem

min
X∈Rk×m

(
‖Y −DX‖2F + αTr(XLXT ) + λ‖X‖1

)
, (10)

for given (noisy) training data Y and the given dictionary D = [d1 . . .dk], where dj =

vec Dj ∈ RN are the dictionary elements constructed in the last section.

We suggest solving it using the split Bregman iteration in Goldstein and Osher (2009)

and Plonka and Ma (2011), which is in the considered case equivalent to the Alternating

Direction Method of Multipliers (ADMM), see Yankelevsky and Elad (2016). For other

approaches see Chambolle and Pock (2011) and Lee et al. (2007). Since we have not found in

the literature a suitable presentation of a computational method for the particular problem

stated in equation (10), we present the mathematical details to solve this optimization

problem in Appendix A. These considerations lead to the following Algorithm 2 to perform

step 4 of Algorithm 1.
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Algorithm 2 : Solving the minimization problem

Input

Noisy training data Y = [y1, . . . ,ym] ∈ RN×m

Laplacian matrix L ∈ Rm×m

Learned dictionary D ∈ RN×k

X0 = Z0 = B0 = 0k×m

Parameters λ, µ, α > 0

Number of iterations `

Algorithm

Iterate until the given number of iterations is achieved:

1: Compute X`+1 as the solution of (DTD + µI)X + αXL = DTY + µ(Z` −B`).

2: Compute Z`+1 componentwisely by employing soft shrinkage

z`+1
i,j = Tλ/2µ(x`+1

i,j +B`
i,j) :=


x`+1
i,j +B`

i,j − λ
2µ for (x`+1

i,j +B`
i,j) ≥ λ

2µ ,

x`+1
i,j +B`

i,j + λ
2µ for (x`+1

i,j +B`
i,j) ≤ − λ

2µ ,

0 otherwise,

for i = 1, . . . , k, j = 1, . . . ,m.

3: Update B`+1 = B` − Z`+1 + X`+1.

Output X

The matrix equation

(DTD + µI)X + αXL = DTY + µ(Z` −B`) (11)

that has to be solved with regard to the unknown (k × k) matrix X in the first step of

Algorithm 2, has a very special structure. We show how it can be converted into a usual

linear equation system. Let the Kronecker product of two matrices A = (aij)
k
i,j=1 ∈ Rk×k

and B ∈ Rk×k be defined as

A⊗B :=


a11B . . . a1kB

...
...

ak1B . . . akkB

 ∈ Rk
2×k2 ,
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and let vec X = x ∈ Rk2 denote the vectorization of the matrix X formed by stacking the

columns of X into a single vector. We can use now the property

vec(A X B) = (BT ⊗A) vec X = (BT ⊗A) x,

see Horn and Johnson (1991), Lemma 4.3.1, and obtain

vec
(
(DTD + µI)X

)
=

(
Ik ⊗ (DTD + µI)

)
x,

vec (αXL) = α (L⊗ Ik) x,

where Ik denotes the identity matrix of size k × k. Thus (11) is equivalent with the linear

equation system[(
Ik ⊗ (DTD + µI)

)
+ α (L⊗ Ik)

]
x = vec

(
DTY + µ(Z` −B`)

)
. (12)

Remarks. 1. In the process of solving the minimization problem (10), the parameters α,

µ, and λ have to be determined. According to the graph regularization method in Yankelevsky

and Elad (2016) and Lee et al. (2007), we have tested the values α ∈ [0.01, 100]. Best results

are obtained for α ∈ [1.2, 2.0]. In our experiments we observed that the parameter µ does

not strongly influence the denoising result. However, µ and λ are strongly related since we

have to employ a thresholding in step 2 of the Algorithm 2 with the parameter λ
2µ . The value

λ
2µ determines the number of elements in the vector Z that are kept. If λ

2µ is too large, the

essential information on the data will de deleted by the soft shrinkage method.

2. The equation system (12) is of size k2 × k2 but has a very special structure due to

the Kronecker product of the involved matrices. For efficient solutions we refer to Bartels

and Stewart (1972) and Bhatia and Rosenthal (1997), who have proposed a method with

computational cost of O(k3) which is comparable to usual costs for linear systems of size

k × k.

EXPERIMENTS

In this section, we demonstrate the seismic data denoising performance of the pro-

posed FDC-graph and SDC-graph method in Algorithm 1 and compare it to the regu-
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larization method without the graph regularization term, i.e., with α = 0. We highlight

the advantages and disadvantages of using the graph regularization term on a field data

set with known amounts of random noise added. Comparisons to a traditional FX (fre-

quency domain in the time direction and spatial domain in trace direction) deconvolu-

tion (FX-Decon) algorithm in Canales (1984) and Gulunay (1986) and to state-of-the-art

curvelet denoising by thresholding in Hennenfent and Herrmann (2006) are also provided.

A Matlab implementation for the FX-Decon method is available from M.D. Sacchi, see

http://www-geo.phys.ualberta.ca/saig/SeismicLab. The Matlab code for curvelet de-

noising can be found in the curvelet toolbox, see http://www.curvelet.org.

An objective quality metric is critical for comparing denoising methods. The peak-

signal-to-noise ratio (PSNR) in dB is given by

PSNR = 20 ∗ log10

(
max(A)

std2(A−B)

)
,

where B presents the denoised image data and A is the clean image data, see e.g. Zoran

and Weiss (2011). Here max(A) is just the largest value occurring in the gray scale image

A and std2 computes the standard deviation of A −B. Computation time (in seconds),

and the recovery error
‖A−B‖2F
‖A‖2F

are used as the performance measurements. The parameter

K for building the graph Laplacian, where we need to fix the K nearest neighbors, is set to

K = 6.

To qualitatively evaluate our algorithm’s effectiveness on seismic data, we compare the

following six algorithms for denoising of seismic data in Figure 4(b), where the noise stan-

dard deviation σ is 25: FX-Decon, Curvelet algorithm, FDC-OMP, SDC-OMP, FDC-Graph,

and SDC-Graph. For all methods we tried to choose the parameters to achieve optimal de-

noising results. Here FDC-OMP and SDC-OMP denote the denoising methods that we

obtain by solving the optimization problem (1) by orthogonal matching pursuit with a

dictionary D learned by FDC or SDC. The minimization problem (1) even uses the supe-

rior semi-norm ‖X‖0 instead of ‖X‖1, but does not include the graph-regularization term

αTr(XLXT ). Similarly, FDC-Graph and SDC-Graph denote the methods obtained from
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Algorithm 1, using the first (FDC) or the second (SDC) dictionary learning approach. To

see the impact of the graph regularization term, we have taken the FDC-OMP and the

SDC-OMP here instead of applying Algorithm 1 with α = 0, since these methods work

slightly better. We employ only 2 iterations in Algorithms 1 for FDC-OMP, SDC-OMP,

FDC-Graph, and SDC-Graph.

The FX-Decon algorithm has been applied to a window of size 64× 64 samples overlap-

ping by 8 samples in both the time and spatial dimensions with filters of length 6. In our

numerical experiments with the FX-Decon algorithm we have studied different window sizes

from 16 to 64 and overlapping from 20% to 70%. We obtained the above parameters that

achieve the best denoising result with respect to the PSNR measure. The curvelet denois-

ing algorithm decomposes the noisy data into 5 different scales and different directions, and

91% percent of the small curvelet coefficients are removed by thresholding. For the seismic

data in Figure 4(b), the FDC-Graph and SDC-Graph algorithms use a set of 961 patches

that constitutes the training set, where the size of patches is 16 × 16. The regularization

parameters taken in Algorithm 2 to solve in (14) (see Appendix A) have been empirically

chosen to be α = 1.6; λ = 0.8; µ = 0.05 for FDC-Graph and α = 1.6; λ = 1.0; µ = 0.04

for SDC-Graph. For the dictionary learning part, the number of patches contained in each

node determines the number of layers of the tree. We have set the minimal number of

patches in a subset corresponding to one node to 6 for the FDC-Graph algorithm and to 16

for the SDC-Graph algorithm.

The dictionaries learned by the FDC and the SDC approach are shown in Figure 5, where

the set of 961 training patches has been randomly selected from the noisy data in Figure 4(b).

The main difference between FDC-OMP/ SDC-OMP and FDC-Graph/ SDC-Graph is that

by graph regularization the geometric similarity of data patches is employed. We observe

from the close-up window in Figure 6 that the results using the graph regularization methods

maintain the even continuous and weak features of the original data. Figure 7 shows the

separated noise, i.e., the difference between denoising results and field data one in Figure

4(a). From the single trace comparison in Figure 8 we see that all methods achieve strong
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amplitudes close to the clear data trace. But for weak amplitudes, the denoising results

using the Graph regularization methods are much better compared to the methods without

them. The statistical results with various noise standard deviation are shown in Figure 9.

The graph regularization term is helpful for capturing the features of seismic data.

Finally, we applied FX-Decon, curvelet denoising, and the proposed FDC-Graph, and

SDC-Graph algorithms to denoising to the second field data (the size of data is 256× 256)

in Figure 4(c). FX-Decon was applied to windows of size 50×50 samples overlapping on 16

samples in both dimensions and with filters of length 4. The Curvelet denoising algorithm

decomposes the noisy data into 5 scales and 98% percent of the small curvelet coefficients

are removed by thresholding. For the FDC-Graph and SDC-Graph algorithms we employ

Algorithm 1 and Algorithm 2, where the parameters are empirically chosen to be α = 1.2;

λ = 1.0; µ = 0.04 for FDC-Graph and α = 1.2; λ = 1.0; µ = 0.03 for SDC-Graph. The field

data two does not have noise added. The noise there is the original noise recorded during

acquisition.

The denoising results are presented in Figure 10 and separated noise of field data two is

given in Figure 11. We see that the seismic event in the curvelet denoising result is smoother

than for the other methods in the Figure 10. In Figure 11, the separated noise obtained

by curvelet denoising contains still information of the signal while the FDC-Graph, and

SDC-Graph algorithms work significantly better for noise separation. From the magnified

windows in Figures 10 and 11, the FDC-Graph and SDC-Graph methods better recover the

weak features found in the original data compared to the other methods.

For the two field data, the computational costs of the proposed algorithms are similar,

since we have the same size of field data and have used the same size of training patches 16×

16 as well as the same minimal number of patches in subsets in the dictionary construction

as for the first test, see Figure 9(e).
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CONCLUSION

In this paper we have proposed a regularization approach for seismic data processing

using dictionary learning methods and graph regularization. We have focussed on applica-

tions in seismic image denoising. However, the concept of the proposed method based on

learning an adaptive dictionary from the given data strongly differs from direct denoising

methods that apply either local smoothing procedures or smoothing procedures based on

space frequency filtering processes. The learned dictionary enables us to obtain a sparse

data representation that can be used also for other imaging problems.

For denoising of seismic images, we have employed here the given noisy data to extract

training patches for dictionary learning. This procedure made a iterative method necessary,

where the dictionary is improved using only 2 iterations in Algorithm 1. Iterations can

be completely avoided if the dictionary is learned from clean seismic images possessing

structures that are similar to the significant structures of the data to be processed. Another

possible alternative may be a hybrid method that uses e.g. FX-Decon at a first stage for

denoising and employs the denoised data patches to learn a data-driven dictionary at the

second stage.

Experimental results achieved on field seismic data show that our proposed method

connecting graph regularization and dictionary learning provides improved denoising re-

sults compared to methods that only employ a learned dictionary. Incorporating the graph

regularization term however requires a higher effort to solve the minimization problem at

each iteration step. We have used here a split Bregman method to minimize the occurring

functional which is more time consuming than orthogonal matching pursuit which can be

applied for the simplified functional without graph regularization term. Still, the recovery

for stronger noise levels is not satisfactory. Future work will focus on improving the com-

putational speed of the algorithms and on a more efficient choice of optimal parameters.

Furthermore, we will study this approach for other geophysical inversion problems such as

migration, imaging, and full waveform inversion.
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APPENDIX A

We introduce the mathematical details of the split Bregman algorithm to derive Algo-

rithm 2, which is used to solve the fourth step of the proposed denoising Algorithm 1. Let’s

recall the problem in the fourth step of Algorithm 1,

min
X∈Rk×m

(
‖Y −DX‖2F + αTr(XLXT ) + λ‖X‖1

)
. (13)

First, we introduce a further variable Z ∈ Rk×m and rewrite the problem as follows,

min
X,Z∈Rk×m

‖Y −DX‖2F + αTr(XLXT ) + µ‖X− Z‖2F + λ‖Z‖1 (14)

with some fixed parameter µ > 0. Now, let

E(X,Z) := λ‖Z‖1 + ‖Y −DX‖2F + αTr(XLXT ),

such that (14) is of the form

min
X,Z∈Rk×m

E(X,Z) + µ‖X− Z‖2F .

We introduce the so-called Bregman distance

DE((X,Z), (X`,Z`)) := E(X,Z)− E(X`,Z`)− 〈P`,X−X`〉 − 〈Q`,Z− Z`〉,

where (P`,Q`) is a subgradient of E at (X`,Z`), i.e., P` ∈ ∂XE(X`,Z`) and Q` ∈

∂ZE(X`,Z`), where ∂XE(X`,Z`) and ∂ZE(X`,Z`) denote the subdifferentials of E at

(X`,Z`) with respect to X and Z. Now, to solve (14), we replace E(X,Z) by the Bregman

distance and consider the iteration

(X`+1,Z`+1) = argmin
X,Z∈Rk×m

{
DE((X,Z), (X`,Z`)) + µ‖X− Z‖2F

}
= argmin

X,Z∈Rk×m

{
E(X,Z)− 〈P`,X〉 − 〈Q`,Z〉+ µ‖X− Z‖2F

}
. (15)
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This iteration is senseful, since the two additional terms 〈P`,X〉 and 〈Q`,Z〉 vanish for the

desired solution (X,Z) of (14). From (15) we derive the necessary conditions

0 ∈ ∂XE(X`+1,Z`+1)−P` + 2µ(X`+1 − Z`+1),

0 ∈ ∂ZE(X`+1,Z`+1)−Q` − 2µ(X`+1 − Z`+1).

Since (P`+1,Q`+1) ∈ ∂E(X`+1,Z`+1) we obtain the following recursions from these condi-

tions,

P`+1 = P` − 2µ(X`+1 − Z`+1), Q`+1 = Q` + 2µ(X`+1 − Z`+1), (16)

and particularly, P`+1 +Q`+1 = P`+Q` for all `. Now, introducing B` := 1
2µQ`, the second

equation in (16) implies the recursion

B`+1 = B` − Z`+1 + X`+1.

Moreover, by

µ‖X− Z + B`‖2F = µ‖X− Z‖2F + 2µ〈X− Z,B`〉+ µ‖B`‖2F

we can rewrite (15) as

(X`+1,Z`+1) = argmin
X,Z∈Rk×m

{
E(X,Z) + µ‖X− Z + B`‖2F − 2µ〈X− Z,B`〉 − 〈P`,X〉 − 〈Q`,Z〉

}
= argmin

X,Z∈Rk×m

{
E(X,Z) + µ‖X− Z + B`‖2F − 〈X,P` + Q`〉

}
,

where we have used that −2µ〈X−Z,B`〉 = −〈Q`,X〉+ 〈Q`,Z〉. Taking the initial matrices

B0 = P0 = Q0 = 0, it follows that P` + Q` = 0 for all `, and we arrive at the iteration

(X`+1,Z`+1) = argmin
X,Z∈Rk×m

{
E(X,Z) + µ‖X− Z + B`‖2F

}
,

B`+1 = B` − Z`+1 + X`+1.

Applying alternating minimization, this leads to the following iteration scheme,

X`+1 = argmin
X∈Rk×m

{
‖DX−Y‖2F + αTr(XLXT ) + µ‖X− Z` + B`‖2F

}
,

Z`+1 = argmin
Z∈Rk×m

{
λ‖Z‖1 + µ‖X`+1 − Z + B`‖2F

}
, (17)

B`+1 = B` − Z`+1 + X`+1.
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The functional in the first equation of (17) is differentiable, and we obtain the necessary

condition

DT (DX−Y) + αXL + µ(X− Z` + B`) = 0,

i.e.,

(DTD + µI)X + αXL = DTY + µ(Z` −B`).

This equation is uniquely solvable if the eigenvalues α1, . . . , αk of (DTD + µI) and the

eigenvalues β1, . . . , βk of αL satisfy

αi + βj 6= 0 ∀ i = 1, . . . , k, j = 1, . . . ,m,

see Bartels and Stewart, 1972 and Bhatia and Rosenthal (1997). This is true in our case

since (DTD + µI) is positive definite for µ > 0 and L is positive semidefinit.

The second subproblem in (17) can be simply solved by component-wise shrinkage. For

each single component z`+1
i,j of Z`+1 = (z`+1

i,j )k,mi=1,j=1 we have

z`+1
i,j = argmin

z∈R
{λ |z|+ µ|z − x`+1

i,j −B
`
i,j |2}

i.e.,

0 ∈ λ z`+1

|z`+1|
+ 2µ

(
z`+1 − x`+1

i,j −B
`
i,j

)
,

where z
|z| denotes the set [−1, 1] if z = 0. Hence, we find the solution by soft shrinkage,

z`+1
i,j = Tλ/2µ(x`+1

i,j +B`
i,j) :=


x`+1
i,j +B`

i,j − λ
2µ for (x`+1

i,j +B`
i,j) ≥ λ

2µ ,

x`+1
i,j +B`

i,j + λ
2µ for (x`+1

i,j +B`
i,j) ≤ − λ

2µ ,

0 otherwise.

APPENDIX B

In our paper, we have proposed two dictionary learning algorithms, called FDC and

SDC. In order to illustrate the dictionary learning step more clearly, we will give a small
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toy example, where the training set contains the following 10 training patches of size 3× 3,

I1 =


1 1 0

0 0 1

0 0 0

 I2 =


1 0 0

0 1 0

0 0 0

 I3 =


0 0 0

1 1 0

0 0 1

 I4 =


1 0 0

0 1 1

0 0 1



I5 =


1 1 1

0 1 1

0 0 0

 I6 =


0 0 1

1 1 1

0 1 1

 I7 =


1 1 0

0 1 1

0 0 1

 I8 =


0 1 1

0 0 1

0 0 0



I9 =


1 1 1

0 0 1

0 0 1

 I10 =


0 0 0

0 1 1

0 0 1

 .

We construct the partition trees using the two algorithms in section METHODS FOR

DICTIONARY LEARNING and show, how the dictionary construction can be directly

incorporated into the partition tree construction. The example also shows that the trees

obtained and thus the dictionary elements found slightly differ for the two approaches. For

the explicit computations we round to 2 digits in matrix entries and to 4 digits for entries

of singular values and singular vectors/eigenvectors.

FDC algorithm

First layer: We start with the training set I1, I2, . . . , I10. We compute the mean

(center) matrix

C1 =
1

10

10∑
i=1

Ii =


0.6 0.5 0.4

0.2 0.7 0.8

0 0.1 0.6


and the normalized eigenvectors to the maximal eigenvalue of

C1C
T
1 =


0.77 0.79 0.29

0.79 1.17 0.55

0.29 0.55 0.37

 and CT
1 C1 =


0.40 0.44 0.40

0.44 0.75 0.82

0.40 0.82 1.16

 .
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We obtain

u1 = [−0.5590,−0.7516,−0.3501]T , v1 = [−0.3423,−0.5924,−0.7293]T ,

which are the singular vectors of C1 to the singular value λ1 = 1.4191. Thus we get the

first dictionary element according to (7),

D1 = u1v
T
1 =


0.19 0.33 0.41

0.26 0.45 0.55

0.12 0.21 0.26

 ,

and λ1D1 represents the optimal rank-1 approximation of C1.

Second layer: The training set is now divided into two partial sets according to the

description for FDC tree partitioning. This can be done as follows:

1. We calculate the two non-symmetric covariance matrices CL and CR in (5),

CL =


0.73 −0.19 −0.90

−0.19 0.53 0.05

−0.09 0.05 0.33

 , CR =


0.40 0.16 −0.10

0.16 0.55 0.08

−0.10 0.08 0.64

 .

2. We compute the normalized eigenvectors corresponding to the maximal eigenvalue

of CL and CR, u = [−0.8415, 0.5062, 0.1890]T , v = [−0.590, 0.4508, 0.8907]T .

3: We compute the one-dimensional projection representations si := uT Iiv of all

patches, obtaining

[s1, · · · , s10]T = [0.12, 0.28, 0.37, 0.90,−0.40, 0.15, 0.52,−0.68,−0.46, 0.85]T .

We order these numbers by size, s`1 ≤ s`2 ≤ . . . ≤ s`10 , and find the ordered set

[s`1 , . . . , s`10 ]T = [s8, s9, s5, s1, s6, s2, s3, s7, s10, s4]T

= [−0.68,−0.46,−0.40, 0.12, 0.15, 0.28, 0.37, 0.52, 0.85, 0.90]T .

4: We compute κ̂ according to (6) and obtain here κ̂ = 3. Thus, the patches with the

indices 8, 9, 5 corresponding the first three numbers s8, s9, s5 in our ordered set are put
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into the first subset, and all other patches are put into the second subset. In this way the

partition of index sets Λ1 = Λ2 ∪Λ3 with Λ2 = {5, 8, 9}, Λ3 = {1, 2, 3, 4, 6, 7, 10} is derived.

The center matrices of the obtained two sets of patches are

C2 =
1

3
(I5 + I8 + I9), C3 =

1

7
(I1 + I2 + I3 + I4 + I6 + I7 + I10).

We compute the maximal singular values λ2 = 1.8259, λ3 = 1.3648 of the center matrices

C2, C3 and the first left and right singular vectors u2, v2 and u3, v3 of C2, C3, respectively.

Then, from the formula (8) we obtain the second dictionary element D2 = D̃2

‖D̃2‖F
with

D̃2 = λ2u2v
T
2 − λ3u3v

T
3 =


0.55 1.48 1.83

0.27 0.31 0.51

0.04 −0.14 −0.09

 .

Now, D̃2 is a rank-2 approximation of C2 − C3 and therefore represents the difference

between main structures of C2 and C3 while the common significant structure is already

captured by D1. Indeed, since λ1D1 approximates C1 = 3
10C2 + 7

10C3, the main structures

of C2 and C3 can be well presented by D1 and D2.

Third layer: The partition procedure yields now the subsets of indices Λ4 = {8},

Λ5 = {5, 9} of Λ2, and the subsets Λ6 = {3, 6}, Λ7 = {1, 2, 4, 7, 10} of Λ3, see also Figure 3.

We compute the center matrices of the corresponding partial sets of patches,

C4 = I8, C5 =
1

2
(I5 + I9), C6 =

1

2
(I3 + I6), C7 =

1

5
(I1 + I2 + I4 + I7 + I10).

We get the new dictionary element D3 = D̃3

‖D̃3‖F
with

D̃3 = λ4u4v
T
4 − λ5u5v

T
5 =


−0.72 −0.21 −0.05

−0.42 −0.10 0.01

−0.15 −0.20 −0.26

 ,

where λ4 = 1.6180 and λ5 = 1.9966 are maximal singular values of the center matrices C4

and C5, and u4, v4 and u5,v5 are first singular vectors of C4, C5. Similarly, D4 = D̃4

‖D̃4‖F
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with

D̃4 = λ6u6v
T
6 − λ7u7v

T
7 =


0.05 −0.10 −0.13

0.44 0.17 0.07

0.35 0.30 0.25

 ,

where λ6 = 1.7184 and λ7 = 1.2630 are maximal singular values of center matrices C6 and

C7 with corresponding singular vectors u6, v6, u7, v7. Since D̃3 is now a good approxima-

tion of C4 −C5 = I8 −C5, we can obtain a sparse approximation of I8 already using the

dictionary elements D1, D2 and D3.

Fourth layer: The index subset Λ5 is split into Λ8 = {5}, Λ9 = {9}, Λ6 is split into

Λ10 = {3}, Λ11 = {6}; and Λ7 is split into Λ12 = {1, 7} and Λ13 = {2, 4, 10}. Then D5, D6

and D7 can be learned from {Λ8,Λ9}, {Λ10,Λ11}, and {Λ12,Λ13}.

Fifth layer: The index subset Λ12 is split into Λ14 = {1} and Λ15 = {7}, Λ13 is split

into Λ16 = {2} and Λ17 = {4, 10}, and we learn the dictionary elements D8 and D9.

Sixth layer: Finally, index subset Λ17 is split into Λ18 = {4} and Λ19 = {10}, and we

learn the dictionary element D10. The complete partition tree is given in Figure 3(a).

Remark. Please keep in mind that we have used here always rank-1 approximations of

the center matrices since we assume that the training data are noisy in applications. If the

training data are exact (as it is the case in this toy example), then we may use the center

matrices themselves instead of their rank-1 approximations, getting the dictionary

D1 =
C1

‖C1‖F
, D2 =

C2 −C3

‖C2 −C3‖F
, D3 =

C4 −C5

‖C4 −C5‖F
, D4 =

C6 −C7

‖C6 −C7‖F
,

etc., and have for example already an exact sparse representation of I8 = C4 as a linear

combination of D1, D2 and D3. Indeed, we find

I8 = C4 = C1 +
7

10
(C2 −C3) +

2

3
(C4 −C5) .
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Applying the SDC algorithm, we obtain a different partition tree, see Figure 3(b), where

Λ1 = {1, . . . , 10}

Λ2 = {1, 2, 3, 4, 5, 7, 10}, Λ3 = {6, 8, 9},

Λ4 = {2}, Λ5 = {1, 3, 4, 5, 7, 10}, Λ6 = {8, 9}, Λ7 = {6}

Λ8 = {1, 4, 5, 7}, Λ9 = {3, 10}, Λ10 = {8}, Λ11 = {9}

Λ12 = {1}, Λ13 = {4, 5, 7}, Λ14 = {10}, Λ15 = {3},

Λ16 = {4, 5}, Λ17 = {7},

Λ18 = {4}, Λ19 = {5}.

Observe that this approach provides a different partition tree, also the number of layers

and the number of dictionary elements is different.
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Figure Captions:

Figure 1: Example for a weighted and undirected graph, where with weight 1 for K-

nearest neighbors.

Figure 2: The process for dictionary learning by FDC and SDC algorithm, where λi

denotes the maximal singular value of center matrix Ci at each node, ui and vi are the first

vectors in the singular value decomposition of Ci.

Figure 3: Trees for (a) FDC and (b) SDC dictionary learning for the toy example in

Appendix B.

Figure 4: Seismic Data: (a) field data one; (b) field data one with added random noise

(noise standard deviation σ = 25); and (c) field data two.

Figure 5: Comparison of dictionaries learned through two methods: (a) FDC; (b) SDC.

Figure 6: Denoising results for field data with noise standard deviation σ = 25: (a)

FX-Decon; (b) Curvelet; (c) FDC-OMP; (d) SDC-OMP; (e) FDC-Graph; (f) SDC-Graph.

Figure 7: Difference between denoising results and field data one in Figure 4(a): (a)

FX-Decon; (b) Curvelet; (c) FDC-OMP; (d) SDC-OMP; (e) FDC-Graph; (f) SDC-Graph.

Figure 8: Single trace comparison of the reconstructions of the field data one in Figure

4(a): (a) FX-Decon; (b) Curvelet; (c) FDC-OMP; (d) SDC-OMP; (e) FDC-Graph; (f)

SDC-Graph.

Figure 9: Denoising performance of FX-Decon, Curvelet, FDC-OMP, SDC-OMP, FDC-

Graph and SDC-Graph algorithms for different noise standard deviations.

Figure 10: Denoising of field data two by FX-Decon (a), Curvelet (b), FDC-Graph (c)

and SDC-Graph (d).

Figure 11: Difference between denoising results and field data two by FX-Decon (a),

Curvelet (b), FDC-Graph (c) and SDC-Graph (d).
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Figure 1: Example for a weighted and undirected graph, where with weight 1 for K-nearest

neighbors.
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Figure 2: The process for dictionary learning by FDC and SDC algorithm, where λi denotes

the maximal singular value of center matrix Ci at each node, ui and vi are the first vectors

in the singular value decomposition of Ci.
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(a)

(b)

Figure 3: Trees for (a) FDC and (b) SDC dictionary learning for the toy example in

Appendix B.
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Figure 4: Seismic Data: (a) field data one; (b) field data one with added random noise

(noise standard deviation σ = 25); and (c) field data two.
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(a)

(b)

Figure 5: Comparison of dictionaries learned through two methods: (a) FDC; (b) SDC.
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Figure 6: Denoising results for field data with noise standard deviation σ = 25: (a)

FX-Decon; (b) Curvelet; (c) FDC-OMP; (d) SDC-OMP; (e) FDC-Graph; (f) SDC-Graph.
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Figure 7: Difference between denoising results and field data one in Figure 4(a): (a)

FX-Decon; (b) Curvelet; (c) FDC-OMP; (d) SDC-OMP; (e) FDC-Graph; (f) SDC-Graph.
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Figure 8: Single trace comparison of the reconstructions of the field data one in Figure

4(a): (a) FX-Decon; (b) Curvelet; (c) FDC-OMP; (d) SDC-OMP; (e) FDC-Graph; (f)

SDC-Graph.
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Figure 9: Denoising performance of FX-Decon, Curvelet, FDC-OMP, SDC-OMP, FDC-

Graph and SDC-Graph algorithms for different noise standard deviations.
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Figure 10: Denoising of field data two by FX-Decon (a), Curvelet (b), FDC-Graph (c) and

SDC-Graph (d).
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Figure 11: Difference between denoising results and field data two by FX-Decon (a),

Curvelet (b), FDC-Graph (c) and SDC-Graph (d).


