
Worst-case error analysis of lifting-based
fast DCT-algorithms

Author for correspondence:

Miriam Primbs

Institut für Mathematik

Universität Duisburg-Essen

D-47048 Duisburg

Germany

E-mail: Miriam.Primbs@math.uni-duisburg.de

Telephone: ++49 203 379 1318

Abstract

Integer DCTs have a wide range of applications in lossless coding, especially in image com-

pression. An integer-to-integer DCT of radix-2-length n is a nonlinear, left-invertible mapping

which acts on Zn and approximates the classical discrete cosine transform (DCT) of length

n. All known integer-to-integer DCT-algorithms of length 8 are based on factorizations of

the cosine matrix CII
8 into a product of sparse matrices and work with lifting steps and

rounding-off. For fast implementation one replaces floating point numbers by appropriate

dyadic rationals. Both, rounding and approximation leads to truncation errors. In this paper

we consider an integer-to-integer transform for (2× 2) rotation matrices and give estimates

of the truncation errors for arbitrary approximating dyadic rationals. Further, using two

known integer-to-integer DCT-algorithms, we show examplarily how to estimate the worst-

case truncation error of lifting based integer-to-integer algorithms in fixed-point arithmetic,

whose factorizations are based on (2× 2) rotation matrices..

1

Key words Data compression, discrete cosine transform, error estimate, factorization of the

cosine matrix, fast algorithm, fast multiplierless transform, fixed-point arithmetic, integer-

to-integer DCT, lifting steps, lossless coding, reversible integer-to-integer DCT rounding-off,

truncation error.

2

1 Introduction

The discrete cosine transform of type II (DCT-II) is defined as

ŷ = CII
n x with CII

n :=

√
2
n

(
εn(j) cos

j(2k + 1)π
2n

)n−1

j,k=0

∈ Rn×n,

where εn(0) :=
√

2/2 and εn(j) := 1 for j ∈ {1, . . . , n − 1} and x ∈ Rn. The DCT-II has a

wide range of applications in signal and image processing and is incorporated in the interna-

tional standards JPEG and MPEG (see [1, 20, 21]). In particular, the DCT-II of length 8 is

most commonly used and that is why our main interest also relates to this case. In some ap-

plications the input vector (or input matrix in the two-dimensional case) consists of integers,

while the output data of DCT-II are no longer of integer form. Observe that the procedure of

rounding an output vector of DCT-II to the next integer vector in lossy signal compression is

not invertible. For lossless coding it would be of great interest to be able to characterize the

output completely again with integers, but lossless coding schemes are hardly based on integer

DCT-II which have been studied in recent years (see [3, 4, 5, 6, 9, 10, 14, 15, 17, 19, 22, 23]).

Thus we are very interested in algorithms that deliver also output data consisting of integers.

We denote those algorithms as integer-to-integer DCT-II algorithms and define it as follows.

An integer-to-integer DCT-II of length n is a nonlinear, left-invertible integer-to-integer map-

ping that approximates the classical DCT-II, whereas its computational cost is not higher

than in the classical case.

In current literature we find several approaches to develop new integer DCT-II algorithms,

decreasing the arithmetical complexity of the transform. Most of these approaches are based

on special factorizations of the cosine matrix CII
n (see [4, 6, 7, 8, 9, 11, 17, 18, 23]), where the

matrix factors are simple matrices and lifting matrices. A lifting matrix is a matrix whose

diagonal elements are 1, and only one nondiagonal element is nonzero. Simple matrices

are permutation matrices or sparse matrices whose nonzero entries are only integers or half

integers. The inverses of these matrices are easy to determine. Many factorizations are

3

based on the rotation matrix R2(ω) =
(

cos ω sinω
− sinω cos ω

)
of order 2, which in turn can be

factorized in three lifting matrices (see for n = 8 [4, 5, 9, 11, 16, 17, 18, 22]). Most interesting

for practical purpose is the DCT-II of length 8, on which we also focus in this paper.

There are two important aspects concerning lifting-based DCT-II algorithms. Firstly,

they cannot only be used for lossy but also for lossless coding. Including rounding-off in a

lifting step leads to a so called integer lifting step, which is invertible and maps integers to

integers. Thus, any lifting-based DCT-II algorithm can be used for lossless coding as well.

This is also mentioned or used in [4, 5, 8, 9, 11, 16, 17, 18, 22, 23]. Secondly, replacing

the floating point numbers in the lifting steps by appropriate dyadic rationals leads to fast

algorithms, which keep the special symmetric relations of CII
8 into account and also remains

invertible (see [4, 5, 11, 22, 23]).

Besides trial-and-error approaches how to allocate and choose the dyadic rationals in the

lifting steps in [4, 11, 22, 23], in [5] we find a quasi-coordinate descent algorithm with adder

constraint for systematically finding the most appropriate binary coefficients approximating

the exact DCT. There, the used performance measure is the mean square error (MSE), which

depends on the variance of the Gaussian input data. Further, the Minimum Adder Repre-

sentation [5] of the numerators of the dyadic rationals is used to minimize the arithmetical

complexity in implementation. An interesting analytic approach is presented in [4], based

on a special WHT (Walsh-Hadamard Transform) factorization of the cosine matrix CII
8 [20],

being also used in our paper. Chen, Oraintara and Nguyen determined optimal values, which

minimize the statistical MSE of the algorithm if being used in the occurring integer lifting

steps. These floating point numbers depend on the variance of the input data, which are

again supposed to be Gaussian. Although these values are only used for analysis purpose,

they are a valuable tool for performance comparisons.

However, little attention has been paid to the issue of analysis for the errors caused by

both approximation and rounding, apart from the MSE considerations mentioned above.

In [8] we find estimates for error bounds in infinity norm for arbitrary TERM (Triangular

4

Elementary Reversible Matrix) factorizations. Unfortunately, it is not directly applicable

to the factorizations which are based on rotation matrices R2(ω) and it does not use special

characteristics of the current transform. In [17, 18] Plonka and Tasche propose a left-invertible

integer-to-integer transform in floating point arithmetic which approximates the classical

DCT-II very well. The underlying factorization of CII
8 (presented for arbitrary radix-2 length

n in [17]) is based on the rotation matrix R2(ω). The case n = 8 is very similar to the well

known Loeffler factorization in [12]. We also use this factorization in our paper. For each

block R2(ω) of order 2 and for arbitrary x ∈ Z2, one finds suitable integer approximation

of R2(ω)x such that this process is left-invertible. In [17] there is presented a detailed,

componentwise error analysis for the truncation error of integer approximation of R2(ω)x

and the exact value. Using these results Plonka and Tasche derive componentwise worst

case estimates for the whole transform. This method of estimating can be adopted to any

integer-to-integer DCT-II algorithm in floating point arithmetic, that is based on rotation

matrices. Unfortunately, these estimates cannot be used to treat dyadic approximation in

the lifting steps as well.

In this paper we approximate each block R2(ω) of order 2 for arbitrary x ∈ Z2 by a

suitable integer approximation of R2(ω)x such that this process is left-invertible and works

in fixed-point arithmetic (see also [4, 5, 11, 22]). As always, this is achieved by approximating

the floating point numbers in the lifting steps by dyadic rationals. Further, for this process we

present componentwise worst-case error estimates depending on the range of the input data

and approximation quality . This is really new, because error estimates have not yet been

considered for algorithms in fixed-point arithmetic. Furthermore, we analyze two concrete

algorithms for the integer-to-integer DCT of length 8, choosing special dyadic rationals for

approximation. We show how to determine the componentwise error estimates. This is

representative for the application of our estimates to arbitrary integer-to-integer DCT-II

algorithms in fixed-point arithmetic, based on rotation matrices of order 2. A numerical

comparison between these two algorithms and some of their modifications is finally presented.

5

The paper is organized as follows. In section 2 we present two factorizations of the cosine

matrix CII
8 into permutation matrices and rotation matrices of the form R2(ω). In section

3 we factorize R2(ω) in lifting matrices and apply the lifting technique and rounding-off to

this factorization (see [7, 11, 23]). Further, we present estimates for the truncation errors

occurring for the integer approximation of R2(ω)x (x ∈ Z2) during the integer lifting and

approximation process. These estimates depend on the range of the input vector x and

the approximation quality in the lifting matrices. In section 4 we apply these results to

the factorizations of CII
8 and present worst case error estimates for the associated integer-

to-integer DCT-II algorithms in fixed-point arithmetic. Finally, in section 5 we consider a

comparison between the floating-point integer-to-integer DCT-II algorithms and some of their

possible fixed-point versions.

2 Factorizations of the cosine matrix CII
8

In this paper we consider two factorizations of the cosine matrix CII
8 into permutation ma-

trices and rotation matrices. The first has been proposed in [17, 18] and reads

CII
8 = B8

(
I4

A4(1)

) 


CII
1

CIV
2

CII
2

CII
2




(
T4(0)

T4(1)

)
T8(0), (1)

where B8 is the bitreversal matrix, which maps x = (xj)7j=0 to B8x = (x0, x4, x2, x6, x1, x5, x3, x7)T ,

A4(1) = 1√
2




√
2

1 1
1 −1√

2


, T4(1) =




cos π
16 sin π

16
cos 3π

16 sin 3π
16

− sin 3π
16 cos 3π

16
sin π

16 − cos π
16


,

T4(0) =
1√
2

(
I2 J2

I2 −J2

)
, T8(0) =

1√
2

(
I4 J4

I4 −J4

)

and

CII
2 =

1√
2

(
1 1
1 −1

)
, CIV

2 =
(

cos π
8 sin π

8
sin π

8 − cos π
8

)
.

6

Here In denotes the identity matrix of order n and Jn the counter identity matrix of order

n, defined by Jn := (δn−1−i,j)n−1
i,j=0. As in [18] we denote the five orthogonal matrix factors of

CII
8 in (1) in this order by

CII
8 = B8 A8(0, 1)T8(0, 1, 0, 0)T8(0, 1)T8(0).

Note that this factorization coincides up to simple permutation with the well known Loeffler

factorization (see [12]). Nevertheless, we choose this special presentation to make our result

better comparable to these in [17, 18]. Note, that in [17] one finds a factorization of CII
n for

arbitrary radix-2 length n, which agrees with ours for the case n = 8.

For A ∈ Rk×l, B ∈ Rn×m we define A ⊕ B := diag(A, B) =
(

A
B

)
∈ R(k+n)×(l+m).

Choosing the expansion factor 2, we then obtain the factorization

2CII
8 = B8 A8(0, 1) (I4 ⊕

√
2I4)T8(0, 1, 0, 0) (

√
2I4 ⊕ I4)T8(0, 1)

√
2 T8(0), (2)

which has been proposed in [17, 18].

The second factorization we want to apply can be found in [4, 20]. It reads

2
√

2 CII
8 = B8




1
1

U22

U44


 B8Hw, (3)

where B8 is again the bitreversal matrix and Hw denotes the Walsh Hadamard matrix defined

by

Hw :=




1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1




,

U22 :=
(

cos(π
8) sin(π

8)
− sin(π

8) cos(π
8)

)

7

and finally

U44 :=




cos(7π
16) − sin(7π

16)
cos(3π

16)− sin(3π
16)

sin(3π
16) cos(3π

16)
sin(7π

16) cos(7π
16)


 T




cos(3π
8) − sin(3π

8)
cos(3π

8)− sin(3π
8)

sin(3π
8) cos(3π

8)
sin(3π

8) cos(3π
8)




with

T :=




0 −1 0 0
0 0 0 1
−1 0 0 0

0 0 −1 0


 .

Observe, that in contrast to the first factorization, the scaling factor is 2
√

2 instead of 2.

3 Integer-to-integer transform via lifting in rotation matrices

The integer-to-integer DCT-II-algorithms we consider in this paper are based on the factor-

izations (2) and (3) of the cosine matrix CII
8 presented in section 2. They only consist of

permutation matrices and rotation matrices R2(ω) and R̃2(ω) of order 2 with angle ω ∈ (0, π
2],

which are defined by

R2(ω) =
(

cos ω sinω
− sinω cos ω

)
,

R̃2(ω) =
(

cos ω − sinω
sinω cos ω

)
=

(
1 0
0 −1

)
R2(ω)

(
1 0
0 −1

)
. (4)

More concretely, the factorization (2) needs 5 rotations R2(ω) with ω ∈ { π
16 , π

8 , π
4 , 3π

16 },

where ω = π
4 is used twice. The factorization (3) needs R2(π

8) and four rotations R̃2(ω) with

ω ∈ {3π
16 , 3π

8 , 7π
16 }.

In this section, we first consider the problem of how to find a good integer approximation

of R2(ω)x, where x ∈ Z2, which can be carried out in fixed point arithmetic. We start with

some notations. Let s ∈ R with s �= 0 be given. Then matrices of the form

(
1 s
0 1

)
,

(
1 0
s 1

)

8

are called lifting matrices of order 2. The inverse of a lifting matrix is again a lifting matrix,

and we have (
1 s
0 1

)−1

=
(

1 −s
0 1

)
,

(
1 0
s 1

)−1

=
(

1 0
−s 1

)
.

For a ∈ R let 	a
 := max{x ≤ a;x ∈ Z}. Further, let rd(a) := 	a + 1
2
 be the next integer to

a and {a} = a− 	a
 the non-integer part of a.

A lifting step of the form

ŷ =
(

1 s
0 1

)
x

with x = (x0, x1)T ∈ Z2 can be approximated by y = (y0, y1)T ∈ Z2 with

y0 = x0 + rd(sx1), y1 = x1.

This transform is invertible and its inverse reads

x0 = y0 − rd(sy1), x1 = y1,

which is not difficult to prove (see [2]). This scheme is called integer lifting scheme and has

also been applied in [4, 5, 7, 8, 9, 11, 17, 18, 23].

Every rotation matrix R2(ω) of order 2 can be represented as a product of three lifting

matrices with

R2(ω) =
(

cos ω sinω
− sinω cos ω

)
=

(
1 tan ω

2
0 1

) (
1 0

− sinω 1

) (
1 tan ω

2
0 1

)
.

In order to develop an algorithm in fixed-point arithmetic, the main idea is to approximate

the trigonometric values tan ω
2 and sinω by dyadic rationals, i.e. by numbers a, b of the

form a = βa

2n , b = βb
2n with βa, βb, n,∈ N. This idea has also been used in [4, 5, 6, 11, 23], to

avoid floating point multiplications. Afterwards, we apply three integer lifting steps to the

factorization

H̃2 :=
(

1 a
0 1

) (
1 0
−b 1

) (
1 a
0 1

)
=

(
1− ab 2a− a2b
−b 1− ab

)
. (5)

We obtain the following estimates.

9

Theorem 3.1 Let H2 := R2(ω) with ω ∈ (0, π
2] be a rotation matrix.

Further, let a = a(ω) = β1

2n ≥ 0 and b = b(ω) = β2

2n ≥ 0, β1, β2, n ∈ N be given, with

| tan
ω

2
− a| ≤ 2−j and | sinω − b| ≤ 2−j

for some fixed j ∈ N. Then for arbitrary x = (x0, x1)T ∈ (−2k, 2k]2 ∩ Z2, a suitable integer

approximation y = (y0, y1)T ∈ Z2 of ŷ = H2x is given, with y0 = z2 and y1 = z1, where

z0 := x0 + rd (x1 a), z1 := x1 + rd (−z0 b), z2 := z0 + rd (z1 a).

The procedure is left-invertible. The left-inverse reads x0 = w2, x1 = w1, where

w0 := y0 − rd (y1 a), w1 := y1 − rd (−w0 b), w2 := w0 − rd (w1 a).

Further, the error estimates

| ŷ0 − y0| ≤
(
2 + a + a2 + sinω(1 + a + tan

ω

2
)
)

2k−j +
1
2
(2 + a− ab), (6)

| ŷ1 − y1| ≤ (1 + a + sinω) 2k−j +
1
2
(b + 1) (7)

hold.

Proof: Replacing the trigonometric values tan ω
2 and sinω by the dyadic rationals a and b

and using the factorization

H2 =
(

1 tan ω
2

0 1

) (
1 0

− sinω 1

) (
1 tan ω

2
0 1

)

we obtain the approximation matrix

H̃2 =
(

1 a
0 1

) (
1 0
−b 1

) (
1 a
0 1

)
=

(
1− ab 2a− a2b
−b 1− ab

)
. (8)

The formulas for y0, y1, x0 and x1 directly follow by applying the lifting step approximation

to the three matrices.

10

We now estimate the componentwise errors. First we consider the truncation error |ŷ0 − y0|

of the first component. For the exact value we have

ŷ0 = (cos ω)x0 + (sinω)x1

and for the calculated value we find

y0 = z2 = z0 + 	az1 +
1
2

= z0 + 	a(x1 + 	−bz0 +
1
2

) +

1
2

= z0 + 	a(x1 − bz0 +
1
2
− ε1) +

1
2

,

setting ε1 := {−bz0 + 1
2}. With ε2 := {a(x1 − bz0 + 1

2 − ε1) + 1
2}, it follows that

y0 = z0 + a(x1 − bz0 +
1
2
− ε1) +

1
2
− ε2

= z0(1− ab) + ax1 +
a

2
− aε1 +

1
2
− ε2

= (x0 + 	ax1 +
1
2

)(1− ab) + ax1 +

a

2
− aε1 +

1
2
− ε2.

Finally we put ε3 := {ax1 + 1
2} and receive

y0 = (x0 + ax1 +
1
2
− ε3)(1− ab) + ax1 +

a

2
− aε1 +

1
2
− ε2

= (1− ab)x0 + (2a− a2b)x1 + 1− ab

2
+

a

2
− aε1 − ε2 − ε3(1− ab).

Consequently,

|ŷ0 − y0| ≤ | cos ω − (1− ab)||x0|+ | sinω − (2a− a2b)||x1|

+|1− ab

2
+

a

2
− aε1 − ε2 − ε3(1− ab)|

= I + II + III,

where

I := | cos ω − (1− ab)||x0|,

II := | sinω − (2a− a2b)||x1|,

III := |1− ab

2
+

a

2
− aε1 − ε2 − ε3(1− ab)|.

11

We estimate these three terms separately. For the first term, observing that cos ω = 1 −

sinω tan ω
2 , we find

I = | cos ω − (1− ab)||x0| = | 1− sinω tan
ω

2
− 1 + ab||x0|

= | ab− sinω tan
ω

2
||x0|

≤ (| ab− a sinω|+ | a sinω − sinω tan
ω

2
|)|x0|

≤ (a| b− sinω|+ sinω| a− tan
ω

2
|)|x0|

≤ (a + sinω) 2k−j .

For the second term we obtain, using sinω = 2 tan ω
2 − tan2 (ω

2) sinω,

II = | sinω − 2a + a2b||x1| = | 2 tan
ω

2
− tan2 (

ω

2
) sinω − 2a + a2b||x1|

≤ (2| tan
ω

2
− a|+ | a2b− tan2 (

ω

2
) sinω|)|x1|

≤ (21−j + | a2b− a2 sinω|+ | a2 sinω − tan2 (
ω

2
) sinω|)|x1|

≤ (21−j + a2| b− sinω|+ sinω| a− tan
ω

2
|| a + tan

ω

2
|)|x1|

≤ (21−j + a22−j + sinω(a + tan
ω

2
)2−j)2k

≤ (2 + a2 + sinω(a + tan
ω

2
))2k−j .

Since ε1, ε2, ε3 ∈ [0, 1) we get

1− ab

2
+

a

2
− aε1 − ε2 − ε3(1− ab) ∈ [−1

2
(2 + a− ab),

1
2
(2 + a− ab)],

and thus for the third term

III = | 1− ab

2
+

a

2
− aε1 − ε2 − ε3(1− ab)| ≤ 1

2
(2 + a− ab).

Hence we get for the truncation error in the first component

| ŷ0 − y0| ≤
(

2 + a + a2 + sinω(1 + a + tan
ω

2
)
)

2k−j +
1
2
(2 + a− ab).

Furthermore, we need to estimate the error of the second component. For the exact value we

have

ŷ1 = −(sinω)x0 + (cos ω) x1.

12

For the calculated value we get

y1 = z1 = x1 + 	−bz0 +
1
2

= x1 − bz0 +
1
2
− ε1

= x1 − b(x0 + 	ax1 +
1
2

) +

1
2
− ε1,

setting ε1 := {−bz0 + 1
2} again. With ε3 := {ax1 + 1

2} we also find

y1 = (1− ab)x1 − bx0 −
b

2
+ ε3b +

1
2
− ε1.

Thus we have for the truncation error in the second component

|ŷ1 − y1| ≤ | b− sinω||x0|+ | cos ω − (1− ab)||x1|+ |
b

2
− 1

2
+ ε1 − ε3b|

= I + II + III.

For the first term we obtain

I := | b− sinω||x0| ≤ 2k−j .

We estimate the second term in analogy to the first term of the first component and receive

II := | cos ω − (1− ab)||x1| ≤ (a + sinω)2k−j .

For the third term III, observing that ε1, ε3 ∈ [0, 1), we obtain

III := | b
2
− 1

2
+ ε1 − ε3b| ≤

1
2
(b + 1).

Altogether for the truncation error of the second component we find the estimate

|ŷ1 − y1| ≤ (1 + a + sinω)2k−j +
1
2
(1 + b).

�

Remark 3.2 Considering the error estimates (6) and (7), we see that controlling the input

vector x (k fixed) and improving the approximation (j large) leads to arbitrary small error

estimates for the first two terms, due to the fact that the terms within the brackets are bounded.

13

In [17, 18] Plonka and Tasche presented the following estimates for integer lifting applied to

the above factorization of the rotation matrix without replacing the trigonometric values by

dyadic rationals:

| ŷ0 − y0| ≤
1
2
(1 + tan

ω

2
+ cos ω),

| ŷ1 − y1| ≤
1
2
(1 + sinω).

The second terms 1
2(2 + a − ab) and 1

2(1 + b) represent exactly these estimates, where the

trigonometric values are replaced by the approximating dyadic rationals.

Example 3.3 Let ŷ := R2(ω)x with arbitrary x = (x0, x1)T ∈ (−2k, 2k]2 ∩ Z2 and y the

integer approximation computed by the procedure in Theorem 3.1. For ω ∈ {π
4 , π

8 , π
16 , 3π

16 }

we choose for tan ω
2 and sinω 15-bit and 8-bit approximations. Further we control the input

vectors x, choosing different values for k. The special choice of ω and k depends on the

factorizations (2) of 2 CII
8 in section 2. Inserting in (6) and (7), we obtain the following

table, which presents the proposed dyadic rationals and their estimates.

ω k j 28a 28b |ŷ0 − y0| |ŷ1 − y1| j 215a 215b |ŷ0 − y0| |ŷ1 − y1|

π
4 10 12 106 181 2.0302 1.3838 16 13573 23170 1.1213 0.8867

π
4 9 12 106 181 1.5454 1.1187 16 13573 23170 1.0910 0.8701

π
8 9 11 51 98 1.7550 1.0869 17 6517 12539 1.0722 0.6975

π
16 8 10 25 50 1.6244 0.9208 16 3327 6393 1.0487 0.6026

3π
16 8 9 78 142 2.7133 1.7075 18 9940 18205 1.0706 0.7796

Table 1: Dyadic rationals and estimates for 8-bit and 15-bit approximation PART I.

Obviously, improving the quality of the approximation enables us to get closer to the estimates

in [17, 18], but that also increases the used arithmetical capacity of the procedure in Theorem

3.1.

14

Concerning the second factorization (3) from section 2, we will need the following estimates

in the next section.

ω k j 28a 28b |ŷ0 − y0| |ŷ1 − y1| j 215a 215b |ŷ0 − y0| |ŷ1 − y1|

π
8 10 11 51 98 2.4485 1.4824 17 6517 12539 1.0831 0.7037

3π
8 10 9 171 237 11.5697 6.1466 16 21895 30274 1.1078 1.0024

3π
16 11 9 78 142 14.2314 8.2184 18 9940 18205 1.0931 0.7923

7π
16 11 11 210 251 7.0915 3.7913 16 26892 32138 1.1980 1.07793

Table 2: Dyadic rationals and estimates for 8-bit and 15-bit approximation PART II.

4 Integer-to-integer DCT-II algorithms of length 8

In this section we discuss the over-all worst case error estimates for the integer-to-integer

DCT-II algorithms based on both factorizations in section 2. This is exemplary for all integer-

to-integer DCT-II algorithms that use a rotation based factorization of the cosine matrix

CII
8 . Since the implementation of a lifting based integer-to-integer DCT-II algorithm in

fixed-point arithmetic in respect of a given factorization is well known, we dispense with

detailed algorithms here. For the first factorization (2) one finds a detailed presentation of

the associated integer-to-integer floating-point algorithm in [18]. We denote this algorithm

in [18] with PTfl. Replacing the trigonometric values by the appropriate dyadic rationals at

any one time for 8-bit or 15-bit approximation from table 1, we receive two algorithms which

we denote with PT8 and PT15.

Analogously, we get the algorithms CONfl, CON8 and CON15 based on the second factor-

ization (3) in section 2 and the dyadic numbers from table 2. PT and CON are here the initials

of the authors of [17, 18] respectively [4, 5]. Note, that the choice of the ”k”s in Table 1 and

table 2 is adequate to integer input vectors with the range (−27, 27]8∩Z8 = (−128, 128]8∩Z8.

Now analyze the worst case errors of the algorithms PT8, PT15, CON8 and CON15 com-

paring the resulting integer vector y with the exact result ŷ = 2CII
8 x for the PT algorithms

15

and ŷ = 2
√

2 CII
8 x for the CON algorithms for arbitrary x ∈ (−128, 128]8 ∩ Z8.

Theorem 4.1 Let x ∈ (−128, 128]8 ∩ Z8 be an arbitrary vector of integers. Using algo-

rithms PT8, PT15, CON8 and CON15 the resulting integer approximations y of ŷ = 2CII
8 x

respectively ŷ = 2
√

2 CII
8 x satisfy the following error estimates.

PT8 PT15 CON8 CON15

|ŷ0 − y0| 2.0302 1.0910 0 0

|ŷ1 − y1| 4.3377 2.1194 15,3771 2.3973

|ŷ2 − y2| 1.7550 1.0722 2,4485 1.0830

|ŷ3 − y3| 6.3095 3.3627 19,7569 2.2412

|ŷ4 − y4| 1.1187 0.8701 0 0

|ŷ5 − y5| 6.9560 3.5792 27,2661 2.5711

|ŷ6 − y6| 1.0869 0.6975 1,4825 0.7037

|ŷ7 − y7| 2.6283 1.3821 16,3378 2.3600

‖ŷ − y‖2 10.9761 5.8399 40,5629 4.9617

‖ŷ − y‖∞ 6.9560 3.5792 27,2661 2,5711

Proof: We show how to estimate the worst case error for PT15 representively. Before starting,

let us fix some notations. Based on the factorization (2) from section 2, we set x(1) := T8(0)x.

With x(2) we denote the integer approximation of T8(0, 1)x(1), which is calculated as follows:

Set w(0) := (x(1)
0 , x

(1)
1 , x

(1)
2 , x

(1)
3)T , w(1) := (x(1)

4 , x
(1)
5)T , w(2) := (x(1)

7 , x
(1)
6)T .

Compute z :=
√

2 T4(0)w(0) and

z(0) := rd
((

3327
215
⊕ 2485

213

)
w(2)

)
+ w(1),

z(1) := rd
((
−6393

215
⊕−18205

215

)
z(0)

)
+ w(2),

z(2) := rd
((

3327
215
⊕ 2485

213

)
z(1)

)
+ z(0).

16

Set x(2) := (zT , z
(2)
0 , z

(2)
1 , z

(1)
1 ,−z

(1)
0)T . Analogously, x(3) and x(4) denote the calculated

integer approximations of T8(0, 1, 0, 0)T8(0, 1)T8(0)x

and A8(0, 1)T8(0, 1, 0, 0)T8(0, 1)T8(0)x (see factorization (2)). Please note that y = B8x(4)

yields, because in the last step no rounding occurs.

It is easy to see that with x ∈ (−128, 128]8 ∩ Z8 we get

x(1) ∈ (−28, 28]8 ∩ Z8, x(2) ∈ (−29, 29]8 ∩ Z8 and x(3) ∈ (−210, 210]8 ∩ Z8.

Note, that it is not necessary to know which range x(4) has, because the last step only consists

of permutation and uses no approximating transform.

Thus we can use the estimates of Example 3.3. We give a detailed explanation for the

estimates of the error in the first and fifth component, the others follow analogously.

For the first component we have y0 = x
(4)
0 = x

(3)
0 and thus we receive

|ŷ0 − y0| = |ŷ0 − x
(4)
0 | = |ŷ0 − x

(3)
0 |.

Let us now set x̃
(3)
0 = 1√

2
(x(2)

0 + x
(2)
1) in order to consider the error which is made in the first

component during the third step. That leads us to

|ŷ0 − y0| ≤ |ŷ0 − x̃
(3)
0 |+ |x̃

(3)
0 − x

(3)
0 | = |ŷ0 −

1√
2
(x(2)

0 + x
(2)
1)|+ |x̃(3)

0 − x
(3)
0 |.

(We dispense with this intermediate step in the analyze of the fifth component, later.)

The first term contains the complete error, that is made until the second step, while the second

term describes the first component error made in the third step. Since x(2) ∈ (−29, 29]8 ∩Z8,

we can use the estimate of the first component of Example 3.3 for ω = π
4 , k = 9, a = 13573

215

and b = 23170
215 and obtain

|ŷ0 − y0| ≤ | ŷ0 −
1√
2
(x(2)

0 + x
(2)
1)|+ 1.090961.

Further

| ŷ0 −
1√
2
(x(2)

0 + x
(2)
1)| = |ŷ0 −

1√
2
(x(1)

0 + x
(1)
1 + x

(1)
2 + x

(1)
3)|

17

= |ŷ0 −
1√
2

7∑
j=0

xj |

= 0,

where x = (xj)7j=0 is the input vector. This yields the following estimate for the overall worst

case error in the first component

|ŷ0 − y0| ≤ 1.090961.

We also consider representively the estimate of the error made in the fifth component, which

is most complicated to determine. We find

|ŷ5 − y5| = |ŷ5 − x
(4)
5 | ≤ |ŷ5 −

1√
2
(x(3)

5 + x
(3)
7)|+ 1.121262

≤ |ŷ5 −
1√
2
(x(2)

4 − x
(2)
5 + x

(2)
6 − x

(2)
7)|+ 1.121262

≤ |ŷ5 −
1√
2
(cos

π

16
(x(1)

4 + x
(1)
7) + sin

π

16
(x(1)

7 − x
(1)
4)

+ cos
3π

16
(−x

(1)
5 + x

(1)
6) + sin

3π

16
(−x

(1)
6 − x

(1)
5))|

+
1√
2
(1.048745 + 0.602587 + 1.070623 + 0.779586) + 1.121262

≈ 3.597225.

The estimates for PT8 follow completely analogous, the same is true for CON8 and

CON15, applying the results from Table 2 to the second factorization (3) in section 2. Note,

that in factorization (3) we find the rotation matrix R̃2(ω) instead of R2(ω). Due to the

transform (4) it is easy to see, that the estimates in Theorem 3.1 are also valid for R̃2(ω).

�

Remark 4.2 Note, that the error bounds for CON8 are very large compared with those of

PT8. Due to the fact that the actual numerical behavior definitely is not that bad, as can

be seen from the numerical results in the next section, let us have a closer look to our worst

case error bounds in Theorem 4.1. Especially the first terms in both estimates crucially

depend on k. From the proof of Theorem 4.1 we see, that the range of the intermediate

18

results is very important for estimating the overall error. While for the PT algorithms we

find x(1) ∈ (−28, 28]8 ∩ Z8 if x ∈ (−27, 27]8 ∩ Z8 for the CON algorithms we obtain for

x̃(1) = Hωx that x̃(1) ∈ (−210, 210]. We see that the range of the intermediate vectors rapidly

increases already at the first step. That is why in Table 2 k has to be chosen that large.

Unfortunately, this leads to high error bounds. Limiting the approximation to 4, 3 or 2 bits

would enforce this effect. Generally, we can say that our estimates deliver better over-all

worst-case error estimates for algorithms which are based on factorizations similar to that

in [12, 17, 18]. Nevertheless, also for the CON8 algorithm we can present valid over-all

worst-case estimates, which perhaps could be improved by taking the special structure of the

factorization (3) into account.

5 Numerical results and final comments

In this final section, we examine and compare the numerical behavior of the integer-to-integer

DCT-algorithms PTfl, PT8, PT15, CONfl, CON9 and CON15P based on factorizations (2)

and (3) above. For this purpose we examine whether these algorithms approximate the exact

DCT satisfactorily. Further, we compare the floating-point integer-to-integer versions PTfl

and CONfl with the fixed-point versions PT8, PT15, CON8 and CON15.

We consider for 10000 random vectors, which are uniformly distributed in (−128, 128] 8 ∩

Z
8, the r-th-quantiles of the errors ‖ŷ − y‖∞ and ‖ŷ − y‖2 for r = j

10 , j = 1, . . . , 10.

Recall, that for algorithms PTfl, PT15 and PT8 the integer vector y is the computed integer

approximation of ŷ = 2CII
8 x whereas for algorithms CONfl, CON15 and CON8 y is the

integer approximation for ŷ = 2
√

2 CII
8 x. After sorting the errors of the 10000 resulting

vectors, the r-th-quantile is the smallest value that separates the errors into two parts; 10000r

of the sorted errors are less than or equal to the quantile value, the other 10000(1-r) errors

are greater than the quantile. The quantile for r = 1.0 is the maximal error occurring. In

19

the following table the r-th-quantiles are rounded to three decimal places:

r PTfl PT15 PT8 CONfl CON15 CON8
0.1 0.545 0.546 0.569 0.504 0.507 0.563
0.2 0.623 0.621 0.647 0.603 0.604 0.684
0.3 0.699 0.699 0.734 0.679 0.679 0.783
0.4 0.769 0.765 0.802 0.740 0.740 0.861
0.5 0.836 0.835 0.879 0.801 0.801 0.958
0.6 0.904 0.902 0.969 0.860 0.860 1.064
0.7 0.995 0.989 1.069 0.914 0.913 1.177
0.8 1.099 1.096 1.191 1.016 1.021 1.320
0.9 1.270 1.257 1.369 1.167 1.167 1.537
1.0 1.970 1.970 2.246 1.595 1.594 2.692

Table 3: Quantiles in maximum norm

r PTfl PT15 PT8 CONfl CON15 CON8
0.1 0.894 0.894 0.928 0.770 0.774 0.847
0.2 1.021 1.018 1.054 0.890 0.889 1.004
0.3 1.112 1.110 1.166 0.972 0.973 1.126
0.4 1.201 1.196 1.252 1.064 1.062 1.242
0.5 1.289 1.282 1.359 1.141 1.133 1.349
0.6 1.380 1.375 1.445 1.211 1.209 1.486
0.7 1.471 1.470 1.552 1.290 1.291 1.629
0.8 1.587 1.586 1.682 1.397 1.397 1.804
0.9 1.719 1.719 1.846 1.550 1.541 2.035
1 2.307 2.307 2.826 2.099 2.099 3.638

Table 4: Quantiles in Euclidian norm

For a huge number of input vectors (more than 60 %) the maximum componentwise error is

smaller than 1. In these cases the algorithms compute one of the two integers being next to

the exact DCT-II result in every component.

Comparing PTfl, PT15 and PT8, we see that PT15 even slightly outperforms PTfl. Fur-

ther, we recognize the PT8 quantiles not to be that far away from those of PTfl and PT15.

Comparing CONfl with CON15, we observe that the associated quantiles are quiet similar,

so that using CON15 instead of CONfl is admissible. Also CON8 approximates the exact

DCT-II in fairly appropriate mode, but compared with PT8 it produces worse quantiles,

which can be seen especially from the worst Euclidian error occurring. This is surprising, due

to the fact that CONfl and CON15 outperform PTfl and PT15, an observation which is also

represented in the worst case estimates above. We suppose this behavior to be caused by the

20

two different factorizations from Section 2, underlying the algorithms (Compare Remark 4.2).

The first factorization seems to be more advantageous concerning the use of fairly inaccurate

dyadic approximation.

Finally, we conclude that one can use the integer-to-integer DCT-II algorithms PT15,

PT8, CON15 and CON8 in fixed-point arithmetic instead of the integer-to-integer algorithms

PTfl, CONfl in floating point arithmetic, without loosing to much exactness in approximating

the exact scaled DCT-II. For j = 8 we prefer algorithm PT8, whereas for j = 15 we propose

algorithm CON15.

Acknowledgment: I would like to thank the referees for their constructive remarks on this

paper, and in particular for pointing out the interesting ideas in [4, 5].

References

[1] V. Bhaskaran and K. Konstantinides: Images and Video Compression Standards: Algo-

rithms and Architectures, Kluwer, Boston, 1997.

[2] A. R. Calderbank, I. Daubechies, W. Sweldens and B. L. Yeo: Wavelet transform that

map integers to integers, Appl. Comput. Harmon. Anal. 5 (1998), 332 - 369.

[3] W. K. Cham and P. C. Yip: Integer sinusoidal transforms for image processing, Internat.

J. Electron. 70 (1991), 1015 - 1030.

[4] Y.-J. Chen, S. Oraintara and T. Q. Nguyen: Integer discrete cosine transform (IntDCT),

Preprint 2000. See also http://surflets.mit.edu/∼yrchen/Research/.

[5] Y.-J. Chen, S. Oraintara, T. D. Tran, K. Amaratunga and T. Q. Nguyen: Multiplierless

approximation of transforms using lifting scheme and coordinate descent with adder con-

straint, Proc. IEEE Internat. Conf. Acoust. Speech Signal Process.,Vol. 3, (2002), 3136

- 3139.

21

[6] L. Z. Cheng, H. Xu and Y. Luo: Integer discrete cosine transform and its fast algorithm,

Electron. Lett. 37 (2001), 64 - 65.

[7] I. Daubechies and W. Sweldens: Factoring wavelet transforms into lifting steps, J. Fourier

Anal. Appl. 4 (1998), 247 - 269.

[8] P. Hao: Matrix factorizations for reversible integer mapping, IEEE Trans. Signal Process.

49 (2001), 2314 - 2324.

[9] K. Komatsu and K. Sezaki: Reversible discrete cosine transform, Proc. IEEE Internat.

Conf. Acoust. Speech Signal Process., 1998, 1769 - 1772.

[10] K. Komatsu and K. Sezaki: 2D lossless discrete cosine transform, Proc. IEEE Internat.

Conf. Image Process., 2001, 466 - 469.

[11] J. Liang and T.D. Tran: Fast multiplierless approximations of the DCT with the lifting

scheme, IEEE Trans. Signal Process. 49 (2001), 3032 - 3044.

[12] C. Loeffler, A. Lightenberg and G. Moschytz:Practical fast 1-d DCT algorithms with 11

multiplications, Proc. IEEE Internat. Conf. Acoust. Speech Signal Process., vol.2 (1989),

988 - 991.

[13] M. W. Marcellin, M. J. Gormish, A. Bilgin and M. Boliek: An overview of JPEG-2000,

Proc. Data Compression Conf., 2000, 523 - 541.

[14] W. Philips: Lossless DCT for combined lossy/lossless image coding, Proc. IEEE Internat.

Conf. Image Process., Vol. 3, 1998, 871 - 875.

[15] G. Plonka: A global method for invertible integer DCT and integer wavelet algorithms,

Appl. Comput. Harmon. Anal. 16 (2004), 90 - 110.

[16] G. Plonka and M. Tasche: Fast and numerically stable algorithms for discrete cosine

transforms, Linear Alg. Appl., to appear.

22

[17] G. Plonka and M. Tasche: Reversible integer DCT algorithms, Appl. Comput. Harmon.

Anal. 15 (2003), 70 - 88.

[18] G. Plonka and M. Tasche: Integer DCT-II by lifting steps, International Series in Nu-

merical Mathematics Vol. 145 (W. Haußmann, K. Jetter, M. Reimer, J. Stöckler, eds.),

Birkhäuser, Basel, 2003, 235 - 252.

[19] M. Primbs: Integer DCT-II-Algorithmen (in German), Diploma thesis, Institute of

Mathematics, Universität Duisburg, 2003.

[20] K. R. Rao and P. Yip: Discrete Cosine Transform: Algorithms, Advantages, Applica-

tions, Academic Press, Boston 1990.

[21] G. Strang: The discrete cosine transform, SIAM Rev. 41 (1999), 135 - 147.

[22] T.D. Tran: The BinDCT: Fast Multiplierless approximation of the DCT, IEEE Signal

Process. Lett. 7 (2000), 141 - 144.

[23] Y. Zeng, L. Cheng, G. Bi and A.C. Kot: Integer DCT´s and fast algorithms, IEEE

Trans. Signal Process. 49 (2001), 2774 - 2782.

23

