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Abstract

Multiresolution methods are deeply related to image processing, biological and computer
vision, scientific computing, etc. The curvelet transform is a multiscale directional trans-
form, which allows an almost optimal nonadaptive sparse representation of objects with
edges. It has generated increasing interest in the community of applied mathematics and
signal processing over the past years. In this paper, we present a review on the curvelet
transform, including its history beginning from wavelets, its logical relationship to other
multiresolution multidirectional methods like contourlets and shearlets, its basic theory and
discrete algorithm. Further, we consider recent applications in image/video processing, seis-
mic exploration, fluid mechanics, simulation of partial different equations, and compressed
sensing.

Keywords: curvelets, wavelets, multiscale geometric analysis, image processing, biological
and computer vision, seismic exploration, turbulence, surface metrology, compressed sensing

1 Introduction

Digital images are two-dimensional matrices in image processing. One important task is to adjust
the values of these matrices in order to get clear features in images. The adjusting of values
obeys a certain mathematical model. The main challenge is how to build suitable mathematical
models for practical requirements. Taking image denoising as an example, many mathematical
models are based on a frequency partition of the image, where components with high frequency
are interpreted as noise that have to be removed while those with low frequency are seen as
features to be remained. Curvelets, which are going to be reviewed in this paper, can be seen as
an effective model that not only considers a multiscale time-frequency local partition but also
makes use of the direction of features.

Most natural images/signals exhibit line-like edges, i.e., discontinuities across curves (so-
called line or curve singularities). Although applications of wavelets have become increasingly
popular in scientific and engineering fields, traditional wavelets perform well only at representing
point singularities, since they ignore the geometric properties of structures and do not exploit
the regularity of edges. Therefore, wavelet-based compression, denoising, or structure extraction
become computationally inefficient for geometric features with line and surface singularities. For
example, when we download compressed images or videos, we often find a mosaic phenomenon
(i.e., block artifacts along edges of the images). This mosaic phenomenon mainly results from
the poor ability of wavelets to handle line singularities. In fluid mechanics, discrete wavelet
thresholding often leads to oscillations along edges of the coherent eddies, and consequently, to
the deterioration of the vortex tube structures, which in turn can cause an unphysical leak of
energy into neighboring scales producing an artificial “cascade” of energy.
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Multiscale methods are also deeply related with biological and computer vision. Since,
Olshausen and Field’s work in Nature (1996) [62], researchers in biological vision have re-iterated
the similarity between vision and multiscale image processing. It has been recognized that the
receptive fields of simple cells in a mammalian primary visual cortex can be characterized as
being spatially localized, oriented and bandpass (selective to structure at different spatial scales).
Therefore, they can be well represented by wavelet transforms. One approach to understand the
response properties of visual neurons has been to consider their relationship to the statistical
structure of natural images in terms of efficient coding. A coding strategy that maximizes
sparseness is sufficient to account for the similar properties of simple-cell receptive fields [62, 63].
The wavelet transform yields sparse image representations, and hence provides an efficient way
to understand the localized, oriented, bandpass receptive files, similar to those found in the
primary visual cortex. However, wavelets do not supply a good direction selectivity, which is
also an important response property of simple cells and neurons at stages of the visual pathway.
Therefore, a directional multiscale sparse coding is desirable in this field.

One of the primary tasks in computer vision is to extract features from an image or a
sequence of images [57]. The features can be points, lines, edges, and textures. A given feature
is characterized by position, direction, scale and other property parameters. The most common
technique, used in early vision for extraction of such features, is linear filtering, which is also
reflected in models used in biological visual systems, i.e., human visual motion sensing. Objects
at different scales can arise from distinct physical processes. This leads to the use of scale
space filtering and multiresolution wavelet transform in this field. An important motivation
for computer vision is to obtain directional representations which capture anisotropic lines and
edges while providing sparse decompositions.

A multiresolution geometric analysis (MGA), named curvelet transform, was proposed [8, 10,
11, 12, 13] in order to overcome the drawbacks of conventional two-dimensional discrete wavelet
transforms. In the two-dimensional (2D) case, the curvelet transform allows an almost optimal
sparse representation of objects with C2-singularities. For a smooth object f with discontinuities
along C2-continuous curves, the best m-term approximation f̃m by curvelet thresholding obeys
‖f − f̃m‖2

2 ≤ Cm−2 (log m)3, while for wavelets the decay rate is only m−1. Combined with other
methods, excellent performance of the curvelet transform has been shown in image processing,
see e.g. [47, 55, 50, 69, 70]. Unlike the isotropic elements of wavelets, the needle-shaped elements
of this transform possess very high directional sensitivity and anisotropy (see Fig. 1 for the 2D
case). Such elements are very efficient in representing line-like edges. Recently, the curvelet
transform has been extended to three dimensions by Ying et al. [8, 77].

Let us roughly compare the curvelet system with the conventional Fourier and wavelet anal-
ysis. The short-time Fourier transform uses a shape-fixed rectangle in Fourier domain, and
conventional wavelets use shape-changing (dilated) but area-fixed windows. By contrast, the
curvelet transform uses angled polar wedges or angled trapezoid windows in frequency domain
in order to resolve also directional features.

The theoretic concept of curvelets is easy to understand, but how to achieve the discrete
algorithms for practical applications is challenging. In the following, we first address a brief
history of curvelets starting from classical wavelets. We also mention some other wavelet con-
structions that aim to improve the representation of oriented features towards visual reception
and image processing. Then we will have a closer look at the definition and the properties of
the continuous curvelet transform. We derive the discrete curvelet frame and the corresponding
fast algorithm for the discrete curvelet transform in the two- and three-dimensional case. In
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Figure 1: The elements of wavelets (left) and curvelets on various scales, directions and trans-
lations in the spatial domain (right). Note that the tensor-product 2D wavelets are not strictly
isotropic but have directional selectivity.

particular, we present the construction of a curvelet system and its discretization by means of a
typical example of “second generation curvelets”. Finally, we show some recent applications of
the curvelet transform in image and seismic processing, fluid mechanics, numerical treatment of
partial differential equations, and compressed sensing.

2 From classical wavelets to curvelets

As outlined in the introduction, although the discrete wavelet transform (DWT) has estab-
lished an impressive reputation as a tool for mathematical analysis and signal processing, it has
the disadvantage of poor directionality, which has undermined its usage in many applications.
Significant progress in the development of directional wavelets has been made in recent years.
The complex wavelet transform is one way to improve directional selectivity and only requires
O(N) computational cost. However, the complex wavelet transform has not been widely used
in the past, since it is difficult to design complex wavelets with perfect reconstruction properties
and good filter characteristics [33, 60]. One popular technique is the dual-tree complex wavelet
transform (DT CWT) proposed by Kingsbury [41, 42], which added perfect reconstruction to
the other attractive properties of complex wavelets, including approximate shift invariance, six
directional selectivities, limited redundancy and efficient O(N) computation.

The 2D complex wavelets are essentially constructed by using tensor-product 1D wavelets.
The directional selectivity provided by complex wavelets (six directions) is much better than
that obtained by the classical DWT (three directions), but is still limited.

In 1999, an anisotropic geometric wavelet transform, named ridgelet transform, was proposed
by Candès and Donoho [5, 9]. The ridgelet transform is optimal at representing straight-line
singularities. This transform with arbitrary directional selectivity provides a key to the analysis
of higher dimensional singularities. Unfortunately, the ridgelet transform is only applicable to
objects with global straight-line singularities, which are rarely observed in real applications [52].
In order to analyze local line or curve singularities, a natural idea is to consider a partition for the
image, and then to apply the ridgelet transform to the obtained sub-images. This block ridgelet
based transform, which is named curvelet transform, was first proposed by Candès and Donoho
in 2000, see [10]. Apart from the blocking effects, however, the application of this so-called
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first-generation curvelet transform is limited because the geometry of ridgelets is itself unclear,
as they are not true ridge functions in digital images. Later, a considerably simpler second-
generation curvelet transform based on a frequency partition technique was proposed by the
same authors, see [11, 12, 13]. Recently, a variant of the second-generation curvelet transform
was proposed to handle image boundaries by mirror extension (ME) [22]. Previous versions
of the transform treated image boundaries by periodization. Here, the main modifications are
to tile the discrete cosine domain instead of the discrete Fourier domain, and to adequately
reorganize the data. The obtained algorithm has the same computational complexity as the
standard curvelet transform.

The second-generation curvelet transform [11, 12, 13] has been shown to be a very efficient
tool for many different applications in image processing, seismic data exploration, fluid mechan-
ics, and solving PDEs (partial different equations). In this survey, we will focus on this successful
approach, and show its theoretical and numerical aspects as well as the different applications
of curvelets. From the mathematical point of view, the strength of the curvelet approach is
their ability to formulate strong theorems in approximation and operator theory. The discrete
curvelet transform is very efficient in representing curve-like edges. But the current curvelet sys-
tems still have two main drawbacks: 1) they are not optimal for sparse approximation of curve
features beyond C2-singularities; 2) the discrete curvelet transform is highly redundant. The
currently available implementations of the discrete curvelet transform (see www.curvelet.org)
aim to reduce the redundancy smartly. However, independently from the good theoretical re-
sults on N -term approximation by curvelets, the discrete curvelet transform is not appropriate
for image compression. The question of how to construct an orthogonal curvelet-like transform
is still open.

3 Relationship of curvelets to other directional wavelets

There have been several other developments of directional wavelet systems in recent years with
the same goal, namely a better analysis and an optimal representation of directional features
of signals in higher dimensions. Non of these approaches has reached the same publicity as the
curvelet transform. However, we want to mention shortly some of these developments and also
describe their relationship to curvelets.

Steerable wavelets [32, 67], Gabor wavelets [44], wedgelets [26], beamlets [27], bandlets [58,
61], contourlets [24], shearlets [43, 35], wave atoms [23], platelets [76], surfacelets [46], have been
proposed independently to identify and restore geometric features. These geometric wavelets or
directional wavelets are uniformly called X-lets.

The steerable wavelets [32, 67] and Gabor wavelets [44] can be seen as early directional
wavelets. The steerable wavelets were built based on directional derivative operators (i.e., the
second derivative of a Gaussian), while the Gabor wavelets were produced by a Gabor kernel
that is a product of an elliptical Gaussian and a complex plane wave. In comparison to separable
orthonormal wavelets, the steerable wavelets provide translation-invariant and rotation-invariant
representations of the position and the orientation of considered image structures. Applications
of Gabor wavelets focused on image classification and texture analysis. Gabor wavelets have
also been used for modeling the receptive field profiles of cortical simple cells. Applications of
Gabor wavelets suggested that the precision in resolution achieved through redundancy may be
a more relevant issue in brain modeling, and that orientation plays a key role in the primary
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visual cortex. The main differences between steerable wavelets/Gabor wavelets and other X-lets
is that the early methods do not allow for a different number of directions at each scale while
achieving nearly critical sampling.

Contourlets, as proposed by Do and Vetterli [24], form a discrete filter bank structure that
can deal effectively with piecewise smooth images with smooth contours. This discrete transform
can be connected to curvelet-like structures in the continuous domain. Hence, the contourlet
transform [24] can be seen as a discrete form of a particular curvelet transform. Curvelet con-
structions require a rotation operation and correspond to a partition of the 2D frequency plane
based on polar coordinates. This property makes the curvelet idea simple in the continuous
domain but causes problems in the implementation for discrete images. In particular, approach-
ing critical sampling seems difficult in discretized constructions of curvelets. For contourlets, it
is easy to implement the critically sampling. There exists an orthogonal version of contourlet
transform that is faster than current discrete curvelet algorithms [8]. The directional filter bank,
as a key component of contourlets, has a convenient tree-structure, where aliasing is allowed to
exist and will be canceled by carefully designed filters. Thus, the key difference between con-
tourlets and curvelets is that the contourlet transform is directly defined on digital-friendly
discrete rectangular grids. Unfortunately, contourlet functions have less clear directional geom-
etry/features than curvelets (i.e., more oscillations along the needle-like elements) leading to
artifacts in denoising and compression.

Surfacelets [46] are 3D extensions of the 2D contourlets that are obtained by a higher-
dimensional directional filter bank and a multiscale pyramid. They can be used to efficiently
capture and represent surface-like singularities in multidimensional volumetric data involving
biomedical imaging, seismic imaging, video processing and computer vision. Surfacelets and the
3D curvelets that will be addressed in Section 6 aim at the same frequency partitioning, but
the two transforms achieve this goal with two very different approaches as we described above
in the 2D case. The surfacelet transform is less redundant than the 3D curvelet transform, and
this advantage is payed by a certain loss of directional features.

Unlike curvelets, the shearlets [43, 35] form an affine system with a single generating mother
shearlet function parameterized by a scaling, a shear, and a translation parameter, where the
shear parameter captures the direction of singularities. It has been shown that both the curvelet
and shearlet transforms have the same decay rates [13, 35]. Indeed, using the fast curvelet
transform based on transition to Cartesian arrays, described in Section 5.2, the discrete imple-
mentations of the two transforms are very similar [8, 29].

The bandlet transform [58, 61] is based on adaptive techniques and has a good performance
for images with textures beyond C2-singularities, but it has to pay much higher computational
cost for its adaptation.

In this paper we are not able to give a more detailed overview on all these approaches and
refer to the given references for further information.

4 The continuous curvelet transform (CCT) in R2

In this section we describe the CCT developed in [11, 12]. We present the construction of a
second generation curvelet system. In particular, we illustrate the necessary steps to achieve a
complete curvelet frame.

We work in R2 and we denote with x = (x1, x2)T the spatial variable, and with ξ = (ξ1, ξ2)T
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the variable in frequency domain. Further, let r =
√

ξ2
1 + ξ2

2 , ω = arctan ξ1
ξ2

be the polar
coordinates in frequency domain.

How can the elements of the continuous curvelet transform be constructed? What properties
do they have in time and in frequency domain? Why is the continuous curvelet transform of
interest? Let us consider these questions more closely.

4.1 Window functions

For constructing the curvelet functions we first need to define special window functions that
satisfy certain admissibility conditions. We present an explicit example that is representative
for all possible choices of window functions being the fundament of the curvelet construction.
For this purpose, let us consider the scaled Meyer windows (see [21], p. 137)

V (t) =





1 |t| ≤ 1/3,
cos[π

2 ν(3|t| − 1)] 1/3 ≤ |t| ≤ 2/3,
0 else,

W (r) =





cos[π
2 ν(5− 6r)] 2/3 ≤ r ≤ 5/6,

1 5/6 ≤ r ≤ 4/3,
cos[π

2 ν(3r − 4)] 4/3 ≤ r ≤ 5/3,
0 else,

where ν is a smooth function satisfying

ν(x) =
{

0 x ≤ 0,
1 x ≥ 1,

ν(x) + ν(1− x) = 1, x ∈ R.

For the simple case ν(x) = x in [0, 1], the window functions V (t) and W (r) are plotted in Figure
2. In order to obtain smoother functions W and V , we need to take smoother functions ν. We
may use the polynomials ν(x) = 3x2 − 2x3 or ν(x) = 5x3 − 5x4 + x5 in [0, 1], such that ν is in
C1(R) or in C2(R). As we will see later, the curvelet elements will be obtained as the inverse
Fourier transform of a suitable product of the above windows. Therefore, the smoothness of V
and W will ensure a faster decay of the curvelet elements in time domain. An example of an
arbitrarily smooth window ν is given by

ν(x) =





0 x ≤ 0,
s(x−1)

s(x−1)+s(x) 0 < x < 1,

1 x ≥ 1,

with s(x) = e
−
“

1
(1+x)2

+ 1
(1−x)2

”
.

The above two functions V (t) and W (r) satisfy the conditions

∞∑

l=−∞
V 2(t− l) = 1, t ∈ R, (1)

∞∑

j=−∞
W 2(2jr) = 1, r > 0. (2)

For V (t), this can be simply observed. Since supp V ⊂ [−1, 1], for a fixed t ∈ R the above
sum has only two nonvanishing terms, and for t ∈ [1/3, 2/3] we find with the substitution
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Figure 2: Plot of the windows V (t) (left) and W (r) (right).

s = 3t− 1
∞∑

l=−∞
V 2(t− l) = V 2(t) + V 2(t− 1) = cos2[

π

2
ν(3t− 1)] + cos2[

π

2
ν(3|t− 1| − 1)]

= cos2[
π

2
ν(s)] + cos2[

π

2
ν(1− s)] = cos2[

π

2
ν(s)] + cos2[

π

2
(1− ν(s))]

= cos2[
π

2
ν(s)] + sin2[

π

2
ν(s)] = 1.

Similarly, formula (2) can be shown for W . We have supp W (2j ·) ⊂ [2−j−1, 2−j+1], and for a
fixed r ∈ [1/2, 1], it follows that

∑∞
j=−∞W 2(2−jr) = W 2(r) + W 2(2r). Applying the definition

of W we find in the interval [1/2, 1]

W 2(r) + W 2(2r) =





1 1/2 ≤ r ≤ 2/3,
cos2[π2 (ν(6r − 4)] + cos2[π2 (ν(5− 6r)] 2/3 ≤ r ≤ 5/6,
1 5/6 ≤ r ≤ 1,

where we can show cos2[π
2 (ν(6r− 4)] + cos2[π

2 (ν(5− 6r)] = 1, similarly as before. Moreover, the
above two windows also satisfy the normalization conditions

∫ ∞

0
W 2(r)

dr

r
= ln 2, (3)

∫ 1

−1
V 2(t) dt = 1. (4)

Indeed, we observe that

1 =
∞∑

l=−∞
V 2(t− l) =

∫ 1

0

∞∑

l=−∞
V 2(t− l) dt =

∫ ∞

−∞
V 2(t) dt

and substituting r ∈ (0, ∞) by 2t with t ∈ (−∞, ∞) we find

1 =
∞∑

j=−∞
W 2(2jr) =

∞∑

j=−∞
W 2(2j+t) =

∫ 1

0

∞∑

j=−∞
W 2(2j+t) dt

=
∞∑

j=−∞

1
ln 2

∫ 2j+1

2j

W 2(s)
ds

s
=

1
ln 2

∫ ∞

0
W 2(s)

ds

s
,
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Figure 3: Window U1(ξ) (left) and its support (right).

Hence, the window functions V and W satisfy the conditions (3) and (4) that are called admissi-
bility conditions for V and W for the continuous curvelet transform. Analogously, the conditions
(1) and (2) are necessary admissibility conditions for the discrete curvelet transform.

4.2 System of curvelet functions

Assume now that the two window functions V (t) and W (r) satisfy the admissibility conditions
(1)-(4). These windows will be used to construct a family of complex-valued waveforms with
three parameters,

the scale a ∈ (0, 1],

the location b ∈ R2,

and the orientation θ ∈ [0, 2π).

Let the Fourier transform for a function f ∈ L2(R2) be defined by

f̂(ξ) :=
1
2π

∫

R2
f(x) e−i〈x,ξ〉 dx.

Using the polar coordinates (r, ω) in frequency domain, we now define the a-scaled window

Ua(r, w) := a3/4W (ar) V
( ω√

a

)

for some a with 0 < a ≤ 1. The support of Ua is a polar wedge depending on the supports of
W and V , see Figure 3 for a = 1, and Figure 4 for a = 1/2 and a = 1/8. Comparing these
supports in Figure 4, we nicely see the effect of scaling. While supp W (a·) ⊂ [1/2a, 2/a] is
growing for decreasing a ∈ (0, 1], the support [−2

√
a/3, 2

√
a/3] of V (·/√a) gets smaller, such

that the wedges Ua become longer and thinner for decreasing a.
The window Ua is now applied for building curvelet functions as follows. Let ϕa,0,0 ∈ L2(R2)

be given by its Fourier transform
ϕ̂a,0,0(ξ) := Ua(ξ),
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and let the curvelet family be generated by translation and rotation of the basic element ϕa,0,0,

ϕa,b,θ(x) := ϕa,0,0(Rθ(x− b)), (5)

with the translation b ∈ R2, and where Rθ =
(

cos θ − sin θ
sin θ cos θ

)
is the 2 × 2 rotation matrix

with angle θ.
Observe that the rotation in spatial domain with an angle θ corresponds to a rotation in

frequency domain with θ since

ϕ̂a,b,θ(ξ) = e−i〈b,ξ〉 ϕ̂a,0,0(Rθξ) = e−i〈b,ξ〉 Ua(Rθξ).

Let us have a closer look at the properties of the functions ϕa,b,θ.

Support in frequency domain
From the above equation we observe supp ϕ̂a,b,θ = suppUa(Rθξ). In particular, the support
of ϕ̂a,b,θ does not at all depend on the translation parameter b. For θ = 0, supp ϕ̂a,b,0 can
be seen in Figures 3 and 4 for different a. For θ ∈ [0, 2π), this support is rotated by θ
(clockwise). The curvelet functions ϕa,b,θ are complex functions. One is able to construct a
real counterpart by replacing the function W (ar) in the window Ua(r, w) by W (r)+W (−r);
in this case ϕ̂a,b,θ is supported on two polar wedges being symmetric with respect to zero.
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Figure 4: Supports of the windows U1/2(ξ) (grey) U1/8(ξ) (light grey).

Support in time domain and oscillation properties
In time domain, things are more involved. Since ϕ̂a,b,θ has compact support, the curvelet
function ϕa,b,θ cannot have compact support in time domain. From Fourier analysis, one
knows that the decay of ϕa,b,θ(x) for large |x| depends on the smoothness of ϕ̂a,b,θ in
frequency domain. The smoother ϕ̂a,b,θ, the faster the decay.
By definition, ϕ̂a,0,0 is supported away from the vertical axis ξ1 = 0 but near the horizontal
axis ξ2 = 0, see Figure 4. Hence, for small a ∈ (0, 1] the function ϕa,0,0 is less oscillatory
in x2-direction (with frequency about

√
a) and very oscillatory in x1-direction (containing

frequencies of about 1/2a). The essential support of the amplitude spectrum of ϕa,0,0 is a
rectangle of size [−π/2a, π/2a] × [−π/

√
a, π/

√
a], and the decay of ϕa,0,0 away from this

rectangle essentially depends on the smoothness of Ua resp. the function ν used in the
windows V and W . Now, from (5) we simply observe that the essential support of ϕa,b,θ

is the rectangle rotated by the angle θ and translated by Rθb.
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Vanishing moments
Observe that ϕa,b,θ are C∞ complex functions. Since the compact support of ϕ̂a,b,θ is away
from (0, 0), the functions ϕa,b,θ have mean value zero. Moreover, ϕ̂a,b,θ has infinitely many
directional moments, i.e., for all bivariate polynomials p(x) with x ∈ R2 of arbitrary degree
and for all angles θ̃ we find

∫

R2
p(Rθ̃x) ϕa,b,θ(x) dx = 0,

where again Rθ̃ denotes the rotation matrix with the angle θ̃. This observation is a direct
consequence of the smoothness of ϕa,b,θ, see e.g. [21], page 153, for the univariate case.

4.3 Definition of the continuous curvelet transform

Applying the family of high frequency elements

{ϕa,b,θ : a ∈ (0, 1], b ∈ R2, θ ∈ [0, 2π)}, (6)

the continuous curvelet transform Γf of f ∈ L2(R2) is given as

Γf (a, b, θ) := 〈ϕa,b,θ, f〉 =
∫

R2
ϕa,b,θ(x) f(x) dx,

i.e., one needs to compute the L2 scalar products of a given function f with each curvelet
element ϕa,b,θ. Observe that we have bounded the scale a from above by a = 1, that means, low
frequency functions are not contained in the system (6).

For functions f ∈ L2(R2) possessing a Fourier transform that vanishes for |ξ| < 2, the
curvelet coefficients 〈ϕa,b,θ, f〉 contain the complete information about f , i.e., the continuous
curvelet transform is invertible for these functions f , and there exists a reproducing formula to
compute f from 〈ϕa,b,θ, f〉, a ∈ (0, 1], b ∈ R2, θ ∈ [0, 2π), see [12]. One can extend the transform
to low frequencies as follows. We consider

Ψ̂2(ξ) :=
1

ln 2

∫ |ξ|

0
|W (r)|2 dr

r
.

By supp W = [2/3, 5/3] and
∫∞
0 W 2(r)/r dr = ln 2, we obviously have Ψ̂2(ξ) = 1 for |ξ| ≥ 5/3

and Ψ̂2(ξ) = 0 for |ξ| < 2/3. Let now the function Φ ∈ L2(R2) be given by its Fourier transform

Φ̂(ξ) :=





1 |ξ| ≤ 1/2,

(1− Ψ̂2(ξ))1/2 1/2 < |ξ| < 2,
0 |ξ| ≥ 2,

and let Φb(x) := Φ(x− b), b ∈ R2 be the father wavelets.
Indeed, one can show that for all f ∈ L2(R2) it follows now the reproducing formula

f(x) =
∫

R2
〈Φb, f〉Φb(x) db +

1
(ln 2)

∫ 2π

0

∫

R2

∫ 1

0
〈ϕa,b,θ, f〉ϕa,b,θ(x)

da

a3/2

db

a1/2

dξ

a
,

i.e., the CCT is now invertible for all 〈ϕa,b,θ, f〉, see [12].
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Since the CCT involves an infinite number of curvelet coefficients 〈ϕa,b,θ, f〉 (with the car-
dinal number of the continuum), it is not directly suitable for practical purposes. It has been
successively applied to analyze different singularities of two-dimensional functions along lines
and along smooth curves, see [11, 13]. For further applications we refer to Section 7. The CCT
is closely related to the continuous transforms used by Hart Smith [68], and to the FBI and the
Wave Packets transform, see [4, 11, 20].

5 The fast curvelet transform

For numerical computations we need to discretize the continuous curvelet transform, since we
usually work with discrete data sets in applications. As shown in [12], a discrete version of
the continuous curvelet transform can be derived by a suitable sampling at the range of scales,
orientations and locations.

5.1 The discrete curvelet transform

We choose

• the scales aj := 2−j , j ≥ 0;

• the equidistant sequence of rotation angles θj,l,

θj,l :=
πl 2−dj/2e

2
with l = 0, 1, . . . , 4 · 2dj/2e − 1;

(Here dxe denotes the smallest integer being greater than or equal to x.)

• the positions bj,l
k = bj,l

k1,k2
:= R−1

θj,l
(k1

2j , k2

2j/2 )T , with k1, k2 ∈ Z, and where Rθ denotes the
rotation matrix with angle θ.

This choice will lead to a discrete curvelet system that forms a tight frame, i.e., every function
f ∈ L2(R) will be representable by a curvelet series, and hence the discrete curvelet transform
will be invertible.

For example, for j = 0 we consider the angles θ0,l = πl/2, l = 0, 1, 2, 3 and the positions
{b0,l

k }k∈Z,l=0,1,2,3 = Z2. For j = 4, the angles θ4,l = πl/8, l = 0, . . . , 15 occur, and, depending
on the angles θ4,l, eight different grids for translation are considered, where rectangles of size
1/16 × 1/4 are rotated by θ4,l, l = 0, . . . , 7, see Figure 5. In particular, the choice of positions
yields a parabolic scaling of the grids with the relationship length ≈ 2−j/2 and width ≈ 2−j .

As for the continuous transform, we define now the scaled windows in polar coordinates

Uj(r, ω) := 2−3j/4 W (2−jr) V

(
2 · 2dj/2eω

π

)
= 2−3j/4 W (2−jr) V

(
ω

θj,1

)
, j ∈ N0. (7)

The basic curvelet is defined by
φ̂j,0,0(ξ) := Uj(ξ),

and the family of curvelet functions is given by

φj,k,l(x) := φj,0,0(Rθj,l
(x− bj,l

k )). (8)
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Figure 5: Grid for θ4,0 = 0 and for θ4,1 = π/8.

In frequency domain, the curvelet functions

φ̂j,k,l(ξ) = e−i〈bj,l
k ,ξ〉 Uj(Rθj,l

ξ) = e−i〈bj,l
k ,ξ〉 2−3j/4 W (2−jr)V

(ω + θj,l

θj,1

)

are supported inside the polar wedge with radius 2j−1 ≤ r ≤ 2j+1 and angle 2−dj/2eπ(−1−l)
2 < ω <

2−dj/2eπ(1−l)
2 . The support of φ̂j,k,l does not depend on the position bj,l

k . For example, φ̂2,k,l(r, ω)
is supported inside the wedge with 2 ≤ r ≤ 8 and (−1−l)π

4 ≤ ω ≤ (1−l)π
4 , l = 0, . . . , 7, see Figure

6. (Here we have used supp V ⊂ [−1, 1] and supp W ⊂ [1/2, 2].)

32

16

8

32−16
−4

ξ1

ξ2

Figure 6: Maximal supports of φ̂2,k,0 and φ̂2,k,5(dark grey); of φ̂3,k,3, φ̂3,k,6 and φ̂3,k,13 (light
grey); and of φ̂4,k,0 and φ̂4,k,11 (grey).

We again need some coarse scale curvelet elements for low frequencies and take here

φ−1,k,0(x) := φ−1(x− k), k ∈ Z2,

12



Figure 7: Discrete curvelet tiling with parabolic pseudo-polar support in the frequency plane.

where
φ̂−1(ξ) := W0(|ξ|) with W0(r)2 := 1−

∑

j≥0

W (2−jr)2.

The system of curvelets

{φ−1,k,0 : k ∈ Z2} ∪ {φj,k,l : j ∈ N0, l = 0, . . . , 4 · 2dj/2e − 1, k = (k1, k2)T ∈ Z2}

satisfies a tight frame property. Every function f ∈ L2(R2) can be represented as a curvelet
series, that means, the discrete curvelet transform is invertible. We have

f =
∑

j,k,l

〈f, φj,k,l〉φj,k,l, (9)

and the Parseval identity
∑

j,k,l

|〈f, φj,k,l〉|2 = ‖f‖2
L2(R2)

, ∀f ∈ L2(R2)

holds. For a proof we refer to [12]. The terms cj,k,l(f) := 〈f, φj,k,l〉 are called curvelet coeffi-
cients. In particular, we obtain by Plancherel’s Theorem for j ≥ 0

cj,k,l(f) :=
∫

R2
f(x) φj,k,l(x) dx =

∫

R2
f̂(ξ) φ̂j,k,l(ξ) dξ

=
∫

R2
f̂(ξ) Uj(Rθj,l

ξ) ei〈bj,l
k ,ξ〉 dξ. (10)

5.2 Transition to Cartesian arrays

In practical implementations one would like to have Cartesian arrays instead of the polar tiling
of the frequency plane. Cartesian coronae are based on concentric squares (instead of circles)
and shears, see Figure 7. Therefore, a construction of window functions on trapezoids instead
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of polar wedges is desirable. Hence, we need to adapt the discrete curvelet system in Subsection
5.1 suitably. Let us remark that the frequency tiling into shears, as given in Figure 7, has been
similarly used for the construction of contourlets [24] by a pyramidal directional filter bank.
However, the tiling for the contourlet transform is slightly more flexible by allowing that the
number of directions need not to be doubled at each scale, see [24].

We consider now the window function

γ(r) :=





1 |r| ≤ 1/2,

cos (2|r|−1)π
2 1/2 < |r| ≤ 1,

0 else,

such that supp γ = [−1, 1]. As in [8], we replace the window Wj(r) := W (2−jr) in Subsection
4.1 by a window of the form

W̃j(r) := χ[0,∞)(r) ·
√

γ2(2−j−1r)− γ2(2−jr), j ≥ 0, r ≥ 0.

Hence supp W̃j = [2j−1, 2j+1]. Further, for ξ1 > 0, let Vj(ξ) := V (2bj/2c ξ2/ξ1) with V in
Subsection 4.1, such that the support of Vj is inside the cone

K1 := {(ξ1, ξ2) : ξ1 > 0, ξ2 ∈ [−2ξ1/3, 2ξ1/3]}.

Here, bxc denotes the largest integer being smaller than or equal to x. Now, the Cartesian
window,

Ũj(ξ) := 2−3j/4 W̃j(ξ1) Vj(ξ) = 2−3j/4W̃j(ξ1) V

(
2bj/2cξ2

ξ1

)

can be defined, being analogous to Uj in (7) and determining the frequencies in the trapezoid

{(ξ1, ξ2) : 2j−1 ≤ ξ1 ≤ 2j+1, −2−bj/2c · 2
3
≤ ξ2/ξ1 ≤ 2−bj/2c · 2

3
}.

The window Ũ0 is presented in Figure 8. It is the Cartesian equivalent of U0 (= Ua with a = 1
in the notation of Subsection 4.1) in Figure 3.

Next, instead of equidistant angles, we define a set of equispaced slopes in the eastern cone
K = {(ξ1, ξ2)T : ξ1 > 0, −ξ1 < ξ2 ≤ ξ1},

tan θj,l := l 2−bj/2c, l = −2bj/2c + 1, . . . , 2bj/2c − 1.

Observe that the angles θj,l, which range between −π/4 and π/4, are not equispaced here, while
the slopes are.

Now, let the curvelet-like functions be given by

̂̃
φj,0,0 := Ũj(ξ),

φ̃j,k,l(x) := φ̃j,0,0

(
ST

θj,l
(x− b̃j,l

k )
)
, (11)

being the Cartesian counterpart of φj,k,l in (8), with the shear matrix

Sθ =
(

1 0
− tan θ 1

)
,
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Figure 8: Window Ũ0(ξ) (left) and its support (right).

and where b̃j,l
k := S−T

θj,l
(k1 2−j , k2 2−bj/2c) =: S−T

θj,l
kj . Let us have a closer look at the functions

φ̃j,k,l. The Fourier transform gives by S−1
θj,l

ξ = (ξ1, ξ1 tan θj,l + ξ2)T

̂̃
φj,k,l(ξ) = e−i〈ebj,l

k , ξ〉 ̂̃φj,0,0(S
−1
θj,l

ξ) = e−i〈ebj,l
k , ξ〉 Ũj(S−1

θj,l
ξ)

= e−i〈ebj,l
k , ξ〉 2−3j/4W̃j(ξ1) Vj(S−1

θj,l
ξ) = e−i〈ebj,l

k , ξ〉 2−3j/4W̃j(ξ1) V (2bj/2cξ2/ξ1 + l).

Hence, ̂̃
φj,k,l is compactly supported on sheared trapezoids.

Let us for example examine ̂̃
φ4,k,l. For j = 4, we consider the angles tan θ4,l = l/4, l =

−3, . . . , 3. The support of ̂̃
φj,k,0 is symmetric with respect to the ξ1 axis, and for j = 4 we have

supp ̂̃
φ4,k,0 = {(ξ1, ξ2)T : 8 ≤ ξ1 ≤ 32, −1

6
≤ ξ1

ξ2
≤ 1

6
}.

The supports of ̂̃
φ4,k,l with l = −3, . . . , 3 are now sheared versions of this trapezoid, see Figure

9.
The set of curvelets φ̃j,k,l in (11) needs to be completed by symmetry and by rotation by

±π/2 radians in order to obtain the whole family. Moreover, as we can also see in Figure 9, we
need suitable “corner elements” connecting the four cones (north, west, south, east). In [8], it
is suggested to take a corner element as the sum of two half-part sheared curvelet functions of
neighboring cones as indicated in Figure 9 (left). More precisely, we take

̂̃
φj,0,−2bj/2c(ξ) := 2−3j/4 Wj(ξ1) V h

(
2bj/2c

(
1 +

ξ2

ξ1

))
+ 2−3j/4 Wj(ξ2) V h

(
2bj/2c

(
1− ξ1

ξ2

))
,

where the window function V h(t) := V (t) χ[−1,0](t) is the left part of the window V and has only
the half support [−2/3, 0].

Finally, the coarse curvelet elements for low frequencies are needed, and we take here

φ̃−1,k,0(x) := φ̃−1(x− k), k ∈ Z2
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Figure 9: Supports of the functions ̂̃
φ4,k,l for l = −3, . . . , 3, and one corner element.

with ̂̃
φ−1(ξ) := γ(ξ1) γ(ξ2). For this construction of curvelet-like elements one can show that

̂̃
φ−1(ξ) +

∞∑

j=0

2bj/2c∑

l=−2bj/2c
23j/4 ̂̃

φj,0,l(ξ) = 1

for all ξ in the eastern cone K = {(ξ1, ξ2)T : ξ1 > 0, ξ2 ∈ [−ξ1, ξ1]}, where we have taken also
the two corner elements in the sum. Similarly, this assertion is true for the rotated functions in
the other three cones.

5.3 The algorithm

We find the Cartesian counterpart of the coefficients in (10) by

c̃j,k,l(f) = 〈f, φ̃j,k,l〉 =
∫

R2
f̂(ξ) Ũj(S−1

θj,l
ξ) ei〈b̃j,l

k ,ξ〉dξ

=
∫

R2
f̂(Sθj,l

ξ) Ũj(ξ) ei〈kj ,ξ〉dξ (12)

with kj = (k12−j , k22−bj/2c)T , (k1, k2)T ∈ Z2.
The forward and the inverse Fast Discrete Curvelet Transform as presented in [8] and in

CurveLab have a computational cost of O(N2 log N) for an (N×N) image, see http:curvelab.org
with a collection of Matlab and C++ programs. The redundancy of that curvelet transform
implementation is about 2.8 when wavelets are chosen at the finest scale, and 7.2 otherwise (see
e.g. [8]). Using formula (12), the forward algorithm has roughly the following form.
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Algorithm

1. Compute the Fourier transform of f by means of a 2D FFT.
Let f be given by its samples f(n1

N , n2
N ), n1, n2 = 0, . . . , N − 1, where N is of the form

N = 2J , J ∈ N. Suppose, that f can be approximated by a linear combination of bivariate
hat functions. Let s̃(x) = s(x1) s(x2) with s(x1) := (1− |x1|) χ[−1,1](x1) and

f(x) =
N−1∑

n1=0

N−1∑

n2=0

f
(n1

N
,
n2

N

)
s̃(Nx1 − n1, Nx2 − n2).

With ̂̃s(ξ) = (sinc ξ1/2)2 (sinc ξ2/2)2 it follows that

f̂(ξ) =
N−1∑

n1=0

N−1∑

n2=0

f
(n1

N
,
n2

N

)
e−i(n1ξ1+n2ξ2)/N ̂̃s

( ξ

N

)
,

and the 2D FFT of length N gives us the samples f̂(2πn1, 2πn2), n1, n2 = −N
2 , . . . , N

2 − 1.

2. Compute f̂(Sθj,l
ξ) by interpolation.

Fix the scales to be considered, say j0 ≤ j ≤ J . The support of Ũj is contained in
the rectangle Rj = [2j−1, 2j+1] × [−2bj/2c, 2bj/2c]. For each pair (j, l) compute now
f̂(2πn1, 2πn2 − 2πn1 tan θj,l) for 2π(n1, n2) ∈ Rj .

3. Compute the product f̂(Sθj,l
ξ) Ũj(ξ).

For each pair (j, l) compute the product f̂(2πn1, 2πn2 − 2πn1 tan θj,l) Ũj(2πn1, 2πn2).

4. Apply the inverse 2D FFT in order to obtain the discrete coefficients c̃D
j,k,l(f) that are

an approximation of the coefficients in (12).

For the inverse curvelet transform, one applies the algorithm in each step in reversed order.
Observe that in the second step a suitable approximation scheme has to be applied in the forward
transform and in the inverse transform.

6 3D Curvelet transform

For three-dimensional data, a generalization to three-dimensional multiscale geometric methods
is of great interest. So far, only a few papers have been concerned with applications of the
three-dimensional curvelet transform to 3D turbulence [2, 53] and 3D seismic processing [59].

In this section, we develop the idea of the three-dimensional curvelet transform on Cartesian
arrays analogously as done in Section 5.2 for the two-dimensional case. Using polar coordinates,
we consider curvelet functions being supported on sheared truncated pyramids instead of sheared
trapezoids. In contrast to [77], we introduce three-dimensional shear matrices. The three-
dimensional curvelet functions depend on four indices instead of three; the scale, the position
and two angles.

17



In R3 we denote with x = (x1, x2, x3)T the spatial variable and with ξ = (ξ1, ξ2, ξ3)T the vari-
able in frequency domain. Again, we use polar coordinates (r, ω1, ω2)T with r =

√
ξ2
1 + ξ2

2 + ξ2
3 ,

sinω1 = ξ2/
√

ξ2
1 + ξ2

2 , ω1 ∈ [0, 2π), and cos ω2 = ξ3/r, ω2 ∈ [0, π].
As in the two-dimensional case, we define a pair of smooth, nonnegative, real-valued window

functions. We consider the same window W̃j(r) as in Section 5.2,

W̃j(r) := χ[0,∞)(r) ·
√

γ2(2−j−1r)− γ2(2−jr), j ≥ 0, r ≥ 0,

such that supp W̃j = [2j−1, 2j+1]. Further, let

Ṽj(ξ) := V
(
2bj/2c ξ2

ξ1

)
V

(
2bj/2c ξ3

ξ1

)

with the window V as in Subsection 4.1. Obviously, Ṽj is supported in the cone {(ξ1, ξ2, ξ3) :
ξ1 > 0, ξ2 ∈ [−2

3ξ1,
2
3ξ1], ξ3 ∈ [−2

3ξ1,
2
3ξ1]}. Disregarding the normalization constant, let the

Cartesian window Ũj be defined by

Ũj(ξ) = Ũj(ξ1, ξ2, ξ3) = W̃j(ξ1) Ṽj(ξ) = W̃j(ξ1) V
(
2bj/2c ξ2

ξ1

)
V

(
2bj/2c ξ3

ξ1

)
,

determining the frequencies in the truncated pyramid

{(ξ1, ξ2, ξ3)T : 2j−1 ≤ ξ1 ≤ 2j+1, −2
32−bj/2c ≤ ξ2

ξ1
≤ 2

32−bj/2c, −2
32−bj/2c ≤ ξ3

ξ1
≤ 2

32−bj/2c}.

Every Cartesian corona has six components, one for each face of the unit cube. Let us consider
only the cone

K =
{

(ξ1, ξ2, ξ3) : ξ1 > 0, −1 ≤ ξ2

ξ1
< 1, −1 ≤ ξ3

ξ1
< 1

}
.

With the angles

tan θj,l := l 2−bj/2c, l = −2bj/2c + 1, . . . , 2bj/2c − 1,

tanϑj,m := m 2−bj/2c, m = −2bj/2c + 1, . . . , 2bj/2c − 1,

we define the three-dimensional shear matrix

Sθj,l,ϑj,m
:=




1 0 0
− tan θj,l 1 0
− tanϑj,m 0 1




and the positions

b̃j,l,m
k := S−T

θj,l,ϑj,m
(k12−j , k22−bj/2c, k32−bj/2c)T = S−T

θj,l,ϑj,m
kj ,

where (k1, k2, k3)T ∈ Z3. Now in the cone K the curvelet functions are given by

̂̃
φj,0,0,0(ξ) := Ũj(ξ),

φ̃j,k,l,m := φ̃j,0,0,0(ST
θj,l,ϑj,m

(x− b̃j,l,m
k )).
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This definition can be seen as a direct generalization of (11). The Fourier transform gives

̂̃
φj,k,l,m(ξ) = e−i〈ebj,l,m

k ,ξ〉 ̂̃φj,0,0,0(ξ)

= e−i〈ebj,l,m
k ,ξ〉 W̃j(ξ1) V

(
2bj/2c ξ2

ξ1
+ l

)
V

(
2bj/2c ξ3

ξ1
+ m

)
,

i.e., the functions ̂̃
φj,k,l,m are compactly supported on sheared truncated pyramids (see e.g.

Figure 3 in [77]). As in the two-dimensional case one needs to take care for special boundary
elements where two (or three) different cones touch each other.

(a) (b) (c)

(d) (e) (f)

Figure 10: An element of 3D curvelets at a coarser scale (upper row) and finer scale (lower row)
is shown in three cross-sections (left column) and isosurface (middle column). The right column
shows their frequency support. It can be clearly seen that the element with high resolution in
the space domain has low resolution in the frequency domain.

Figure 10 shows some 3D curvelet elements. Observe that in the spatial domain, φj,k,l,m

is of plate-like shape, which rapidly decays away from a 2−j by 2−j/2 cross-section rectangle
with center b̃

(j,l,m)
k and orientations θj,l (with respect to the horizontal axis in x) and ϑj,m (with

respect to the vertical axis in x). The element is smooth within the plate but exhibits oscillating
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decay in the normal direction of the plate. It obeys a parabolic scaling law between the thickness
and length (thickness ≈ length2) and directional sensitivity (Orientations = 1/

√
scale).

As always, for the coarsest scale we need a special construction, as e.g.

φ̃−1,k(x) := φ̃−1(x− k), k ∈ Z3

with ̂̃
φ−1(ξ) := γ(ξ1) γ(ξ2) γ(ξ3), where γ is defined in Subsection 5.2.

Analogously as in (12), the curvelet coefficients are given by

c̃j,k,l,m(f) = 〈f, φ̃j,k,l,m〉 =
∫

R3
f̂(ξ) Ũj(S−1

θj,l,ϑj,m
ξ) ei〈ebj,l,m

k ,ξ〉 dξ

=
∫

R3
f̂(Sθj,l,ϑj,m

ξ) Ũj(ξ) ei〈kj ,ξ〉dξ.

An algorithm can now be derived similarly as in Subsection 5.3 for the two-dimensional case.
The computational complexity of the three-dimensional discrete curvelet transform based on
FFT algorithms is O(n3 log n) flops for n×n×n data [8]. For further details we refer to [8] and
[77].

7 Recent applications

In this section, we shall review applications of the curvelets in image processing, seismic explo-
ration, fluid mechanics, solving of PDEs, and compressed sensing, to show their potential as an
alternative to wavelet transforms in some scenarios.

7.1 Image processing

In 2002, the first-generation curvelet transform was applied for the first time to image denoising
by Starck et al. [69], and by Candès and Guo [14]. The applications of the first-generation
curvelets were extended to image contrast enhancement [71] and astronomical image represen-
tation [70] in 2003, and to fusion of satellite images [19] in 2005. After the effective second-
generation curvelet transform [13] had been proposed in 2004, the applications of curvelets
increased very fast in many fields involving image/video presentation, denoising and classifi-
cation. For instance, Ma et al. applied the second-generation curvelets for motion estimation
and video tracking of geophysical flows [50], surface characterization [47] and deblurring [48].
Ma and Plonka presented two different models for image denoising by combining the discrete
curvelet transform with nonlinear diffusion schemes. In the first model [55], a curvelet shrinkage
is applied to the noisy data, and the result is further processed by a projected total variation
diffusion in order suppress pseudo-Gibbs artifacts. In the second model [64], a nonlinear reaction-
diffusion equation is applied, where curvelet shrinkage is used for regularization of the diffusion
process. Starck et al. [72, 3] applied curvelets for morphological component analysis. Recently,
B. Zhang et al. [78] used curvelets for Poisson noise removal in comparison with wavelets and
ridgelets. In [79], C. Zhang et al. successively applied the multiscale curvelet transform to
multipurpose watermarking for content authentication and copyright verification. Jiang et al.
[40] considered structure and texture image inpainting with the help of an iterative curvelet
thresholding method. Tessens et al. [75] proposed a new context adaptive image denoising by
modeling of curvelet domain statistics. By performing an inter-sub-band statistical analysis of

20



curvelet coefficients, one can distinguish between two classes of coefficients: those that represent
useful image content, and those dominated by noise. Using a prior model based on marginal
statistics, an appropriate local spatial activity indicator for curvelets has been developed that
is found to be very useful for image denoising, see [75]. Geback et al. [34] applied the curvelets
for edge detection in microscopy images.

Interestingly, the pure discrete curvelet transform is less suitable for image compression and
for image denoising. The reason may be the redundancy of the curvelet frame. Most successful
approaches related with the discrete curvelet transform are hybrid methods, where curvelets are
combined with another technique for image processing. These methods usually can exploit the
ability of the curvelet transform to represent curve-like features.

Let us give one example of image denoising [55], where curvelet shrinkage is combined with
nonlinear anisotropic diffusion. Figure 11 (a) shows a part of noisy Barbara image. Figures 11
(b)-(f) present the denoising results by using tensor-product Daubechies’s DB4 wavelets, TV
diffusion, contourlets, curvelets, and TV-combined curvelet transform [55], respectively. The
curvelet-based methods preserve the edges and textures well.

7.2 Seismic processing

Seismic data records the amplitudes of transient/reflecting waves during receiving time. The
amplitude function of time is called seismic trace. A seismic data or profile is the collection of
these traces. All the traces together provide a spatio-temporal sampling of the reflected wave
field containing different arrivals that respond to different interactions of the incident wave field
with inhomogeneities in the Earth’s subsurface. Common denominators among these arrivals
are wave fronts (as shown in Fig. 12 (a) for a real seismic profile), which display anisotropic line-
like features, as edges and textures in images. They basically show behaviors of C2-continuous
curves. The main characteristic of the wave fronts is their relative smoothness in the direction
along the fronts and their oscillatory behavior in the normal direction. A crucial problem in
seismic processing is to preserve the smoothness along the wave fronts when one aims to remove
noise.

From a geophysical point of view, curvelets can be seen as local plane waves. They are
optimal to sparsely represent the local seismic events and can be effectively used for wave front-
preserving seismic processing. Therefore, the curvelet decomposition is an appropriate tool for
seismic data processing.

Fig. 12 shows a denoising of a real seismic data set by curvelets, in comparison to wavelets.
Five decomposing levels are used in both transforms. Fig. 13 shows the comparison of subband
reconstruction in the first three levels from coarse scale to fine scale. It can be seen clearly
that the curvelets perform much better than wavelets to preserve the wave fronts/textures
in multiscale decomposition and denoising. We also observe that the curvelet transform can
achieve an almost complete data reconstruction if used without any thresholding for coefficients
(reconstructed SNR = 310.47 and error = 2.9770e-010).

So far, curvelets have been applied successfully in seismic processing. Hennenfent and
Herrmann [36] suggested a nonuniformly sampled curvelet transform for seismic denoising. Nee-
lamani et al. [59] proposed a 3D curvelet-based effective approach to attenuate random and
coherent noise in a 3D data set from a carbonate environment. Comparisons of wavelets, con-
tourlets, curvelets, and their combination for denoising of random noise have been also investi-
gated in [66]. Douma and de Hoop [28] presented a leading-order seismic imaging by curvelets
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Figure 11: Image denoising. (a) Noisy image, (b) wavelet denoising, (c) TV-diffusion denoising,
(d) contourlet denoising, (e) curvelet denoising, (f) TV-combined curvelet denoising.
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Figure 12: Comparison of seismic denoising. (a) Original data, (b) wavelet denoising, (c) curvelet
denoising.

They show that using curvelets as building blocks of seismic data, the Kirchhoff diffraction
stack can, to leading order in angular frequency, horizontal wavenumber, and migrated location,
be rewritten as a map migration of coordinates of the curvelets in the data, combined with
an amplitude correction. This map migration uses the local slopes provided by the curvelet
decomposition of the data. Chauris and Nguyen [17], and Chauris and Ma [18] considered
seismic demigration/migration in the curvelet domain. The migration consists of three steps:
decomposition of the input seismic data (e.g., common offset sections) using the curvelet trans-
form; independent migration of the curvelet coefficients; inverse curvelet transform to obtain
the final depth migrated image. Currently, they concentrate on a ray-based type of prestack
depth-migration (i.e., common-offset Kirchhoff depth migration) with respect to heterogeneous
velocity models. It comes out that curvelets are almost invariant under the migration opera-
tions. The final objective is to be able to derive a formulation and build an efficient algorithm
for the full waveform inversion in the curvelet domain.

In addition, curvelet-based primary-multiple separation [39], extrapolation [45], and seismic
data recovery [38, 37, 74] have been also proposed by Herrmann et al..

7.3 Turbulence analysis in fluid mechanics

Turbulence has been a source of fascination for centuries, because most fluid flows occurring in
nature, as well as in engineering applications, are turbulent. Fluid turbulence is a paradigm
of multiscale phenomena, where the coherent structures evolve in an incoherent random back-
ground. Turbulence is difficult to approximate and analyze mathematically or to calculate
numerically because of its range of spatial and temporal scales. The geometrical representation
of flow structures might seem to be restricted to a well defined set of curves along which the
data are singular. As a consequence, the efficient compression of a flow field with minimum
loss of the geometric flow structures is a crucial problem in the simulation of turbulence. The
development of appropriate tools to study vortex breakdown, vortex reconnection, and turbu-
lent entrainment at laminar-turbulent interfaces, is imperative to enhance our understanding of
turbulence. Such tools must capture the vortical structure and dynamics accurately to unravel
the physical mechanisms underlying these phenomena.

Recently, the curvelets have been applied to study the non-local geometry of eddy structures
and the extraction of the coherent vortex field in turbulent flows [2, 53, 54]. Curvelets start to
influence the field of turbulence analysis and have the potential to upstage the wavelet represen-
tation of turbulent flows addressed in [30, 31]. The multiscale geometric property, implemented
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Figure 13: Comparisons of subband reconstruction in the first three levels from coarse scale to
fine scale by wavelet transform (upper row) and curvelet transform (lower row).

by means of curvelets, provides the framework for studying the evolution of the structures as-
sociated to the main ranges of scales defined in Fourier space, while keeping the localization in
physical space that enables a geometrical study of such structures. Such a geometrical character-
ization can provide a better understanding of cascade mechanics and dissipation-range dynam-
ics. Moreover, curvelets have the potential to contribute to the development of structure-based
models of turbulence fine scales, subgrid-scale models for large-eddy simulation, and simulation
methods based on prior wavelet transforms [2].

Figure 14 gives an example for the extraction of coherent fields from turbulent flows. The
curvelet method preserves the edges and structures better than wavelet methods. The results
of multiscale turbulence analysis depend on the threshold or shrinkage. The question of how to
find the optimal threshold to separate coherent fields and incoherent random fields still remains
open.

7.4 Solving of PDEs

Candès and Demanet [6, 7] have shown that curvelets essentially provide optimally sparse rep-
resentations of Fourier integral operators. While the wavelet transform is optimal for solving
elliptical PDEs, the motivation to use the curvelet transform is that for a wide class of linear
hyperbolic differential equations, the curvelet representation of the solution operator is both
optimally sparse and well organized. Sparsity means that the matrix entries decay nearly expo-
nentially fast, and they are well organized in the sense that very few nonnegligible entries occur
near a few shifted diagonals. Wave fronts of solutions can be also sparsely represented in curvelet
domain [7]. Some updated results for hyperbolic evolution equations with limited smoothness
have been obtained by Andersson et al. [1]. The key idea of the existing methods is first to
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Figure 14: Extraction of coherent fields from turbulent flows. (a) Original flow, (b) coherent
components by wavelets, and curvelets.

decompose the initial fields by the curvelet transform, and then to compute the rigid motions
of the significant curvelet coefficients along Hamiltonian ray flows at each scale. Finally, one
needs to reconstruct the evolution coefficients at all scales by an inverse curvelet transform and
obtains an approximate wave field u(x, t) at a given time t. The theory is quite elegant but still
far away from practical applications. The papers cited above show the potential of curvelets for
solving of PDEs from the point of view of mathematical analysis and raise the hope to achieve
fast algorithms for the solution of hyperbolic PDEs using curvelets.

Let us consider a wave equation with the associated Cauchy initial value problem,

∂2u

∂t2
(x, t) = υ2 ∆u(x, t) u(x, 0) = u0(x),

∂u

∂t
(x, 0) = u1(x). (13)

For simplicity, assume that υ is a constant wave speed, and ∆u(x, t) = ∂2

x2
1
u(x, t) + ∂2

x2
2
u(x, t)

denotes the usual Laplace operator. Its solution can be written as u(x, t) = F (x, t)u0(x) +
G(x, t)u1(x), with suitable solution operators F (x, t) and G(x, t) (involving Green’s functions)
that can be sparsely represented in curvelet domain.

J. Ma and his students are working on curvelet-based finite difference schemes for seismic
wave equations [56]. The goal is to construct a fast adaptive scheme for numerical modeling of
wave propagation. Similarly as with prior wavelet-based finite difference schemes, one crucial
problem is to explore how the differential operator ∆ (or ∂x) can be computed by the curvelet
transform in an efficient way. The 2D wave field u can be transformed into curvelet domain
by u(x1, x2, t) =

∑
µ cµ(t)φµ(x1, x2). Here, we have used the tight frame property (9) with the

short notation µ = (j, k, l), and cµ(t) denotes the µth curvelet coefficient of u at time t. A
possible way to compute the curvelet coefficients of ∆u is

c4µ := cµ(∆u) :=
∫

∆u(x, t) φµ(x) dx =
∫

∆̂u(ξ, t) φ̂µ(ξ) dξ =
∫

(−ξ2
1 − ξ2

2) û(ξ, t) φ̂µ(ξ) dξ.

Using the definition of the curvelet coefficients in (12) we obtain with Sθj,l
ξ = (ξ1,−ξ1 tan θj,l +
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Figure 15: Curvelet coefficients of an instant wave field at the coarsest curvelet detail scale.
(a)-(h) denotes eight different directional subbands in this curvelet scale.

ξ2)T

c4µ =
∫

[−(1 + tan2 θj,l) ξ2
1 − ξ2

2 + 2(tan θj,l) ξ1ξ2] û(Sθj,l
ξ) Ũj(ξ) ei〈kj ,ξ〉dξ

= 4j(1 + tan2 θj,l)
∂2cµ

∂k2
1

+ 4bj/2c∂
2cµ

∂k2
2

− 2j+1 2bj/2c tan θj,l
∂2cµ

∂k1∂k2
.

Here we recall that k = (k1, k2)T ∈ Z2 and kj = (k1/2j , k2/2bj/2c)T . That means, we can obtain
the curvelet coefficients of ∆u by using the coefficients of the instant wave field u. Thus, we can
rewrite the wave equation in coefficient domain by

∂2cµ

∂t2
= υ2

(
4j(1 + tan2 θj,l)

∂2cµ

∂k2
1

+ 4bj/2c∂
2cµ

∂k2
2

− 2j+1 2bj/2c tan θj,l
∂2cµ

∂k1∂k2

)
. (14)

Figure 15 shows an example of curvelet coefficients of an instant wave field at the coarsest
curvelet detail scale, by implementing the computation in curvelet domain as given in (14). For
details of this approach we refer to [73]. Using a suitable thresholding, one can implement a
fast adaptive computation for the wave propagation. Unfortunately, due to the redundancy of
the current discrete curvelet algorithm, the curvelets have not performed at the level that we
expected. The matrices are not as sparse as the estimates promise. The efficient numerical
treatment of PDEs using curvelets is still a challenging problem.

7.5 Compressed sensing

Finally, we mention a new direction of applications of the curvelet transform to the so-called
compressed sensing or compressive sampling (CS), an inverse problem with highly incomplete
measurements. CS [15, 16, 25] is a novel sampling paradigm, which carries imaging and compres-
sion simultaneously. The CS theory says that a compressible unknown signal can be recovered
by a small number of random measurements using sparsity-promoting nonlinear recovery al-
gorithms. The number of necessary measurements is considerably smaller than the number of
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needed traditional measurements that satisfy the Shannon/Nyquist sampling theorem, where
the sampling rate has to be at least twice as large as the maximum frequency of the signal. The
CS based data acquisition depends on its sparsity rather than its bandwidth. CS might have
an important impact for designing of measurement devices in various engineering fields such as
medical magnetic resonance (MRI) imaging and remote sensing, especially for cases involving
incomplete and inaccurate measurements limited by physical constraints, or very expensive data
acquisition.

Mathematically, we handle the fundamental problem of recovering a signal x ∈ RN from a
small set of measurements y ∈ RK . Let A ∈ RK×N be the so-called CS measurement matrix,
where K << N , i.e., there are much fewer rows in the matrix than columns. The measurements
can be described as [15]

y = Ax + ε. (15)

Here ε denotes possible measurement errors or noise. It seems to be hopeless to solve this
ill-posed underdetermined linear system since the number of equations is much smaller than
the number of unknown variables. However, if the x is compressible by a transform, as e.g.
x = T−1c, where T denotes the discrete curvelet transform, and the sequence of discrete curvelet
coefficients c = (cµ) is sparse, then we have y = AT−1c+ ε = Ãc+ ε. If the measurement matrix
A is not correlated with T , the sparse sequence of curvelet coefficients c can be recovered by a
sparsity-constraint l1-minimization [15],

min
c
‖y − Ãc‖l2 + λ‖c‖l1 .

The second term is a regularization term that represents the a-priori information of sparsity.
To solve the minimization, an iterative curvelet thresholding (ICT) can be used, based on the
Landweber descent method (see e.g. [37]),

cp+1 = Sτ (cp + ÃT (y − Ãcp)),

until ‖cp+1 − cp‖ < ε, for a given error ε. Here the (soft) threshold function Sτ , given by

Sτ (x) =





x− τ, x ≥ τ,
x + τ, x ≤ −τ,
0, |x| < τ,

is taken componentwisely, i.e., for a sequence a = (aµ) we have Sτ (a) = (Sτaµ).
Figure 16 shows an example of compressed sensing with 25 percent Fourier measurements.

Here the operator A is obtained by a random subsampling of the Fourier matrix. Figure 16 (b)
shows the 25% samples in Fourier domain, Figure 16 (c) is the recovering result by zero-filling
reconstruction, and Figure 16 (d) is the result found by iterative curvelet thresholding. Figures
16 (e) and (f) denote the changes of the signal-to-noise ratio (SNR) and errors of the recovered
images as the number of iterations increases. The unknown MRI image can be obtained by
using highly incomplete measurements, which can reduce the on-line measurement time and
thus lessen the pain of a patient.

The motivation of applying the curvelet thresholding method is that most natural images
are compressible by the curvelet transform. Currently, a few researchers have applied the ICT
method to compressed sensing in seismic data recovery [37, 38, 74], and remote sensing [49, 51].
Variant ICT methods (see e.g. [65]) have been also proposed for compressed sensing.
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Figure 16: Compressed sensing in Fourier domain for medical imaging. (a) Original MRI image,
(b) pseudo-random Fourier sampling, (c) recovery by zero-filling reconstruction, (d) recovery by
ICT, (e) SNR (in dB) of the recovered image vs number of iterations for the ICT, (f) recovery
error vs number of iterations for the ICT.
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Figure 17 shows an example for the curvelet-based compressed sensing in remote sensing
[49, 51]. It can be seen that the curvelet method is superior to the wavelet method to recover
the edges.

SNR = 42.48 dB

(a) (b)
SNR = 53.13 dB

(c) (d)

Figure 17: Compressed sensing in remote sensing. (a) Recovery by iterative wavelet thresholding,
(b) recovery error by the wavelet method, (c) recovery by iterative curvelet thresholding, (d)
recovery error by the curvelet method.

8 Future work

The multiresolution geometric analysis technique with curvelets as basis functions is verified as
being effective in many fields. However, there are some challenging problems for future work.

1) The computational cost of the curvelet transform is higher than that of wavelets, especially
in terms of 3D problems. However, the theory and application of the 3D curvelets are burgeoning
areas of research, and it is possible that more efficient curvelet-like transforms will be developed
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in the near future. Currently, a fast message passing interface-based parallel implementation
can somewhat reduce the cost [77]. How to build a fast orthogonal curvelet transform is still
open.

2) How to explore suitable thresholding functions that incorporate and exploit the special
characteristics of the curvelet transform? This issue is very important for curvelet applications
involving edge detection, denoising, and numerical simulation.
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