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Abstract

The present paper is a survey aiming at characterizing all solutions of the discrete

phase retrieval problem. Restricting ourselves to complex signals with �nite sup-

port, we will give a full classi�cation of all trivial and nontrivial ambiguities of the

phase retrieval problem. In our classi�cation, trivial ambiguities are caused either

by signal shifts in space, by multiplication with a rotation factor eiα , α ∈ [0, 2π ), or

by conjugation and re�ection of the signal. Furthermore, we show that all nontriv-

ial ambiguities of the �nite discrete phase retrieval problem can be characterized by

signal convolutions.

In the second part of the paper, we examine the usually employed a priori con-

ditions regarding their ability to reduce the number of ambiguities of the phase re-

trieval problem or even to ensure uniqueness indeed. For the corresponding proofs

we can employ our �ndings on the ambiguity classi�cation. The considerations on

the structure of ambiguities also show clearly the ill-posedness of the phase retrieval

problem even in cases where uniqueness is theoretically shown.

Key words. discrete one-dimensional phase retrieval for complex signals, autocor-

relation polynomial, signal convolution, compact support, interference measure-

ments
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1 Introduction

1.1 Ambiguities in one-dimensional discrete phase retrieval

In many �elds of physics and engineering, one is faced with the problem to deter-

mine a signal from the modulus of its Fourier transform, or equivalently, from its

autocorrelation function. This phase retrieval problem occurs in di�erent applica-

tions, e.g., in crystallography [28, 23], astronomy [11] and laser optics [37].

The solution of the phase retrieval problem is generally challenging due to the fact

that it is not uniquely solvable. Therefore, it is of essential importance to employ
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suitable additional conditions on the desired solution signal in order to ensure its

uniqueness.

Let us shortly survey the rich literature on the problem of ambiguities in phase

retrieval with main emphasis to the one-dimensional case.

In the one-dimensional continuous setting, the phase retrieval problem can be

stated as follows. Find a function f : R → C from
��� f̂ ��� where f̂ denotes the Fourier

transform of f . To solve this problem, we need to pose additional conditions on

f , e.g., f is real, has compact support and �nite energy. But still, even with these

side conditions, the continuous one-dimensional phase retrieval problem can have

in�nitely many solutions. Using the Laplace transform of the autocorrelation func-

tion, all ambiguities have been characterized by using the Hadamard’s Factorization

Theorem for entire functions in [39, 19] and by logarithmic Hilbert transform in [5],

respectively. Assuming that the unknown function is symmetric or monotone on

the support one can enforce uniqueness of the phase retrieval problem [25]. Also

additional constraints being given by the speci�c experiment can reduce the set of

ambiguities. For example, under the assumption that a lens has a �nite aperture, the

corresponding phase retrieval problem can be solved uniquely [32, 39].

Another approach to avoid ambiguities in the continuous case is to extend the set

of given data. Further intensity measurements [40, 20] or a specially constructed

reference signal [5] can be used to determine the unknown function without ambi-

guities. In [38], it has been shown that a band-limited real function f can be uniquely

recovered from the modulus of its function values being sampled at twice its sam-

pling rate. Generalizing this idea to the complex case, [33] applies a combination

of oversampling and modulations with complex exponentials to recover complex

signals with compact support from intensity measurements in Fourier domain.

For numerical purposes one needs to restrict to a discrete space model for the

signal. Therefore, we will consider only �nitely supported signals (x[n])n∈Z with

x[n] = 0 for n < 0 and n ≥ N for some N ∈ N. In this case, the (nontrivial)

ambiguities of the phase retrieval problem can be described by zeros or poles of the

z-transform of the autocorrelation signal, see [7, 31].

In the past, there have been several approaches to reduce the set of nontrivial

ambiguities to a unique solution. For example, restricting the solution sets of zeros

and poles of the z-transform of the autocorrelation signal suitably, uniqueness can

be ensured [17], see also Subsection 4.2. Unfortunately, this additional condition can

only be applied if all zeros of the z-transform are known, and we are not aware of a

special physical meaning of this zero restriction.

In [16], the phase retrieval problem with signed phase information has been stud-

ied. Fixing the �nite support of a real signal x and knowing whether the phase of

the Fourier transform x̂ (ω) is in
[
−π2 ,

π
2

]
or in

[
−π ,−π2

)

∪
(

π
2 ,π
)

, uniqueness of

the solution can be shown.

Other approaches use some additional knowledge about signal values, especially

the endpoint of the �nite length signal [41, 36, 42, 43], see also Subsection 4.3. In

[37, 26, 27] the case of complex �nite signals has been consideredwith the additional

condition that also the magnitudes of the signal in space domain are available. This
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approach is investigated in Subsection 4.4.

A further idea is to replace the Fourier transform by the so-called short-time

Fourier transform, where the unknown signal is overlapped with a small analy-

sis window at di�erent positions. Under some additional assumptions it is possible

to recover the unknown signal only from the magnitudes of the short-time Fourier

transform [29, 30].

Being interested in additional measurement conditions for the phase retrieval

problem that are physically feasible, the idea of measuring intensities of interfer-

ences has been extensively considered. We study this approach in Section 5. For

example, the interference with a known [21, 22] or unknown [24] reference signal

can be used. In [34, 35] this idea is generalized to the reconstruction of complex

signals. A special case of interference signals is considered in [8], where the two

reference signals are shifts of the desired signal x in Fourier space.

The Fourier transform of a signal vector x can be interpreted as scalar products

of a vector with the rows ek of the Fourier matrix, and the phase retrieval problem

can be stated as the problem to reconstruct x ∈ C from the magnitudes |〈x, ek 〉|,

k = 0, . . . ,N − 1. Generalizing this orthonormal basis {ek : k = 0, . . . ,N − 1} to a

frame, one may ask the question, how the frame vectors have to be constructed in

order to uniquely recover x from the magnitudes of its frame coe�cients, and how

many frame vectors are needed to ensure uniqueness. This problem has been ex-

tensively studied within the last years, see, e.g., [3, 2, 1, 4, 6] and references therein.

Unfortunately, one cannot construct a suitable frame just by adding further vectors

of the form (e−iωn )N−1n=0 with some ω ∈ [0, 2π ) to the Fourier basis since the autocor-

relation function of the �nite vectorx is already completely determined by |〈x, ek 〉|,

k = 0, . . . ,N − 1.

Finally we want to mention that the higher-dimensional phase retrieval problem,

however, has a completely di�erent behavior. The reason is that the multidimen-

sional polynomials usually cannot be factorized in linear factors corresponding to

the zeros and poles. Instead we can only obtain a factorization of the z-transform of

the signal into a product of irreducible polynomials with normalized support [15].

Since the reducible polynomials form a set of measure zero [18] in the space of all

polynomials (up to a certain degree), almost all multidimensional signals can be re-

covered uniquely. Nevertheless, in some applications, such as in the crystallography

[28], the factorization into reducible polynomials of small degree is the usual case.

To ensure global irreducibility of the z-transform of the autocorrelation poly-

nomial it is enough to place a single reference point outside the unknown object

[13, 10]. Other approaches work with random illuminations [12] or random masks

[14]. Here the reconstruction is unique with high probability.

1.2 Our contribution and outline

In Section 2, we shall give a complete mathematical classi�cation of solutions of the

discrete phase retrieval problem for compactly supported complex signals. Using

the zero set of the autocorrelation function, we show that each nontrivial solution
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of the discrete phase retrieval problem can be constructed by convolution. For that

purpose, we have to determine all complex trigonometric polynomials B (ω) being

a root of the nonnegative autocorrelation polynomial A(ω) of the solution signal

x, i.e., satisfying |B (ω) |2 = A(ω). The properties of the autocorrelation polyno-

mial, particularly its factorization into linear factors and the consequences for the

solutions of the discrete phase retrieval problem are investigated in Section 3. We

will observe that the number of nontrivial ambiguities depends on the zero set of

an algebraic polynomial that is closely related to A(ω). In contrast to statements in

earlier literature, we show that the number of nontrivial ambiguities of the discrete

phase retrieval problems is bounded by 2N−2 (where N denotes the signal length),

but can be also considerably smaller depending on the data. We will illustrate our

�ndings with suitable examples.

Using the obtained classi�cation of ambiguities, we reconsider additional a priori

conditions that have been proposed in earlier literature (often with the restriction

to real signals) to ensure uniqueness of the phase retrieval solutions in Sections 4

and 5. In particular, the a priori assumption that the desired signal is real and pos-

itive, being frequently applied in phase retrieval algorithms, does usually not lead

to uniqueness in the one-dimensional case. If beside the Fourier intensities one sig-

nal value is known [41], or alternatively one or more magnitudes of the signal x in

time domain are known [37, 26, 27], then we show that the signal can be uniquely

reconstructed with high probability (up to multiplication with an unimodular con-

stant). However, we can also construct “counterexamples”, where the discrete phase

retrieval problem is not uniquely determined by these a priori conditions.

Finally, in Section 5, we especially consider the case when beside |x̂ (ω) |2 also the

intensities of interference signals can be measured. Here we distinguish the cases,

where the reference signal itself is known or unknown. In the latter case, we give

a new proof for uniqueness based on our representations of solution ambiguities

derived in Section 2, see Theorem 5.4.

2 Trivial and nontrivial ambiguities

We consider the discrete one-dimensional phase retrieval problem where we want

to reconstruct the complex signalx = (x [n])n∈Z ∈ ℓ
2 from its Fourier intensities. In

the following we assume that the unknown signal x has �nite support with support

length N ∈ N, i.e., there exists an n0 ∈ Z such that x (k ) = 0 for k < n0 and

k ≥ n0 + N . Furthermore, we suppose that the squared magnitude of the discrete

Fourier transform

x̂ (ω) ≔
∑

n∈Z

x [n] e−iωn, ω ∈ [−π ,π )

is measured at 2N − 1 data points 2πk
N , k = −N + 1, . . . ,N − 1, i.e., the vector

��x̂ ��2 ≔ (���x̂ ( 2πkN ) ���2
)N−1

k=−N+1
(1)
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is given.

We recall that knowing the Fourier intensity vector ��x̂ ��2 ∈ R2N+1
+

of (x [n])n∈Z is

equivalent to knowing the autocorrelation signal a ≔ (a [n])n∈Z with

a [n] ≔
∑

ℓ∈Z

x [ℓ]x [ℓ + n] (n ∈ Z) . (2)

Indeed, for complex signals x the autocorrelation signal a is conjugate symmetric,

i.e., a [n] = a [−n], and we simply observe that

A (ω) ≔ ��x̂ (ω) ��2 =∑
n∈Z

∑

k∈Z

x [n] x [k] e−iω (n−k )
=

∑

n∈Z

a [n] e−iωn = â (ω) .

If the signal x has support length N , then the nonnegative autocorrelation func-

tion A(ω) is a trigonometric polynomial of degree N − 1,

A (ω) =

N−1
∑

n=−N+1

a [n] e−iωn

that is already determined uniquely by the given 2N − 1 data points

A
(

2πk
N

)

=
���x̂ ( 2πkN ) ���2 (k = −N + 1, . . . ,N − 1).

If x ∈ ℓ1 is a real signal with �nite support, we have a [n] = a [−n], i.e., the

autocorrelation functionA(ω) is a nonnegative even trigonometric polynomial with

A (ω) = a [0] + 2
∑

n∈Z

a [n] cos (ωn) .

The problem of phase retrieval for �nitely supported signals x can now be stated

as follows. For a given intensity vector | x̂ |2 in (1) or equivalently, for its given

autocorrelation function A(ω), we want to reconstruct the signal x with support

length less than or equal to N .

It is well-known that this phase retrieval problem is not uniquely solvable. There

exist ambiguities being caused by translation, re�ection and conjugation of the vec-

tor x, or multiplication of x with an unimodular constant. These ambiguities are

trivial and cannot be avoided.

We will be especially interested in the complete characterization of the nontrivial

ambiguities of this phase reconstruction problem. However, let us �rst summarize

all trivial ambiguities.

Proposition 2.1. LetA (ω) be the autocorrelation function given by the squared mag-

nitude ��x̂ (ω) ��2 of the �nite complex signal x. Then we have:

(i) For each n0 ∈ Z the shifted signal (y [n]) ≔ (x [n − n0]) has the same autocor-

relation A (ω), i.e., ��x̂ (ω) ��2 = ��ŷ (ω) ��2
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for all ω ∈ [−π ,π ).

(ii) The re�ected conjugated signal (y [n]) ≔
(

x [−n]
)

has the same autocorrelation

function A (ω).

(iii) The rotated signal (y [n]) ≔
(

eiαx [n]
)

, where α ∈ [−π ,π ), has the same auto-

correlation A (ω).

Proof. (i) Obviously, we have

ŷ (ω) =
∑

n∈Z

x [n − n0] e
−iωn
=

∑

n∈Z

x [n] e−iω (n+n0 )
= e−iωn0 x̂ (ω) ,

i.e., ŷ (ω) and x̂ (ω) only di�er by a factor of modulus 1. Hence the autocorre-

lation determines the length of the support of the signal x, but it is invariant

regarding support shifts.

(ii) From y [n] = x [−n] it follows

ŷ (ω) =
∑

n∈Z

x [−n] e−iωn =
∑

n∈Z

x [n] e−iωn = x̂ (ω),

and ��ŷ (ω) ��2 = ��x̂ (ω) ��2 for all ω ∈ [−π ,π ).
(iii) Obviously, we have ŷ (ω) = eiα x̂ (ω). �

Remark 2.2. The trivial ambiguity caused by shifts of x in Proposition 2.1 (i) can

be avoided by normalizing the unknown �nite support of x to {0, . . . ,N − 1}. Note

that for x with support {0, . . . ,N − 1} the re�ected conjugated signal in Proposi-

tion 2.1 (ii) has the support {−N + 1, . . . , 0}. Therefore, after support normaliza-

tion the ambiguity caused by re�ection and conjugation is of the form (y[n]) :=

(x[N − n]). �

Beside these trivial ambiguities, there are also nontrivial ambiguities thatwewant

to classify in detail in this paper. In particular, the following main theorem shows

that each nontrivial ambiguity of the considered phase retrieval problem can be

characterized by a convolution.

Theorem 2.3. LetA (ω) be the autocorrelation function given from | x̂ |2 of the �nite

complex signal x. Further, let x1 ≔ (x1 [n])n∈Z , x1 ≔ (x2 [n])n∈Z be two �nite signals

with

x = x1 ∗ x2,

i.e.,

x [n] ≔
∑

k∈Z

x1 [k]x2 [n − k] .
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Then y ≔ eiα
(

x1 [−·]
)

∗ (x2 [· − n0]) with α ∈ [−π ,π ), n0 ∈ Z has the same autocor-

relation function A (ω), i.e., ��x̂ (ω) ��2 = ��ŷ (ω) ��2
for all ω ∈ [−π ,π ).

Moreover, for a signal y being a solution of the phase retrieval problem, i.e., pos-

sessing the autocorrelation function A (ω) of x, there exist �nite signals x1, x2 with

x = x1 ∗ x2 and y ≔ eiα
(

x1 [−·]
)

∗ (x2 [· − n0]).

Proof. Let y ≔ eiα
(

x1 [−·]
)

∗ (x2 [· − n0]), then

ŷ (ω) = e−iωn0+iα x̂1 (ω) x̂2 (ω)

and hence ��ŷ (ω) ��2 = ��x̂1 (ω) ��2 ��x̂2 (ω) ��2 = ��x̂ (ω) ��2 .
The proof that each solution of the phase retrieval problem can be represented in

this way is postponed to Section 3. �

3 Investigation of the autocorrelation function

In Fourier space, the considered phase retrieval problem for �nitely supported com-

plex signals x can be reformulated as follows: For a given real nonnegative auto-

correlation polynomial

A (ω) =

N−1
∑

n=−N+1

a [n] e−iωn ,

of degree N − 1 with a[N − 1] , 0 �nd all �nite trigonometric polynomials

x̂ (ω) =
∑

n∈Z

x [n] e−iωn

with x [n] ∈ C such that ��x̂ (ω) ��2 = A (ω) .

Avoiding the trivial shift ambiguity, we assume that supp x ⊂ {0, . . . ,N − 1}, i.e.,

x̂ (ω) =

N−1
∑

n=0

x[n] e−iωn

with x[0] , 0 and x[N − 1] , 0. We obtain the following theorem.

Theorem 3.1. Let A (ω) be a nonnegative trigonometric polynomial

A (ω) =

N−1
∑

n=−N+1

a [n] e−iωn (3)
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with a [n] ∈ C and a [−n] = a [n] for n = 0, . . . ,N − 1, and a[N − 1] , 0. Then each

B (ω) =

N−1
∑

n=0

b [n] e−iωn

with b [n] ∈ C satisfying |B (ω) |2 = A (ω) can be written in the form

B (ω) = eiα
|a

[N − 1] | ·

N−1
∏

j=1

���βj ���−1


1
2

·

N−1
∏

j=1

(

e−iω − βj
)

(4)

where α ∈ [−π ,π ). Assuming that A (ω) = eiω (N−1)PA
(

e−iω
)

where PA (z) is an

algebraic polynomial of degree 2N − 2 with complex coe�cients and the factorization

PA (z) ≔ a [N − 1]
N−1
∏

j=1

(

z − γj
) (

z − γ −1j

)

,

we have γj , 0, and the parameters βj in (4) can be chosen as

βj ∈
{
γj ,γ

−1
j

}
.

Proof. We consider the complex algebraic polynomial

PA (z) ≔ a [0] zN−1 +

N−1
∑

n=1

a [n] zN−1−n +

N−1
∑

n=1

a [n] zN−1+n

of degree 2N −2with the complex coe�cientsa[n] being given by the trigonometric

polynomial A(ω). By construction, PA is related to the trigonometric polynomial

A(ω) in (3) by

PA
(

e−iω
)

= e−iω (N−1)A (ω) .

Let γj be a root of the polynomial PA, i.e.,

PA
(

γj
)

= a [0] γ N−1j +

N−1
∑

n=1

a [n] γ N−1−nj +

N−1
∑

n=1

a [n] γ N−1+nj = 0.

As a consequence of a [N − 1] , 0, we have γj , 0. For |γj | , 1 it follows

γ 2N−2
j PA

(

γ −1j

)

= γ 2N−2
j

a [0] γ
−N+1
j +

N−1
∑

n=1

a [n]γ −N+1+nj +

N−1
∑

n=1

a [n] γ −N+1−nj


= a [0]γ N−1

j +

N−1
∑

n=1

a [n]γ N−1+n
j +

N−1
∑

n=1

a [n]γ N−1−n
j = PA

(

γj
)

= 0.



3 Investigation of the autocorrelation function 9

Therefore, all roots of PA lying not on the circle occur in pairs
(

γj ,γ
−1
j

)

. For |γj | = 1

we can writeγj = eiϕ j , where ϕ j is a physical real zero ofA(ω). In order not to cause

any contradiction with A(ω) ≥ 0 for all ω, this zero must have even multiplicity.

Hence, we �nd a factorization of PA in the form

PA (z) = a [N − 1]
N−1
∏

j=1

(

z − γj
) (

z − γ −1j

)

. (5)

Observing that

��� (e−iω − γj ) (e−iω − γ −1j ) ��� = ���e−iω − γj ��� ���γ −1j ��� ���γ j − eiω ��� = ���γj ���−1 ���e−iω − γj ���2
and remembering that A (ω) is nonnegative, we have

A (ω) = |A (ω) | =
���PA (e−iω ) ���

= |a [N − 1] |

N−1
∏

j=1

���γj ���−1
�������
N−1
∏

j=1

(e−iω − γj )

�������
2

= |B (ω) |2

and the representation of B (ω) in (4) follows. �

Remark 3.2. For the case of a nonnegative polynomialA(ω) with real coe�cients,

it has been shown in [9, Lemma 6.1.3.] that there always exists a real trigonometric

root polynomial B (ω) with A(ω) = |B (ω) |2. Restricting Theorem 3.1 to this real

case, where the coe�cients ofA(ω) satisfy a[n] ∈ R and a[n] = a[−n], the algebraic

polynomial PA (z) has only real coe�cients. According to the proof of Theorem 3.1,

its real roots appear in pairs
{

γj ,γ
−1
j

}

,

and its complex roots appear in quads

{

γj ,γ j ,γ
−1
j ,γ

−1
j

}

. �

We now consider the question, how many nontrivial ambiguities can occur de-

pending on the zero set of PA (z).

Corollary 3.3. Let A be a nonnegative autocorrelation polynomial of degree N − 1,

and let a solution B of |B (ω) |2 = A (ω) be de�ned by (4) with α = 0 and the zero set{
βj ∈ C : j = 1, . . . ,N − 1

}
.

Then considering all 2N−1 solutions of |B (ω) |2 = A (ω), which can be constructed

by choosing for each j = 1, . . . ,N − 1 one root of the root pair

βj ∈
{
γj ,γ

−1
j

}
,



10 3 Investigation of the autocorrelation function

of PA in Theorem 3.1, we obtain up to 2N−2 nontrivial ambiguities.

Proof. Since the support of the coe�cient sequence of B (ω) is already �xed to be

{0, . . . ,N − 1}, and since the rotation factor eiα in (4) has been �xed as ei ·0 = 1,

there can only occur trivial ambiguities caused by re�ection and conjugation as

considered in Proposition 2.1 (ii). We consider the polynomials B (ω) corresponding

to the zero set Λ,

B (ω) = BΛ (ω) = |a [N − 1] |
1
2

∏

βj ∈Λ

���βj ���−
1
2
(

e−iω − βj
)

,

where Λ contains either βj = γj or βj = γ
−1
j as the j-th entry.

First, we observe that the 2N−1 trigonometric polynomialsBΛ, which are produced

by taking all choices of the set Λ, are pairwise di�erent if all zeros {γj ,γ
−1
j , j =

1, . . . ,N − 1} of the polynomial PA in (5) are pairwise di�erent. Further, if we �x a

set Λ =
{

β1, . . . , βN−1
}

and consider the “re�ected” set Λ̃ =
{

β
−1

1 , . . . , β
−1

N−1

}

, then

BΛ̃ (ω) = |a [N − 1] |
1
2

N−1
∏

j=1

���β j ���
1
2

(

e−iω − β
−1

j

)

= |a [N − 1] |
1
2

N−1
∏

j=1

e−i arg β j
���β j ���−

1
2
(

β je
−iω − 1

)

= (−1)N−1 e−i(N−1)ω |a [N − 1] |
1
2

N−1
∏

j=1

e−i arg β j
���β j ���−

1
2
(

eiω − β j
)

= (−1)N−1 e−i(N−1)ω BΛ (ω)

N−1
∏

j=1

e−i arg β j ,

i.e., the signal that corresponds to BΛ̃ is a shift of the re�ected, conjugated and

perhaps rotated signal corresponding to BΛ . Thus BΛ̃ is a trivial ambiguity of BΛ .

Assuming that the products
∏N−1

j=1
���βj ��� for all choices of Λ are pairwise di�erent,

this is the only trivial ambiguity that occurs because in this case the modulus of the

leading coe�cients of all the trigonometric polynomials BΛ are pairwise di�erent.

For example, this is the case if the absolute values of all roots βj are pairwise di�erent

primes. Thus we can obtain up to 2N−2 nontrivial solutions of the considered phase

retrieval problem. �

Remark 3.4. Similarly as in the Proposition above we can also generate up to 2N−2

nontrivial solutions B (ω) of |B (ω) |2 = A (ω) when A(ω) is the autocorrelation

polynomial of a real signal, i.e., x [n] ∈ R. For each pair{
γj ,γ

−1
j

}
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of real roots of PA, we can choose βj = γj or βj = γ
−1
j . For each quad

{
γj ,γ j ,γ

−1
j ,γ

−1
j

}
of complex roots of PA in (5), we can only choose eitherγj ,γ j orγ

−1
j ,γ

−1
j to construct

B (ω). Therefore, the upper bound of 2N−2 nontrivial solutions can only be attained

if all zeros of PA are real. If all zeros of PA are complex and appear in quads, we can

only have at most 2
N−1
2 −1 nontrivial solutions B (ω). �

Corollary 3.5. For the phase retrieval problem with a given real nonnegative autocor-

relation polynomialA (ω) the number of nontrivial solutions B (ω) of |B (ω) |2 = A (ω)

may vary from 1 up to 2N−2 depending on the zero set. In particular, the phase problem

is uniquely solvable up to trivial ambiguities if either PA (z) has only zeros on the unit

circle or if all zeros up to one pair
{
γj ,γ

−1
j

}
lie on the unit circle.

Proof. 1. As shown in Theorem 3.1, the phase retrieval problem |B (ω) |2 = A(ω) has

at least one solution B (ω). Further solutions being nontrivially di�erent from B (ω)

may occur by switching between the zeros βj and β
−1

j .

A unique solution of the phase retrieval problem up to trivial ambiguities occurs if

all roots of the polynomialPA lie on the unit circle. In this case, the zero pair
{
γj ,γ

−1
j

}
reduces to one two-fold zero of the form eiα j for some αj ∈ [−π ,π ). Therefore, the

zeros βj for the construction of B (ω) are uniquely determined and all ambiguities

coincide. We also obtain a unique solution up to re�ection and conjugation when

all roots lie on the unit circle up to one pair
{
γj ,γ

−1
j

}
with |γj | , 1. As shown in

the proof of Corollary 3.3, we only obtain two solutions by switching from γj to

γ −1j for this one zero pair. But then one solution can be obtained by re�ection and

conjugation of the other as shown in the proof of Corollary 3.3.

2. The number of nontrivial solutions depends on the number of di�erent zero

pairs of PA lying not on the unit circle and their multiplicities. The largest number

2N−2 of nontrivial ambiguities has been constructed already in Corollary 3.3. �

Example 3.6. We want to give examples where exactly two, exactly three, or ex-

actly 2N−2 nontrivial solutions of the phase retrieval problem occur.

(i) Two nontrivial solutions of A (ω) = |B (ω) |2 occur, for example, for a given

autocorrelation function of the form

A (ω) =
���PA (e−iω ) ��� = |a [N − 1] | ���e−iω + eiα ���2N−6 ����

(

e−iω − γ1
)

(

e−iω − 1
γ 1

) ����
·
����
(

e−iω − γ2
)

(

e−iω − 1
γ 2

) ����
with γ1,γ2 ∈ C; γ1 , γ2; ��γ1 �� , ��γ2 �� , 1; and α ∈ [−π ,π ), namely

B1 (ω) = |a [N − 1] |
1
2 ��γ1γ2 ��− 1

2

(

e−iω + eiα
)N−3 (

e−iω − γ1
) (

e−iω − γ2
)
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Figure 1: Two nontrivial solutions of A (ω) = |B (ω) |2 as given in Exam-

ple 3.6 (i) for N = 8.

and

B2 (ω) = |a [N − 1] |
1
2
��� γ1γ2 ���−

1
2
(

e−iω + eiα
)N−3 (

e−iω − γ1
)

(

e−iω − 1
γ 2

)

.

In Figure 1, a speci�c example is shown for the chosen zeros γ1 ≔ −0.6 + 0.2i,

γ2 ≔ −0.5 − 0.5i, α ≔ 0.3π , and the support length N ≔ 8. Figure 1 (b) shows

the signals b1 [n] and b2 [n], which are determined by the di�erent solutions

B1 (ω) =

N−1
∑

n=0

b1[n] e
−iωn and B2 (ω) =

N−1
∑

n=0

b2[n] e
−iωn

respectively, being represented as polygonal chains in the complex plane. In

Figure 1 (c) and (d), the modulus and the phase of these chains are plotted.

Since modulus and phase are nonlinear, the graphs are not piecewise linear.

(ii) It is also possible to have an odd number of nontrivial solutions for a given au-

tocorrelation function. For example, we consider an autocorrelation function

of the form

A (ω) =
���PA (e−iω ) ��� = |a [N − 1] | ���e−iω + eiα ���2N−10

·
����
(

e−iω − γ1
)

(

e−iω − 1
γ 1

) ����
4
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Figure 2: Three nontrivial solutions ofA (ω) = |B (ω) |2 as in Example 3.6 (ii)

for N = 10.

where γ1 ∈ C, ��γ1 �� , 1, and α ∈ [−π ,π ) with three nontrivial solutions, namely

B1 (ω) = |a [N − 1] |
1
2 ��γ1 ��−2 (e−iω + eiα )N−5 (e−iω − γ1)4 ,

B2 (ω) = |a [N − 1] |
1
2 ��γ1 ��−1 (e−iω + eiα )N−5 (e−iω − γ1)3 (e−iω − 1

γ 1

)

,

and

B3 (ω) = |a [N − 1] |
1
2

(

e−iω + eiα
)N−5 (

e−iω − γ1
)2
(

e−iω − 1
γ 1

)2

.

A speci�c example is given in Figure 2. Here, we have chosen γ1 ≔ −0.5,

α ≔ 0.1π , and N ≔ 10.

(iii) In Figure 3, we consider an autocorrelation polynomial A(ω) of degree N −

1 = 9 where for all possible zero sets Λ =
{
βj : j = 1, . . . ,N − 1

}
determining

B (ω) in Theorem 3.1 the values |b [0] | = |
∏

βj ∈Λ βj | are pairwise di�erent.

Particularly, we consider the signal x (marked in Figure 3) whose modulus

and phase are given by

( |x [n] |)N−1n=0 = (1, 1.25, 2, 1.4, 1.2, 1, 1.3, 1.6, 0.9, 0.25)T

and

argx [n] =
(

cos 4πn
9

)

− 1
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Figure 3: 2N−2 nontrivial solutions of A (ω) = |B (ω) |2 as in Example 3.3 (iii)

for N = 10.

respectively, and let A(ω) := |x̂ (ω) |2. Here, the minimal di�erence of the co-

e�cients |b [0] | for two di�erent solutions B (ω) is 1.3233 · 10−4. Hence, the

complete solution set of the phase retrieval problemA (ω) = |B (ω) |2 contains

28 = 256 di�erent nontrivial solutions. All these solutions are presented in

Figure 3. The example illustrates that the di�erent solutions can possess very

di�erent shapes. �

We are now ready to prove our main result stated in Theorem 2.3 that all nontriv-

ial ambiguities for the phase retrieval problem can be represented by convolutions.

Proof of Theorem 2.3. Let x1, x2 be two signals with support length greater than

one such thatx = x1∗x2 solves the phase retrieval problem, i.e., |x̂ (ω) |2 = |B (ω) |2 =

A(ω), where A (ω) denotes the autocorrelation polynomial of x. Assuming that x

has support length N , A (ω) is a nonnegative trigonometric polynomial of order

N − 1. We consider the symbols

x̂ (ω) ≔

N−1
∑

n=0

x [n] eiωn,

x̂1 (ω) ≔

N1−1
∑

n=0

x1 [n] e
iωn
, x̂2 (ω) ≔

N2−1
∑

n=0

x2 [n] e
iωn
,

where we have normalized the signals without loss of generality by Proposition 2.1
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such that the support of each signal starts at zero. The Fourier transform of x is

x̂ (ω) = x̂1 (ω) x̂2 (ω) and is a trigonometric polynomial of the form (4) as given in

Theorem 3.1. Since x̂1 (ω), x̂2 (ω) are polynomials of degree greater than one, they

can be composed by products of factors (e−iω − βj ) of x̂ (ω) in (4).

We show that all nontrivial ambiguities with normalized support of the phase

retrieval problem can be given as a product of the form e−iω (N1−1) x̂1 (ω) x̂2 (ω). Let

x̂ (ω) and ̂̃x (ω) be two nontrivially di�erent solutions of the phase retrieval problem,

i.e., ��x̂ (ω) ��2 = ���̂̃x (ω)
���2 = A (ω) ,

where x̂ (ω) corresponds to the zero set{
βj : j = 1 . . .N − 1

}
and ̂̃x (ω) to {

β
−1

j : j = 1, . . . , J
}
∪
{
βj : j = J + 1, . . . ,N − 1

}
for some J ∈ {1, . . . ,N − 2}. Then choose

x̂1 (ω) ≔

J
∏

j=1

���βj ���−
1
2
(

e−iω − βj
)

such that x̂1(ω) is composed by the zero set
{
βj : j = 1, . . . , J

}
. It follows that

e−iω J x̂1 (ω) = e−iω J
J
∏

j=1

|βj |
− 1

2

(

eiω − β j
)

=

J
∏

j=1

|βj |
− 1

2 β j

(

β
−1

j − e
−iω
)

,

i.e., e−iω J x̂1 (ω) corresponds to the zero set
{

β
−1

j : j = 1, . . . , J
}

. Further, let

x̂2 (ω) ≔
x̂ (ω)

x̂1 (ω)
.

Hence, the second solution is up to an unimodular constant

̂̃x (ω) = e−iω J x̂1 (ω) x̂2 (ω) ,

i.e., we have x̃ = e−iα
(

x1 [−·]
)

∗ (x2 [· − J ]). �

In particular, the observations of Theorem 2.3 and Theorem 3.1 provide us with

the opportunity to construct all nontrivial solutions x̂ (ω) of ��x̂ (ω) ��2 = A (ω) from

one known solution x̂ (ω) of the form (4).
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4 Enforcing uniqueness of the one-dimensional phase retrieval
problem

In order to evaluate a meaningful solution of the phase retrieval problem numer-

ically, one needs to pose appropriate a priori conditions that ensure unique solv-

ability. In the literature on one-dimensional phase retrieval, there have been many

attempts to incorporate further conditions on the signal in order to achieve this goal.

However, often there are no theoretical considerations, whether certain additional

conditions indeed ensure uniqueness. Using our new insights on the representation

of trivial and nontrivial ambiguities of the phase retrieval problem, we want to �nd

out, to what extent the usually applied a priori conditions are indeed su�cient to

ensure a unique solution or to reduce the number of nontrivial ambiguities.

These considerations are also of essential importance in order to judge beforehand

whether a numerical procedure can be able to provide a meaningful solution in a

stable manner.

Observe that we have restricted ourselves already to the case of complex signals

with compact support {0, . . . ,N −1}, thereby we avoid the trivial ambiguities caused

by signal shifts.

4.1 Nonnegativity of the real signal

Often, phase retrieval is considered with the a priori assumption that the signal x

to be recovered is compactly supported, real, and nonnegative. However, as already

shown in [7], this condition does not necessarily lead to a smaller number of ambi-

guities. With x̂ (ω) of the form

x̂ (ω) = |a [N − 1] |
1
2

N−1
∏

j=1

���βj ���−
1
2
(

e−iω − βj
)

(6)

where βj ∈ R and βj < 0 even the highest possible number of 2N−2 nontrivial

ambiguities is still attained. Therefore, nonnegativity of a real x is generally not

su�cient to ensure unique solvability of the phase retrieval problem. On the other

hand, in rare cases, the restriction to nonnegative signals can lead to an inconsis-

tence with the given autocorrelation polynomial A(ω), such that no solution x̂ (ω)

with nonnegative coe�cients exists.

Example 4.1. Figures 4–6 show some di�erent cases which can occur under the

restriction of nonnegativity. In Figure 4, every nontrivial ambiguity that can be

constructed from |x̂ (ω) |2, wherex is the marked signal of length 6 being determined

by the zero set {
βj
}
≔

{
−3.65,−2.5,−1.8,−1.75,−1.2

}
via (6), is real and nonnegative, i.e., is a solution of the corresponding discrete phase

retrieval problem. Again, we have plotted the solution set without re�ected, conju-

gated signals. Here, we have 24 = 16 di�erent solutions, which by Corollary 3.3 is

the maximal number of nontrivial ambiguities.
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Figure 4: Full nonnegative solution set for A (ω) = ��x̂ (ω) ��2
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Figure 5: Unique nonnegative solution of A (ω) = ��x̂ (ω) ��2

In a di�erent example, see Figure 5, the condition of nonnegativity is strong

enough to ensure uniqueness of the problem. Here, the marked nonnegative so-

lution x corresponds to the zero set{
βj
}
≔

{
−1.5,−0.5 + 1.5i,−0.5 − 1.5i, 1 + 1i, 1 − 1i

}
.

Note that the problem has only four nontrivial ambiguities in this example because

in Theorem 3.1 the complex zeros must be chosen as complex conjugated pairs.

In the last example, Figure 6, the restriction of positivity is too strong. Here, every

solution of the phase retrieval problem possesses some negative coe�cients, i.e., the

given phase retrieval problem cannot be solved by a real nonnegative signal. The

blue signal, in Figure 6 (b), corresponds to the zero set{
βj
}
≔

{
0.5,−0.5 + 1.5i,−0.5 − 1.5i, 1 + 1i, 1 − 1i

}
. �

4.2 Restriction of the zero set

Based on the characterization of nontrivial solutions of the discrete phase retrieval

problem using the zero sets of PA (z) in Theorem 3.1, we may consider only the solu-

tion x̂ (ω) of ��x̂ (ω) ��2 = A (ω) where the zero set
{
βj : j = 1, . . . ,N − 1

}
is �xed in a

way such that
���βj ��� ≤ 1 for all j = 1, . . . ,N − 1. Then, the zero set of x̂ (ω) and hence

the solution x is uniquely determined up to trivial ambiguities by Theorem 3.1. Al-

ternatively, one may take the zero set, where
���βj ��� ≥ 1 for all j .
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Figure 6: Empty nonnegative solution set for A (ω) = �� x̂ (ω) ��2

For the real case, this approach has been proposed already in [17, Theorem 8].

Unfortunately, we are not aware of any special physical feature of the phase retrieval

solution that is obtained choosing the zero sets in the one or the other way.

Remark 4.2. Note that �xing the zeros inside or outside the unit circle is not com-

patible with the restriction to nonnegativity for real-valued signals. For example, in

Figure 7, we consider a phase retrieval problem which has a unique solution under

the restriction of nonnegativity. However, this solution corresponds to the zero set{
βj
}
≔

{
−1.25,−0.5, 0.75 + 1.25i, 0.75 − 1.25i

}
,

where some zeros are inside and some zeros outside the unit circle as shown in

Figure 7 (c). �

4.3 Using additional endpoints of the signal

A di�erent idea to enforce uniqueness of the phase retrieval problem is to use ad-

ditionally known values of the signal x with �xed support {0, . . . ,N − 1}. In [41], it

had been assumed that for the real phase retrieval problem besides the autocorre-

lation function also the last signal value x [N − 1] is given. We want to examine in

more detail, how far this additional condition leads towards a unique phase retrieval

solution, thereby extending the considerations to the complex case.

Theorem 4.3. Let a nonnegative trigonometric autocorrelation polynomial A(ω) of

degree N − 1 and a constant C ∈ C be given. Further, let PA (z) be the corresponding

algebraic polynomial with the zero set{
γj , γ

−1
j : j = 1, . . . ,N − 1

}
as in (5).

The phase retrieval problem

A(ω) = ��x̂ (ω) ��2 with endpoint x[N − 1] = C
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Figure 7: Unique solution ofA (ω) = �� x̂ (ω) ��2 for real and nonnegative signals
with zeros inside and outside the unit circle

has a unique solution x = (x[n])N−1n=0 ∈ C
N if and only if there exists a zero set

{
βj : j = 1, . . . ,N − 1

}
where βj ∈

{
γj ,γ

−1
j

}
for j = 1, . . . ,N − 1 such that the consistency condition

|C |2 = |a[N − 1]| ·

N−1
∏

j=1

���βj ���−1 (7)

and
∏

βj ∈Λ

���βj ���2 , 1 (8)

for each nonempty proper subset Λ ⊂ {|βj | , 1 : j ∈ {1, . . . ,N − 1}} is ful�lled.

Proof. 1. Using Theorem 3.1 with

B (ω) = x̂ (ω) =

N−1
∑

n=0

x[n]e−iωn ,

the endpoint of the signal x is of the form
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x [N − 1] = eiα
|a [N − 1] |

N−1
∏

j=1

���βj ���−1


1
2

, (9)

where we assume that x is constructed by the zero set {βj : j = 1, . . . ,N − 1} as

given above. Hence, the endpoint condition x[N − 1] = C can only be satis�ed if

the consistency condition (7) is ful�lled. In this case, there always exists at least one

solution of the phase retrieval problem |x̂ (ω) |2 = A(ω).

2. We consider uniqueness of the solution vector x. Suppose that we have a

further solution x̃ of the phase retrieval problem. Then the endpoint x̃ [N − 1] again

satis�es

C = x̃ [N − 1] = eiα̃
|a

[N − 1] |

N−1
∏

j=1

��� β̃j ���−1


1
2

,

where β̃j ∈
{

βj , β
−1

j

}

by Theorem 3.1. For simplifying the notation of the following,

let

β̃j = β
−1

j (j = 1, . . . , L) and β̃j = βj (j = L + 1, . . . ,N − 1)

for some L ∈ {1, . . . ,N − 1}.

Thus, comparison of the endpoints x [N − 1] = x̃ [N − 1] yields the identity

eiα
L
∏

j=1

���βj ���−
1
2
= eiα̃

L
∏

j=1

���β j ���
1
2
,

i.e.,

ei(α−α̃ ) =

L
∏

j=1

���βj ��� .
Since the right hand side is real and positive, it follows that α = α̃ and hence

L
∏

j=1

���βj ��� = 1. (10)

In this product, we can omit all zeros β with |βj | = 1. The remaining equality

contradicts condition (8). Therefore, there exists no further solution of the phase

retrieval problem.

Observe that also trivial ambiguities do not occur. Shift ambiguities are avoided

by �xing the support of x to {0, . . . ,N − 1}, the rotation angle α is determined by

eiα = C
|C | using x[N − 1] = C in (9), and �nally the ambiguity caused by conjugation

and re�ection is already covered by the consideration above for L = N − 1, where

all zeros βj switch to β
−1

j . �

Assuming thatA(ω) is the autocorrelation polynomial of the complex-valued sig-

nal x = (x[n])N−1n=0 , it is very likely that the phase retrieval problem is uniquely
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solvable if x[n − 1] is already known since the submanifold of all (βj )
N−1
j=1 ∈ C

N−1

satisfying (??) has intrinsic (real) dimension smaller than 2N − 2, where CN−1 is

considered to be embedded into R2N−2. Therefore, we call all autocorrelation poly-

nomials satisfying (??) generic.

Corollary 4.4. A signal x = (x[n])N−1n=0 with a generic autocorrelation polynomial

A(ω) can be uniquely reconstructed from |x̂ (ω) |2 = A(ω) and x[N − 1].

Remark 4.5. A similar result can be proved for real signals, that has been also

considered in [41, Theorem 1]. In this case the zeros βj are real or occur in com-

plex conjugated pairs. All steps of the proof of Theorem 4.3 can then be similarly

obtained, and the signal x can be recovered from its autocorrelation function and

x[N − 1] almost surely.

One may now ask the question, how many signal points are needed to know

beforehand in order to solve the phase retrieval problem always uniquely? In [30,

Theorem 2] it has been shown for real signals x = (x[n])N−1n=0 that the solution is

unique if the
⌊
N
2

⌋
signal values x[n] for n =

⌈
N
2

⌉
, . . . ,N −2,N − 1 are already given.

Here,
⌊
N
2

⌋
denotes the largest integer less than or equal N

2 and
⌈
N
2

⌉
the smallest

integer greater than or equal to N
2 . Following the lines of that proof we can easily

generalize the result to complex signals.

For the given values x
[ ⌊

N
2

⌋ ]
, . . . ,x [N − 1], the remaining coe�cients are di-

rectly encoded in the autocorrelation signal a in (2). They can be reconstructed by

solving the linear equation system

*......,

x [N − 1]

x [N − 2] x [N − 1]
...

...
. . .

x
[⌈
N
2

⌉]
x
[⌈
N
2

⌉
+ 1

]
· · · x [N − 1]

+//////-

*.....,

x [0]

x [1]
...

x
[ ⌊

N
2

⌋
− 1

]
+/////-
=

*.....,

a [N − 1]

a [N − 2]
...

a
[⌈
N
2

⌉]
+/////-
.

Since the �rst matrix is a lower left triangle matrix and x [N − 1] , 0, this equation

system has a unique solution.

Remark 4.6. Similarly as shown in the next Subsection 4.4, it is su�cient to know

an arbitrary signal value x[n], n ∈ {0, . . . ,N − 1} \ {N−12 } instead of x[N − 1] in

order to ensure a unique solution of the discrete phase retrieval problem with high

probability.

4.4 Using moduli of the unknown signal

Instead of considering a given endpoint of the unknown signal x = (x[n])N−1n=0 , we

now assume that besides the moduli of the Fourier transform ��x̂ (ω) �� either all or
at least some of the magnitudes |x [n] |, n = 0, . . . ,N − 1 are given. Phase retrieval
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problems of this kind have been considered for example in [37, 26, 27], where a mul-

tilevel Gauss-Newton method has been proposed as a numerical approach. Again,

we want to investigate, whether these conditions on x lead to a reduction of ambi-

guities of the phase retrieval problem.

Suppose that x and x̃ are two nontrivial solutions of a phase retrieval problem

satisfying |x̂ (ω) |2 = |̂̃x (ω) |2 for all ω ∈ [0, 2π ) and |x[n]| = |x̃[n]| for one or more

indices n ∈ {0, . . . ,N − 1}. We assume again that PA (z) determined by the autocor-

relation polynomial A(ω) = |x̂ (ω) |2 has the zero set{
γj , γj

−1 : j = 1, . . . ,N − 1
}
.

By Theorem 3.1, the solutions of the phase retrieval problem have a Fourier trans-

form of the form

x̂ (ω) = eiα
|a

[N − 1] |

N−1
∏

j=1

���βj ���−1


1
2

·

N−1
∏

j=1

(

e−iω − βj
)

=

N−1
∑

n=0

x[n] e−iωn

and

̂̃x (ω) = eiα̃
|a

[N − 1] |

N−1
∏

j=1

��� β̃j ���−1


1
2

·

N−1
∏

j=1

(

e−iω − β̃j
)

=

N−1
∑

n=0

x̃ [n] e−iωn ,

where βj ∈
{

γj ,γ
−1
j

}

, β̃j ∈
{

γj ,γ
−1
j

}

=

{

βj , β
−1

j

}

, and α , α̃ ∈ [−π ,π ).

Now the additional conditions

|x [n] | = ��x̃ [n] ��
for n ∈ {0, . . . ,N − 2} imply by Vieta’s formulas

N−1
∏

j=1

���βj ���−
1
2
·

�������
∑

1≤k1< · · ·<kℓ ≤N−1

βk1 · · · βkℓ

�������
=

N−1
∏

j=1

��� β̃j ���−
1
2
·

�������
∑

1≤k1< · · ·<kℓ ≤N−1

β̃k1 · · · β̃kℓ

������� ,
(11)

where ℓ := N − 1 − n and particularly for the leading coe�cient |x [N − 1] | =��x̃ [N − 1] �� it follows that
N−1
∏

j=1

���βj ���−
1
2
=

N−1
∏

j=1

��� β̃j ���−
1
2
. (12)

Again, let us assume that β̃j = β
−1

j for j = 1, . . . , L and β̃j = βj else. Then (12)

already leads to the condition
∏L

j=1
���βj ��� = 1 similarly as the endpoint condition in
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the last subsection. Therefore, we get the following Corollary.

Corollary 4.7. Let a nonnegative trigonometric autocorrelation polynomial A(ω) of

degreeN−1 and a nonnegative constantC ∈ R be given. Let PA (z) be the corresponding

algebraic polynomial with the zero set{
γj , γ

−1
j : j = 1, . . . ,N − 1

}
as in (5).

The phase retrieval problem |x̂ (ω) |2 = A(ω) with the additional condition |x[N −

1]| = C has a solution x = (x[n])N−1n=0 ∈ C
N if and only if there exists a zero set

{
βj : j = 1, . . . ,N − 1

}
,

where βj ∈ {γj ,γ
−1
j } for j = 1, . . . ,N − 1 such that consistency condition

|C |2 = |a[N − 1]| ·

N−1
∏

j=1

���βj ���−1 (13)

is satis�ed. Moreover, this signal x is uniquely determined up to trivial ambiguities

caused by multiplication with an unimodular constant if

∏

βj ∈Λ

���βj ��� , 1 (14)

for each nonempty proper subset Λ ⊂ {|βj | , 1 : j ∈ {1, . . .N − 1} is ful�lled.

The conditions (11) are equivalent to

�������
∑

1≤k1< · · ·<kℓ ≤N−1

βk1 · · · βkℓ

������� =
L
∏

j=1

���βj ��� ·
�������

∑

1≤k1< · · ·<kℓ ≤N−1

β̃k1 · · · β̃kℓ

������� . (15)

Each of these equations can be regarded as polynomial equation in the real and

imaginary parts of the zeros βj .

Hence, for any additionally �xed modulus value |x[n]| being given for some n ∈

{0, . . . ,N − 1} and being consistent with the zero set corresponding to the autocor-

relation polynomial A(ω) = |x̂ (ω) |2, we only obtain multiple nontrivial solutions if

the zero set satis�es the polynomial equation (15) for ℓ = N − 1 − n. Thus we can

equivalently replace the condition (14) in Corollary 4.7 by the condition

�������
∑

1≤k1< · · ·<kℓ ≤N−1

βk1 · · · βkℓ

������� ,
∏

βj ∈Λ

���βj ��� ·
�������

∑

1≤k1< · · ·<kℓ ≤N−1

β̃k1 · · · β̃kℓ

�������
for ℓ = N − 1 − n and with Λ as before.
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Figure 8: Three nontrivial solutions of A (ω) = ��x̂ (ω) ��2 with given moduli

|x [n] | for n = 0, . . . , 3 as in Example 4.8.

It can be shown that the polynomial equation (15) is nontrivial, except for the case

L = N − 1 and n = N−1
2 that leads to a trivial ambiguity caused by re�ection and

conjugation. Therefore, similarly as in Corollary 4.4, it is almost sure that the phase

retrieval problem is uniquely solvable up to the trivial rotation ambiguity if besides

the autocorrelation polynomial also the modulus of one signal value x[n] is given.

In the case n = N−1
2 , the reconstruction is only unique up to rotated or re�ected,

conjugated signals.

One may ask the question, whether it is possible to determine the phase retrieval

solution always uniquely (up to rotation), if more then one value |x[n]| or even all

values |x[n]| for n = 0, . . . ,N − 1 are given. As the next example shows, this is not

the case.

Example 4.8. Figure 8 shows a phase retrieval problem for a givenA (ω) = ��x̂ (ω) ��2
and additionally givenmoduli |x [n] | forn = 1, . . . ,N−1. The zero set corresponding

to the marked signal x of length 4 is given by

β1 ≔
1
2 + 5i, β2 ≔

e−i
2
3 π

1
2 − 5i

, and β3 ≔
ei

2
3 π

1
2 − 5i

.

In the speci�c example, the phase retrieval problem of dimension N = 4 has three

di�erent nontrivial ambiguities. �
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5 Enforcing uniqueness by interference measurements

In this section, we investigate signal reconstruction where besides Fourier inten-

sity measurements of the wanted signal also some intensity pattern resulting from

interference with a known or unknown reference signal is available, as in Fourier

holography. There have been di�erent attempts to use interference with a known

or unknown reference signal, and to exploit intensity measurements in order to

achieve uniqueness of the phase retrieval problem. Let us shortly examine some

di�erent cases.

5.1 Interference with a known Dirac signal

First, as in [22], we consider the interference with a known Dirac signal and gener-

alize this idea to �nite length complex signals.

Theorem 5.1. Let the autocorrelation polynomialA(ω) = ��x̂ (ω) ��2 of the �nitely sup-
ported signal x = (x[n])N−1n=0 and the autocorrelation polynomial Ã(ω) = ��ŷ (ω) ��2 be
given, where

y [n] = x [n] +Cδ [n − n0]

and C ∈ C \ {0}, n0 ∈ Z are known, i.e., y [n0] = x [n0] + C and y [n] = x [n]

for n ∈ Z \ {n0}. Then x can be uniquely reconstructed from the autocorrelation

polynomials A(ω) and Ã(ω), and the constants C and n0 up to one trivial ambiguity.

Proof. We can follow the lines of the proof given in [22]. The Fourier transform

yields

ŷ (ω) = x̂ (ω) +Ce−iωn0

and ��ŷ (ω) ��2 = ��x̂ (ω) ��2 + 2 |C | ��x̂ (ω) �� cos (ϕ (ω) + n0ω − α ) + |C |
2
,

where ϕ (ω) ∈ [0, 2π ) denotes the phase of x̂ (ω), i.e., x̂ (ω) = ��x̂ (ω) �� eiϕ (ω ) , and

α ∈ [0, 2π ) the phase of C, i.e., C = |C | eiα . Here, the unknown phase ϕ (ω) is

directly encoded, and we �nd

cos (ϕ (ω) + n0ω − α ) =
��ŷ (ω) ��2 − ��x̂ (ω) ��2 − |C |2

2 |C | ��x̂ (ω) �� for ��x̂ (ω) �� , 0.

Since x̂ (ω) is a nonvanishing trigonometric polynomial, we have x̂ (ω) , 0 almost

everywhere, and cos(ϕ (ω)+n0ω−α ) is also for ω̃ with x̂ (ω̃) = 0 well determined by

taking the limit value ω → ω̃ on the right hand side of the equation above. Hence,

we obtain for all ω ∈ [−π ,π ) the values

ϕ (ω) + n0ω − α = ± arccos *,
��ŷ (ω) ��2 − ��x̂ (ω) ��2 − |C |2

2 |C | ��x̂ (ω) �� +- + 2πk, k ∈ Z. (16)



26 5 Enforcing uniqueness by interference measurements

Let now x̃ be a second solution of the phase retrieval problem, i.e.,

��x̂ (ω) ��2 = ���̂̃x (ω) ���2 , ���x̂ (ω) +C e−in0ω
���2 = ���̂̃x (ω) +C e−in0ω

���2
With ̂̃x (ω) = ���̂̃x (ω) ��� eiϕ̃ , it hence follows from (16) that

ϕ (ω) = ±
[
ϕ̃ (ω) + n0ω − α

]
− n0ω + α + 2πk

Since di�erences of phases by a multiple of 2π do not give di�erent solutions and

because x̂ resp. ̂̃x are trigonometric polynomials and hence continuous, we need to

consider only two cases, namely either thatϕ (ω) = ϕ̃ (ω) or ϕ (ω) = (−ϕ̃ (ω)−2n0ω+

2α ). Thus, there is only one possible second solution of the form

̂̃x (ω) = ��x̂ (ω) �� e−iϕ (ω )−2in0ω+2iα

resulting after support shift to {0, . . . ,N − 1} in the trivial ambiguity

(x̃ [n]) =
(

e2iα x [N − 1 − n]
)

.

This proves the assertion. �

Remark 5.2. (i) Assuming that n0 ∈ {0, . . . ,N − 1}, we need in the complex case

2N − 1 measurements to determine the autocorrelation polynomial A(ω) =��x̂ (ω) ��2 and further 2N − 1 measurements to determine the autocorrelation

polynomial Ã(ω) = ��ŷ (ω) ��2. In the real case, we need only N measurements

for each of the autocorrelation polynomials.

(ii) One may also take n0 ∈ Z \ {0, . . .N − 1} thereby enlarging the support of y

(compared to the support of x). In this case we need more than 2N − 1 mea-

surements to recover ��ŷ (ω) ��2 depending on the support length of the signal y.

One exception remarked in [22] is the case n0 = 2N − 1, where 4N − 1, in the

real case 2N , measurements are needed to recover ��ŷ (ω) ��2 but where ��x̂ (ω) ��2
does not need to be measured. The autocorrelation polynomial ��x̂ (ω) ��2 can be

directly recovered from ��ŷ (ω) ��2 observing that
ŷ (ω) = x̂ (ω) +C eiω (2N−1)

and

��ŷ (ω) ��2 = ��x̂ (ω) ��2 + |C |2 + x̂ (ω) C e−iω (2N−1)
+ x̂ (ω)C eiω (2N−1),

where the coe�cients of the three polynomials ��x̂ (ω) ��2, x̂ (ω) C e−iω (2N−1) and

x̂ (ω)C eiω (2N−1) do not superpose. �
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5.2 Interference with a known reference signal

Let us now consider the interference with a known reference signal h ≔ (h [n])n∈Z
with �nite support thereby generalizing and simplifying the results in [22].

Theorem 5.3. Let the autocorrelation polynomialA(ω) = ��x̂ (ω) ��2 of the �nitely sup-
ported signal x = (x[n])N−1n=0 and the autocorrelation polynomial Ã(ω) = ��ŷ (ω) ��2 be
given, where

y [n] = x [n] + h [n]

for some known �nitely supported reference signal h = (h [n])n∈Z . If the signal h pos-

sesses a linear phase, then x can be uniquely reconstructed up to one trivial ambiguity.

If h does not have a linear phase, then we generally obtain two nontrivial solutions.

Proof. Note that also y ≔ (y [n])n∈Z is a �nite length signal. As before, we observe

that

��ŷ (ω) ��2 = (x̂ (ω) + ĥ (ω)
)

(

x̂ (ω) + ĥ (ω)

)

=
��x̂ (ω) ��2 + ���ĥ (ω) ��� + 2 Re

(

x̂ (ω) ĥ (ω)

)

.

With x̂ (ω) = ��x̂ (ω) �� eiϕ (ω ) and ĥ (ω) =
���ĥ (ω) ��� eiψ (ω ) , whereϕ (ω) andψ (ω) denote

the phase functions of x̂ and ĥ, it follows that

��ŷ (ω) ��2 = ��x̂ (ω) ��2 + ���ĥ (ω) ���2 + 2 ��x̂ (ω) �� ���ĥ (ω) ��� cos (ϕ (ω) −ψ (ω))

such that

ϕ (ω) −ψ (ω) = ± arccos
*.,
��ŷ (ω) ��2 − ��x̂ (ω) ��2 − ���ĥ (ω) ���2

2 ��x̂ (ω) �� ���ĥ (ω) ���
+/- + 2πk

for ω with x̂ (ω) ĥ (ω) , 0 and k ∈ Z.

Similarly as in the proof of Theorem 5.1, we can restrict our considerations to

k = 0. Again, we only �nd two di�erent solutions since x̂ and ̂̃x are continuous.

Both solutions are related by

ϕ1 (ω) −ψ (ω) = −ϕ2 (ω) +ψ (ω) ,

i.e.,

ϕ2 (ω) = −ϕ1 (ω) + 2ψ (ω) .

Considering the corresponding signals

x̂1 (ω) = ��x̂ (ω) �� eiϕ1(ω ) and x̂2 (ω) = ��x̂ (ω) �� e−iϕ1 (ω )+2iψ (ω ),
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we want to examine if this second solution is a trivial ambiguity.

According to Proposition 2.1, the ambiguity is trivial if and only ifψ (ω) is of the

form

ψ (ω) = −n0ω + α or ψ (ω) = ϕ1 (ω) − n0ω + α

for some n0 ∈ R and α ∈ R. In the second case, x2 is obtained from x1 by a 2n0-

shift and rotation, and in the �rst case, beside shift and rotation also conjugation and

re�ection of x1 are involved. Forψ (ω) = −n0ω +α the reference signal h possesses

a linear phase, i.e.,

ĥ (ω) =
���ĥ (ω) ��� e−i(n0ω−α ) .

This is equivalent to

e−iα ein0ω ĥ (ω) =
���ĥ(ω) ��� = ���ĥ(ω) ��� = eiα e−in0ω ĥ (ω),

i.e.,

e−iαh [n + n0] = eiαh [n0 − n] .

Thus, when the known reference signal h has linear phase, the phase retrieval prob-

lem is uniquely solvable up to one trivial ambiguity. If h does not have a linear

phase, we obtain up to two nontrivial solutions. Observe here that it is impossible

to ful�ll ψ (ω) = ϕ (ω) − n0ω + α since the phase ψ (ω) is unknown and needs to be

reconstructed. �

5.3 Interference with an unknown reference signal with known intensity

Let us �nally consider the problem of phase reconstruction for two unknown �nite

length signals x, h from the intensities

��x̂ (ω) ��2 , ���ĥ (ω) ���2 , and
���x̂ (ω) + ĥ (ω)

���2 .
In case of real signals, the idea goes back to [24]. For complex signals, we refer to

[34], where beside the three intensities given above, a forth intensity

���x̂ (ω) + i ĥ (ω)
���2

is used for reconstruction. Here, we state the result for complex signals x, h and

give a new complete proof based on our �ndings in Theorem 2.3.

Theorem 5.4. Let (x [n]) and (h [n]) be two complex �nite support sequences, and

assume that the factorizations of their discrete Fourier transforms

x̂ (ω) = x [N1 − 1]

N1−1
∏

j=1

(

e−iω − ηj
)

,

ĥ (ω) = e−iωk1h [N2 − 1]

N2−1
∏

j=1

(

e−iω − γj
)
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with an integer shift k1 ∈ Z have no common roots, i.e., ηj , γk for all j = 1, . . .N1 −

1, k = 1, . . .N2 − 1. Then

x [n] and h [n]

can be uniquely recovered from ��x̂ (ω) ��2, ���ĥ (ω) ���2 and
���x̂ (ω) + ĥ (ω)

���2 up to trivial

ambiguities.

Proof. 1. Assume that the phase retrieval problem has two nontrivial solution

pairs x [n], h [n] and x̃ [n], h̃ [n] such that |x̂ (ω) |2 = |̂̃x (ω) |2, |ĥ(ω) |2 = |̂̃h(ω) |2 and
|ŷ(ω) |2 = |̂̃y(ω) |2, where

ŷ (ω) = x̂ (ω) + ĥ (ω) , ̂̃y (ω) = ̂̃x (ω) +
̂̃
h (ω) .

According to Theorem 2.3, there exist convolution representations, shifts, and rota-

tions such that

x̂ (ω) = x̂1 (ω) x̂2 (ω) and ̂̃x (ω) = eiα1 x̂1 (ω) x̂2 (ω), (17)

and

ĥ (ω) = e−ik1ω ĥ1 (ω) ĥ2 (ω) and
̂̃
h (ω) = eiα2 e−ik2ω ĥ1 (ω) ĥ2 (ω) (18)

for some α1,α2 ∈ [−π ,π ) and shifts k1,k2 ∈ Z, where w.l.o.g. we consider shifts

only in ĥ and
̂̃
h. Here, we assume that

supp x1 = {0, . . . ,m1}, suppx2 = {0, . . . ,N1 −m1 − 1},

supph1 = {0, . . . ,m2}, supph2 = {0, . . . ,N2 −m2 − 1},

i.e., x̂1 corresponds tom1 linear factors and ĥ1 tom2 factors. Now,

���x̂ (ω) + ĥ (ω)
���2 = ����̂̃x (ω) +

̂̃
h (ω)

����
2

together with |x̂ (ω) |2 = |̂̃x (ω) |2 and |ĥ(ω) |2 = |̂̃h(ω) |2 implies

x̂ (ω) ĥ (ω) + x̂ (ω) ĥ (ω) = ̂̃x (ω)
̂̃
h (ω) + ̂̃x (ω)

̂̃
h (ω) .

Incorporating (17) and (18) yields

eik1ω x̂1 (ω) x̂2 (ω) ĥ1 (ω) ĥ2 (ω) + e
−ik1ω x̂1 (ω) x̂2 (ω) ĥ1 (ω) ĥ2 (ω)

= ei(α1−α2 ) eik2ω x̂1 (ω) x̂2 (ω) ĥ1 (ω) ĥ2 (ω)

+ e−i(α1−α2 ) e−ik2ω x̂1 (ω) x̂2 (ω) ĥ1 (ω) ĥ2 (ω),
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i.e., [
eik1ω x̂1 (ω) ĥ1 (ω) − e

−i(α1−α2) e−ik2ω x̂1 (ω) ĥ1 (ω)
]

·

[
x̂2 (ω) ĥ2 (ω) − e

i(α1−α2) e−iω (k1−k2 ) x̂2 (ω) ĥ2 (ω)
]
= 0.

Hence, either

x̂1 (ω) ĥ1 (ω) = e−i(α1−α2 ) e−iω (k1+k2 ) x̂1 (ω) ĥ1 (ω) , (19)

or

x̂2 (ω) ĥ2 (ω) = ei(α1−α2) e−iω (k1−k2 ) x̂2 (ω) ĥ2 (ω) (20)

has to be ful�lled.

2. Suppose that (19) is true, i.e., x̂1 (ω) ĥ1 (ω) has linear phase. Considering the

factorizations

x̂1 (ω) = x1 [m1]

m1
∏

j=1

(

e−iω − ηj
)

,

ĥ1 (ω) = h1 [m2]

m2
∏

ℓ=1

(

e−iω − γℓ
)

(19) leads to

x1 [m1] h1 [m2]

m1
∏

j=1

(

e−iω − ηj
)

m2
∏

ℓ=1

(

eiω − γ
ℓ

)

= e−i(α1−α2 ) e−iω (k1+k2 ) x1 [m1]h1 [m2]

m1
∏

j=1

(

eiω − η j
)

m2
∏

ℓ=1

(

e−iω − γℓ
)

.

Hence, withC ≔ x1 [m1] h1 [m2],

C eiωm2

m2
∏

ℓ=1

(

−γ
ℓ

)

m1
∏

j=1

(

e−iω − ηj
)

m2
∏

ℓ=1

(

e−iω − 1
γ
ℓ

)

= C e−i(α1−α2) eiω (−k1−k2+m1 )
m1
∏

j=1

(

−ηj

)

m1
∏

j=1

(

e−iω − 1
η j

)
m2
∏

ℓ=1

(

e−iω − γℓ
)

. (21)

As we have on both sides trigonometric polynomials of a �xed degree, it follows

that

m2 + k2 + k1 =m1. (22)

If we interpret the left and right hand side of the above equation (21) as polynomials
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in z ≔ e−iω , then we have on both sides the same zero set, i.e.,

{

ηj : j = 1, . . . ,m1

}

∪

{

γ −1
ℓ

: ℓ = 1, . . . ,m2

}

=

{

η −1j : j = 1, . . . ,m1

}

∪

{

γℓ : ℓ = 1, . . . ,m2

}

.

Using the assumption of the theorem thatηj , γℓ for all j and ℓ, we can conclude that

the roots on both sides of (21) lying not on the unit circle can only occur in pairs
(

ηj ,η
−1
j

)

and
(

γℓ,γ
−1
ℓ

)

. Therefore we can assume that x̂1 (ω) possesses the zeros

ηj , ηj
−1 for j = 1, . . . , L1 as well as possible zeros on the unit circle ηj+2L1 = eiνj ,

j = 1, . . .m1− 2L1, and similarly ĥ1(ω) possesses the zeros γj , γj
−1 for j = 1, . . . , L2 as

well as possible zeros on the unit circle γj+2L2 = eiµj , j = 1, . . .m2 − 2L2. Therewith,

we �nd for x̂ and ĥ representations of the form

x̂1 (ω) = x1 [m1]

L1
∏

j=1

(

e−iω − ηj
)

(

e−iω − 1
η j

)
m1−2L1
∏

j=1

(

e−iω − e−iνj
)

and

ĥ1 (ω) = h1 [m2]

L2
∏

ℓ=1

(

e−iω − γℓ
)

(

e−iω − 1
γ
ℓ

)
m2−2L2
∏

ℓ=1

(

e−iω − e−iµℓ
)

.

In particular, x1 and h1 are invariant under re�ection, see Corollary 3.3, i.e.,

x̂1 (ω) = e−iωm1 x̂1 (ω) and ĥ1(ω) = e−iωm2 ĥ1 (ω).

Together with (17) and (18), it follows that

x̂ (ω) = x̂1 (ω) x̂2 (ω) , ̂̃x (ω) = eiα1 e−iωm1 x̂1 (ω) x̂2 (ω)

ĥ (ω) = e−ik1ω ĥ1 (ω) ĥ2 (ω) ,
̂̃
h (ω) = eiα2 e−iω (m2+k2 ) ĥ1 (ω) ĥ2 (ω)

and thus x̃ and h̃ are trivial ambiguities of x and h. We obtain by (22)

ŷ (ω) = x̂1 (ω) x̂2 (ω) + e
−ik1ω ĥ1 (ω) ĥ2 (ω) ,

̂̃y (ω) = (eiα1 x̂1 (ω) x̂2 (ω) + eiα2 eik1ω ĥ1 (ω) ĥ2 (ω)) e−iωm1

=

(

e−iα1 x̂1 (ω) x̂2 (ω) + e−iα2 e−ik1ω ĥ1 (ω) ĥ2 (ω)
)

e−iωm1 .

For α1 = α2, the signal sums ỹ and y are also trivial ambiguities of each other.

3. If the condition (20) holds true then a similar procedure leads to the identities

̂̃x (ω) = eiα1 eiω (N1−m1−1) x̂ (ω) and
̂̃
h (ω) = eiα2 eiω (−k2+N2−m2−1) ĥ (ω) .
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and to the condition S ≔ N2 −m2 − 1 − k2 + k1 = N1 −m1 − 1 such that

ŷ (ω) = x̂1 (ω) x̂2 (ω) + e
−iωk1 ĥ1 (ω) ĥ2 (ω) ,

̂̃y (ω) = (eiα1 x̂1 (ω) x̂2 (ω) + eiα2 e−iωk1 ĥ1 (ω) ĥ2 (ω)) eiωS .
Hence, we can always recover x and h uniquely up to trivial ambiguities in both

cases. �

Remark 5.5. (i) If all signals are real, see [24], then the prefactor C is also real,

i.e., C = C. Further the real zeros of x̂1 and ĥ1 occur in pairs

(

ηj ,η
−1
j

)

and
(

γℓ,γ
−1
ℓ

)

but the complex zeros occur in quads

(

ηj ,ηj ,η
−1
j ,η

−1
j

)

and
(

γℓ,γ ℓ
,γ−1

ℓ
,γ −1

ℓ

)

.

That implies

N1−m1−1
∏

j=1

(

−ηj

)

= ±1 and

N2−m2−1
∏

ℓ=1

(

−γ
ℓ

)

= ±1

and therefore α1, α2 ∈ {0,π }, i.e., ỹ and y always are trivial ambiguities of

each other. The same can be observed in the case when (20) holds true. Hence,

we can recover x, h and y uniquely up to trivial ambiguities from the given

autocorrelations functions.

(ii) Note that in the complex setting, the rotations α1 and α2 can be di�erent. For

example, if x̂ is a real function and ĥ is an imaginary function, then ̂̃y = x̂+eiπ ĥ
solve the given phase retrieval problem with α1 = 0 and α2 = π .

(iii) In [34], the same complex phase retrieval problem is considered, but here a

fourth autocorrelation function

���x̂ (ω) + i ĥ (ω)
���2

is employed to ensure the unique reconstruction up to trivial ambiguities. The

advantage of a fourth measurement set is that the signals x and h can be re-

covered easily by using the complex polarization formula and comparing the

roots of the di�erent polynomials.

(iv) In [8], beside the intensity |x̂ (ω) |2 also the intensities of interferences of x̂ (ω)

with shifted versions of itself,

���x̂ (ω) + x̂ (ω − 2πs
N

) ���2 and
���x̂ (ω) − i x̂

(

ω − 2πs
N

) ���2
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are applied. With the notation x̂
(

2πk
N

)

=
���x̂ ( 2πkN ) ��� eiϕk a comparison of

���x̂ (ω) + x̂ (ω − 2πs
N

) ���2 and
���x̂ (ω) − i x̂

(

ω − 2πs
N

) ���2
for ω = 2πk

N , k = 0, . . . ,N − 1 then yields the values for the phase di�erences

ϕk−s − ϕk , k = 0, . . . ,N − 1. Therefore, if s ∈ N is prime with N , the signal x

can be uniquely reconstructed from these intensities up to the trivial rotation

ambiguity. �
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