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ABSTRACT

For a fast and accurate extraction of important information in seismic signals, a sparse

representation based on physical parameters of the given data is crucial. In this pa-

per we use the Asymmetric Gaussian Chirplet Model (AGCM) and establish a dictio-

nary free variant of the Orthogonal Matching Pursuit (OMP), a Greedy algorithm for

sparse approximation. The atoms of AGCM, so-called chirplets, display asymmetric

oscillation-attenuation properties, which make the AGCM very suitable for sparse rep-

resentation of absorption decay seismic signals. Unlike the Fourier transform which

assumes that the seismic signals consist of plane waves, the AGCM assumes the seismic

signal consists of non-stationary compressed plane waves, i.e., symmetric or asymmetric

chirplets. Thus AGCM is a general model for seismic wave simulation, and its model

parameters include envelope part and phase part. In this paper, we mainly concentrate

on the parameters of envelope part such as envelope amplitude and arrival time. We

will show numerical examples using the algorithm for seismic signal approximation and

arrive-time detection. The results show a promising performance but may be improved

considering also spatial correlations of seismic data.

INTRODUCTION

Seismic signals need to be analyzed in many applications, e.g., the detection of different earth

layers. Most of the methods used today are based on the same idea: The measured data
1Institute for Numerical and Applied Mathematics, University of Göttingen, Göttingen, 37083, Germany,

f.bossmann@math.uni-goettingen.de
2Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China, jma@hit.edu.cn



2

consists out of a small number of important components plus noise. Thus, decomposition

methods are often applied in order to reconstruct the individual components. If we assume

the number of components to be small, Greedy methods can be used to obtain a sparse

decomposition (Tropp, 2004; Boßmann et al., 2012).

The quality of the reconstructed information is highly dependent on the nature of the

components one assumes. Nowadays, many methods use the assumption that seismic data

can be sparsely represented by sparse transforms, e.g., the Radon transform (Trad et al.,

2003), Fourier transform (Liu and Sacchi, 2004), wavelet transform (Daubechies, 1992),

curvelet transform (Herrmann and Hennenfent, 2008; Ma and Plonka, 2010). Some seismic-

feature based (e.g., physical wavelet transform (Zhang and Ulrych, 2003) and seislet trans-

form (Fomel and Liu, 2010)) or adaptive learning dictionaries (e.g., data-driven tight frame

(Liang et al., 2014)) have been proposed for sparser representation of seismic data. Other

sparse transforms, e.g., singular value decomposition (Freire and Ulrych, 1998), empirical

mode decomposition (EMD) based Hilbert-Huang transform (Huang and Wu, 2008), Prony

transform (Pisarenko, 1973; Mitrofanov et al., 1998; Bath, 1995; Beylkin and Monzon, 2005;

Fomel, 2013), have also been used for seismic data processing. The sparsity plays a key role

in seismic data denoising (Beckouche and Ma, 2014), data acquisition (Herrmann, 2010),

interpolation (Liu and Sacchi, 2004; Herrmann and Hennenfent, 2008; Trad, 2009; Liang

et al., 2014), prediction of multiples (Donno et al., 2010; Ventosa et al, 2012), compres-

sion (Ma et al., 2010; Duchkov et al., 2010), seismic modeling (Hong and Kennett, 2003;

Sun et al., 2009), migration (Chauris and Nguyen, 2008), imaging (de Hoop et al., 2009),

simultaneous-source deblending (Chen et al., 2014), and seismic inversion (Li et al., 1996;

Yuan and Simons, 2014).

The advantage of e.g. wavelets is, that today wavelets are well understood and there are

known decomposition methods that can be applied directly. However, the wavelet itself is

more a mathematical structure than based on the physical background of seismic data. Due

to the absorption attenuation factor of seismic waves in subsurface, the seismic signal has a

basic decay property. The presented method is a model-based method to represent seismic
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data that consists of several (overlapping) seismic waves, i.e., symmetric or asymmetric

chirplets. The first motivation of our paper is that the AGCM is essentially very suitable

to sparsely represent non-stationary decay seismic signals. AGCM uses an adaptive chirplet

model function to simulate a seismic wave depending on its physical properties like frequency,

bandwidth or other factors. When the seismic signal is decomposed into several waves, these

properties can give direct information, e.g., about the underlying material of the earth layer.

The second motivation is that the model parameters or coefficients in transform domain such

as envelope amplitude and arrival-time can provide not only explicit physical interpretation

but also potential use for local attribution (Fomel, 2007), envelope-based inversion (Wu et

al., 2014), early arrive-wave detection, and denoising.

To implement the AGCM method, we apply an OMP Greedy algorithm. The OMP

seeks a sparse approximation of the given data using a number of basic atoms, the so-called

dictionary. We will combine OMP with the AGCM. This model is an extended variant of

Gaussian Chirplets or, more basic, Gabor atoms. AGCM introduces a new parameter, the

asymmetry factor that allows the model function to have an asymmetric behavior such as

absorption decay seismic signals. The AGCM is a general model for seismic wave simulation.

However, the flexibility will be lost if we use AGCM to design a dictionary for OMP. Hence,

we will introduce a dictionary free version of OMP to overcome this problem. The proposed

algorithm will directly calculate the best parameter set in each iteration instead of just

choosing from a dictionary. We will concentrate on the slightly simpler case where we

only consider the envelope of the seismic data and provide a fast parameter guess that can

approximate the optimal parameters. Preliminary tests on numerical examples show the

promising performance of the proposed AGCM method on sparse representation of seismic

data.

We also refer to previous results in (Lu et al., 2006, 2008) where comparable ideas

for the slightly simpler Gaussian chirplet model were presented. The Gaussian chirplet

model can only represent waves with a symmetric envelope and thus it is less flexible than

AGCM. Similar to the method we present here, the proposed algorithms use Greedy methods
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combined with a successive parameter guess for the chirplets. However, those methods make

use of the derivative of the model and/or require an evaluation of the chirplets for (many)

different parameters. As we will later see, the derivative of AGCM may be unstable and

sampling of AGCM for different parameter sets leads to a high computational cost. Thus,

we avoid both cases in our method.

Finally, we give a comment of our method in comparison with Prony’s method (Mitro-

fanov et al., 1998). Similar to the Fourier transform, Prony’s method extracts valuable

information from a sampled signal and builds a series of damped complex exponentials or

sinusoids. This allows for the estimation of amplitude, frequency, phase and damping com-

ponents of a signal. Our method approximates the amplitude using AGCM with 4 unknown

parameters (amplitude, bandwidth, asymmetry factor, and time shift). With the Prony

method, one can only calculate a sparse approximation where the amplitude and the time

shifts are unknown, i.e., the bandwidth and asymmetry factors must be known/fixed. This

means the form of the envelope must be fixed first. Thus, our method can reconstruct more

information about the given data.

THEORY

Asymmetric Gaussian Chirplet Model

In this paper, we consider a wave model that has been introduced recently in (Demirli and

Saniie, 2014) applied to ultrasonic data. It is a generalization of the Gaussian chirplet model

used for example in (Fan et al., 2002). The so called asymmetric Gaussian chirplet model

(AGCM) is of the form

Ap(t) := Ep(t)Fp(t), (1)

Ep(t) := exp−α(1−β tanh(C(t−τ)))(t−τ)2 , (2)

Fp(t) := cos(f(t− τ) + γ(t− τ)2 + θ), (3)
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with the envelope part Ep(t) and the frequency part Fp. Here, tanh(Ct) = −i tan(iCt)

is the hyperbolic tangent function that for large C is approximatively 1 for t > 0 and

−1 for t < 0. The wave form of the AGCM function Ap(t) is defined by a parameter set

p := (α, β, τ, f, γ, θ) with the bandwidth factor α > 0, the asymmetry factor β ∈ (−1, 1), the

time shift τ > 0, the center frequency f ∈ [0, 2π), the chirp rate γ ∈ [0, 2π) and the phase

θ ∈ [0, 2π). C is a positive constant chosen a-priori. Note that the envelope Ep(t) decreases

exponentially with a bandwidth approximatively equal to α(1+β) for t < τ and α(1−β) for

t > τ . For β = 0, the AGCM will be the conventional chirplet model. With the additional

degree of freedom, AGCM is able to simulate asymmetric waves that for example have a

fast increase of the amplitude in the beginning and then decrease slowly. Thus, this model

should be more suitable to approximate seismic waves that are also decay signals because

of underground medium absorption. Figure 1 illustrates some elements of the AGCM with

different parameter vectors.

The AGCM model decomposes a signal into two parts, envelope Ep(t) and frequency

Fp(t). Both parts can be can be further decomposed into its parameter domain (α, β, τ) for

Ep(t), and (f, γ, θ) for Fp(T ). In this paper, we mainly focus on the parameters of Ep(t)

and show how we can obtain the parameters by designed mathematical algorithms. We give

simple examples on the physical significance of these parameters and their potential appli-

cations. However, we still have full knowledge about Fp(t) since it is given by D(t)/Ep(t)

where D is the original data. Thus we can completely reconstruct the data. We do not lose

any information on the Fp(t) in our algorithm, but just do not further decompose it into its

parameter domain.

The envelope (low-frequency bandwidth) can be used in recently envelop inversion meth-

ods that can provide a good initial model for full-waveform inversion (e.g., see R. Wu 2014).

Travel time can also be used for joint inversion and other attribute analysis. As you said,

the phase part is related to fast varying rate (high-frequency bandwidth), and it is very

important. We will focus on the phase parameters in our next work. Further note that,

since in this work we concentrate on the envelope part of AGCM, the form and type of the
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frequency part Fp is not significant for the here proposed algorithm and may be replaced

by other model functions. However, we kept with the chirplet function as it follows the

derivation of the model in (Demirli and Saniie, 2014).

Sparse representation of seismic data

Now we assume that seismic data has a sparse representation in AGCM space, that is, the

data can be approximated using only few AGCM waves, i.e., given the data D(t) we obtain

D(t) ≈
L∑
k=1

akApk(t), (4)

where L is a small number, ak ∈ R is the amplitude of each atom Apk(t) and pk is a parameter

set for each k ≤ L. Figure 2 compares the amplitude size of seismic data in AGCM space

with its Fourier amplitudes using 5122 elements, i.e., exact representation of the data. Note

that the amplitudes in AGCM space decrease exponentially since the x-axis is plotted in

logarithmic scale and thus the data can be approximated sparsely in the AGCM space.

Unfortunately the reconstruction of all parameters {pk}Lk=1 at once can be very unstable

due to noisy data. However, the parameters of AGCM can be separated in a simple way

using its envelope and phase separately. In this paper, we will concentrate on reconstructing

the envelope of the AGCM atoms given by (2). Thus the number of parameters is reduced

to 4 for each element including the amplitude ak. Some crucial information about the

underlying seismic structure is already contained in the envelope of the data (Wu et al.,

2014). We assume that interference in (4) stays low, i.e., that the AGCM atoms in (4) are

well separated and hence R is locally most influenced by only one AGCM atom at once. It

follows that the envelope Env(D) of D can be approximated by

Env(D)(t) ≈
L∑
k=1

akEpk(t). (5)

However, if the interference in (4) is high the envelope Env(D) can still be approximated

according to (5). Note that in this case the amplitudes ak and parameter vectors pk may

differ from those in (4) since e.g. overlapping atoms may be merged into one single envelope
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Epk (see e.g. Figure 9 and the discussions in the Numerical Results section). Note that the

envelope Env(D) of D can be calculated using the absolute value of its Hilbert transform

as shown in Figure 3. Since the number of used atoms L is small, we can use Greedy

algorithms for sparse recovery to reconstruct the parameters. We will adapt a widely used

Greedy algorithm for signal decomposition known as OMP (Tropp, 2004). For a given

dictionary of atoms {fk}Nk=1, where N is the size of the dictionary, OMP tries to find the

best sparse approximation of a given data set by choosing the most correlating atom in each

iteration and optimizing the amplitudes over all already chosen atoms. Using an AGCM

based dictionary the functions fk may be given by e.g. fk = Apk or fk = Epk where {pk}Nk=1

are a-priori chosen parameter vectors. As we will see later in this work, the choice of these

vectors is the most crucial part of the algorithm. For simplicity we assume that the atoms

are normalized, then OMP can be expressed by Algorithm 1.

Algorithm 1 Orthogonal Matching Pursuit for normalized atoms
Input: envelope Env(D), atoms {fk}Nk=1

Initialize: approximation A = 0, residual R = Env(D), J = 1

While some stopping criterion does not hold

Set kJ := argmax|〈R, fk〉|

Solve (a1, . . . , aJ) := argmin‖Env(D)−
J∑
j=1

ajfkj‖2

Set A =
J∑
j=1

ajfkj , R = Env(D)−A and J = J + 1

Output: A, R, sparsity J , indices {kj}Jj=1, amplitudes {aj}Jj=1

As a stopping criterion one can choose an upper bound L for the sparsity J < L or

stop when the residual is below some threshold ‖R‖ < ε. Note that the minimization of

the amplitudes is a linear problem and thus can be solved using fast linear optimization

methods.

In this form, OMP needs a number of atoms called the dictionary. To apply OMP on

seismic data using AGCM waves, the dictionary may consist of several AGCM waves for

different parameters {pk}Nk=1, i.e., fk = Apk . Considering that each parameter should be
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sampled appropriately, e.g., atM points on its domain whereM may become very large, we

obtain O(M6) different parameter sets pk, i.e., O(M6) dictionary elements. Even applied

to the more simple case fk = Epk using only the envelope of both the data and the AGCM

atoms the size of the dictionary is O(M3). Thus, the number of atoms will be too large to

implement OMP in a suitable manner.

To overcome this problem we introduce a dictionary free version of OMP. Instead of

choosing a predefined dictionary element in the algorithm, we will directly calculate the

best parameter set approximating the residual, i.e., we minimize the problem

fkJ = EpJ with pJ = argmin‖R− Ep‖2.

Using common minimization methods will require to calculate the gradient of Ep. Un-

fortunately, this may be very unstable especially for β 6= 0 because of the tanh function.

Therefore, we will use an approximative solution based on the ideas in (Demirli and Saniie,

2014). The authors present a method to successively reconstruct all parameters of the

AGCM method. However, they only apply the method to one unknown AGCM atom. In

this paper, we will use the ideas to separate several overlapping AGCM atoms. Since this

will be very prone to noise when it comes to the reconstruction of the frequency, we will

here stick with the envelopes.

The envelope Ep reaches its maximal value at position t = τ . Thus, in the J-th iteration

of OMP we may set

τJ = argmax
t

R(t)

aJ = R(τJ).

Given the parameters τJ and aJ we can calculate αJ and βJ by assuming that

R(t) ≈ aJ exp−αJ (1−βJ tanh(C(t−τJ )))(t−τJ )2 , (6)

for t close to τJ . Plugging in aJ and τJ and applying the logarithm this becomes a simple

quadratic equation that can be evaluated at some test points. Note that these values are
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more accurate the less overlapping the seismic waves in the data are. For this reason the test

points should not be chosen too far away from t = τJ . Indeed, if there is no overlap at the

test points the parameters will return the exact solution (in the noiseless case). However,

in each iteration OMP will perform an optimization of the amplitudes of all selected atoms.

This will be more accurate than using aJ = R(τJ) since the optimization can also take the

correlation between overlapping atoms into account. We obtain the adapted dictionary free

OMP (ADOMP) as shown in Algorithm 2.

Note that the sample points t1, . . . , tK in Algorithm 2 should be chosen in a way such

that the least square problem becomes stable. We suggest the following restrictions to the

sample points:

1. For k = 1, . . . ,K the inequality R(tk) > aJ/4 should hold.

2. R(t) should be monotonically increasing on [t1, τJ ] and decreasing on [τJ , tK ].

3. For a chosen ε > 0 there should be no k ≤ K such that tk ∈ [τJ − ε, τJ + ε].

Since for small amplitudes R(t) the relative error due to noise on the data will be big,

the first condition ensures that we are only considering sample points with an amplitude

above the threshold aJ/4. The second condition ensures that the assumption (6) will hold.

Because the exponential function in (6) is monotonically increasing for t < τJ and decreasing

for t > τJ , other behavior will indicate the influence of other AGCM atoms on the function

values. The last restriction is dealing with the problem of noise on the reconstructed values

aJ and τJ , i.e., instead of aJ , τJ only aJ + ε1, τJ + ε2 with small ε1, ε2 is given. Note that

tanh(C(t − τJ)) is close to 1 if t > τJ and close to −1 if t < τJ . To avoid tk > τJ but

tk < τJ + ε2 or tk < τJ but tk > τJ − ε2 the sample points should be chosen with some

distance ε to τJ . Moreover, we obtain for all k = 1, . . . ,K that

log(R(tk)/(aJ + ε1)) = log(R(tk))− log(aJ + ε1)

= log(R(tK))− log(aJ)− log(1 + ε1/aJ)

= log(R(tk)/aJ)− log(1 + ε1/aJ).
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Hence the absolute error is given by log(1+ε1/aJ). For ε1 > 0 this term will be smaller than

ε1/aJ , i.e., the absolute error is decreasing due to the log term. For −0.7968aJ < ε1 < 0

(i.e., for a negative relative error up to nearly 80%) the term is bounded by 2ε1/aJ . Thus,

the absolute error is stable up to very high noise on aJ . However, since for tk close to τK

it will hold that R(tk) ≈ aJ i.e., log(R(tk)/aJ) will be small and hence the relative error

may be big, we suggest again to chose tk with some distance ε from τK . Considering all

three restrictions the least square problem will become stable. Nevertheless, if the number

of possible sample points is too low, e.g. we suggest at least 3 on each side of τJ , the

restrictions can be relaxed.

Algorithm 2 Adapted dictionary free OMP for AGCM atoms
Input: envelope Env(D)

Initialize: approximation A = 0, residual R = Env(D), J = 1

While some stopping criterion does not hold

Calculate τJ = argmax R, aJ = R(τJ)

Choose K sample points t1, . . . , tK

For k = 1, . . . ,K consider the K equations

log(R(tk)/aJ) = −αJ(1− βJ tanh(C(tk − τJ)))(tk − τJ)2

and solve for αj , βj in a least square sense

Set pJ = (αJ , βJ , τJ)

Solve (a1, . . . , aJ) := argmin‖Env(D)−
J∑
j=1

ajfpj‖2

Set A =
J∑
j=1

ajfkj , R = Env(D)−A and J = J + 1

Output: A, R, sparsity J , indices {kj}Jj=1, amplitudes {aj}Jj=1

NUMERICAL RESULTS

For our numerical experiments we stop the algorithm when the maximal amplitude of the

residual drops below 25%, 10%, 5% or 1% of the original amplitude, i.e., if ‖R‖∞ <
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κ‖Env(D)‖∞ where κ = 0.25, 0.1, 0.05, 0.01. Figure 4 and 5 show the approximation of

the envelope using ADOMP with different κ using the original data shown in Figure 3. In

Figure 6 the mean squared error (MSE) and signal-to-noise ratio (SNR) of the reconstruction

is plotted as a function of the used parameter κ in percent. Here we sampled the function on

κ = 0.25, 0.24, . . . , 0.01, i.e. the calculated the MSE and SNR when we stop the algorithm

after the residual drops below 25%, 24%, . . . , 1%. As a comparison we also plotted the MSE

and SNR of an approximation using only the largest Fourier coefficients, where the number

of coefficients is the same as atoms used in our algorithm. The input data has been modified

to have a maximal absolute value of 100 for a better comparison. Since ADOMP returns a

sparse approximation of the original data, the method can be used to store given data in an

efficient way as Figure 7 illustrates. The number of atoms and the relative benefit is plotted

as a function of κ in percent. Here, we assume that storing the complete data pixel by pixel,

i.e. 5122 elements, has a relative storage cost of 1. The relative costs of ADOMP storing

all amplitudes and the corresponding parameters are shown in Figure 7 (b). Although we

need to store several parameters for a single AGCM atom, the representation is so sparse,

i.e. only a few atoms are needed, that the overall storage costs stay low. The number of

Fourier coefficients and storage cost needed to obtain the same approximation accuracy is

plotted as a comparison.

Besides the sparse representation of seismic data, the proposed method can also be

used to directly manipulate the data or extract important information of the source of the

data. Here we will demonstrate the utility of AGCM atoms and the ADOMP algorithm for

approximation and arrival-time detection.

Using the fact that the data D can be written as D = Env(D) · Ph(D) where Ph(D) is

the phase of D, we can implement an approximation algorithm for seismic data by approxi-

mating its envelope components (see Algorithm 3). The algorithm is based on the idea, that

ADOMP will most likely reconstruct the large major parts of Env(D), i.e., the parts that

obtain important information, and suppress small amplitudes, i.e., noise. Thus the algo-

rithm can also be used for simple denoising. The approximated results using different κ are
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shown in Figure 8. Here we just apply the AGCM trace by trace, so it is essentially a one-

dimensional problem. The preliminary results show the denoising usability of the AGCM.

As an improvement of this method, coherence in spatial dimensions should be considered.

This will be part of our future work.

Algorithm 3 Denoising with ADOMP
Input: data D

Calculate Env(D) and Ph(D)

Find an approximation A of Env(D) using ADOMP

Set D = A · Ph(D)

Output: Approximated data D

As another application we want to present the use for seismic arrival-time detection. As

stated already in the introduction of this paper, one important difference between mathe-

matical atoms like wavelets and physical based atoms like AGCM is, that the reconstructed

parameters carry information about the underlying physical structure. It can give direct

conclusion on the type, source or material of detected earth layers. We demonstrate this

using the synthetic data shown in Figure 9 (a). The data contains a linear event at its

bottom, a parabolic event, and a linear structure at its top that is slowly stretched in time.

The stretch was only applied to the decreasing part of the wave (i.e. to the part after the

envelope reached its maximum to obtain asymmetric attention waves). Thus, the seismic

impulse initialization remains the same but its attenuation in time is slowed. These seismic

responses are also observed in real data and hence they are a reasonable assumption for

the synthetic data. The seismic impulse/signal is shown in Figure 9 ((b) solid blue line).

We manually extracted it from the real data shown in Figure 3 (a). First, we apply the

ADOMP algorithm using κ = 0.1 and a sparsity of at most 3 per trace. As a comparison

we apply ADOMP a second time but now force β = 0, i.e. AGCM is simplified to the Gaus-

sian Chirplet Model (GCM). Both algorithms extract 1337 parameter sets. Figure 9 (b)

shows the original envelope (dotted blue line) and the reconstructed envelopes using AGCM

(solid red line) and GCM (dashed black line) with the median parameters. Since GCM is
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not able to simulate an asymmetric behavior, it overestimates the envelope for t < 0 and

underestimates for t > 0. The AGCM returns a more suitable approximation. This gets

even more clear when we consider the approximation error for the complete data envelope.

Using GCM the residual norm is 1070.5 while it is only 290.9 for AGCM. Figures 9 (c)

and (d) show the extracted arrival times using GCM (c) and AGCM (d). Both algorithms

manage to reconstruct the arrival times as long as the signals are not to much overlapping.

In this case, the correlation between both signals is too strong and the algorithm tries to

approximate the two overlapping signals with only one atom. However, while the parameters

may suffer from this, the reconstructed envelope will still be a good approximation. This

especially holds for the more flexible AGCM. While GCM adds another atom to approx-

imate the overlapping signals, AGCM recovers a good approximation with only one atom

(note that this does not imply that the GCM approximation is better than AGCM since

the reconstructed parameters in GCM will not correlate with the real parameters). Thus,

the next added atom in AGCM is already used to reconstruct very small structures in the

residual (see the artefacts in Figure 9 (d) at time sampling number 140). Anyhow, these

artefacts can be filtered out very easy since their corresponding amplitudes are extremely

small. In this case, if we use AGCM with increased κ = 0.12 and the algorithm will only

return 1325 elements displayed in Figure 10 (a) (we nevertheless illustrated the algorithm

for κ = 0.1 to compare AGCM and GCM with the same number of atoms used). Figure 10

shows the initialization bandwidth factor α(1 + β) of the reconstructed envelope for t < τ

and the attenuation bandwidth factor α(1 − β) for t ≥ τ using AGCM and the parameter

sets corresponding to the stretched seismic signal. One can clearly see that AGCM is able

to detect the constant initialization bandwidth factor and the decreasing attenuation band-

width factor. The attenuation decreases from 0.0035 to 0.00065, i.e., a decrease of about

81 percent, while α(1 + β) changes only by about 7.5 percent from 0.011 to 0.0118. This

example demonstrates the benefit of our AGCM algorithm not only in arrival-time detection

but also in envelope approximation (e.g., error norms given above), and asymmetric wave

detection (e.g., the above linear stretched structure).
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Finally, we test the arrive-time detection for real data. We demonstrate this by visualiz-

ing the arrival time τ for the atoms used in the reconstruction with different parameters κ.

The parameters τ shown in Figure 12 are obtained applying ADOMP on pre-stack marine

shot gather data shown in Figure 11, i.e. τ corresponds to the physical arrival time. Figure

13 shows the result when ADOMP is applied to the real post-stack data shown in Figure 3.

For post-stack data the τ does not more correlate to the physical arrival time but can now

be used as a layer reconstruction.

CONCLUSION

We have presented a new algorithm for sparse representation of seismic data using AGCM.

Besides the parameters already known from GCM or Gabor atoms, this new model intro-

duces an additional parameter to simulate asymmetric wave forms. The large number of

physical parameters allows a good approximation of acoustic as well as seismic waves but

also comes at hand with new challenges. A reconstruction using atoms from a dictionary

is no longer suitable. We overcome this problem by adapting the OMP to a dictionary

free version. Moreover, the parameter reconstruction was stabilized. Another advantage of

our method is, that the reconstructed parameters have a physical interpretation and thus

can help e.g., for the reconstruction of earth layers. This does not hold for wavelets or

curvelets. The usability of our algorithm was demonstrated showing numerical results for

approximation, sparse storage, envelope and arrival-time detection.

In the next work, we will further explore how the parameters (e.g., envelope, arrival-

time, phase) benefit for real seismic data processing. How to extend the AGCM to high-

dimensional denoising by considering the spatial coherence of seismic data is another im-

portant work.
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Figure Captions:

Figure 1: (a) Symmetric Gabor atom with p = (0.01, 0, 0, 0.5, 0, 0), (b) θ = π/4, (c)

Gabor atom with p = (0.0025, 0, 0, 0.5, 0, 0), (d) β = 0.8, (e) γ = 0.015. All functions

sampled on t ∈ [−100, 100].

Figure 2: (a) Original seismic data with 5122 pixels, (b) AGCM (red dash line) and

Fourier (blue solid line) amplitudes for exact recovery using 5122 elements in decreasing

order using logarithmic scale on the x-axis.

Figure 3: Piece of a seismic image (a) and envelope obtained by Hilbert transform (b).

Figure 4: Reconstructed envelope using ADOMP with decreasing κ (from left-up to

right-down).

Figure 5: (a)-(d) Original data (blue), its envelope (black) and its reconstruction (red)

with decreasing κ. Larger κ values lead to smoother envelope.

Figure 6: Mean squared error (a) and signal-to-noise ratio (b) of the reconstructed enve-

lope as a function in κ% using ADOMP (red dash line) compared to Fourier approximation

using same number of coefficient as atoms used in ADOMP.

Figure 7: (a) Number of elements used in ADOMP (red dash line) for approximation and

(b) storage cost relative to a full image storage as a function of κ%. The number of Fourier

coefficients needed to obtain the same approximation accuracy as well as their storage cost

is plotted as a comparison (blue solid line).

Figure 8: Approximated data using the above stated algorithm with decreasing κ.

Figure 9: (a) Synthetic seismic data. (b) Seismic impulse (solid blue line) and its envelope

(dotted blue line), the envelope reconstruction using GCM (dashed black line) and AGCM

(solid red line). (c) and (d) Reconstructed/detection arrival times using GCM and AGCM

(red lines plus furcation). (e) Reconstructed ascending bandwidth (solid line) and descending

bandwidth (dashed line) of the first seismic response.
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Figure 10: (a) Reconstructed arrival times using AGCM with increased κ = 0.12, (b)

reconstructed ascending bandwidth (solid line) and descending bandwidth (dashed line) of

the first seismic response in Figure 9 (d).

Figure 11: Marine shot gather (a) and its Hilbert transform (b).

Figure 12: Detection of arrival time parameter τ using ADOMP for decreasing κ on real

pre-stack data shown in Figure 11.

Figure 13: Detection of arrival time parameter τ using ADOMP for decreasing κ on real

data shown in Figure 3.
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Figure 1: (a) Symmetric Gabor atom with p = (0.01, 0, 0, 0.5, 0, 0), (b) θ = π/4, (c) Gabor

atom with p = (0.0025, 0, 0, 0.5, 0, 0), (d) β = 0.8, (e) γ = 0.015, sampled on t ∈ [−100, 100].
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Figure 2: (a) Original seismic data, (b) AGCM (red dash line) and Fourier (blue solid line)

amplitudes for exact recovery using 5122 elements in decreasing order using logarithmic scale

on the x-axis.
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Figure 3: Piece of a seismic image (a) and envelope obtained by Hilbert transform (b).
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Figure 4: Reconstructed envelope using ADOMP with decreasing κ (from left-up to right-

down).



25

Time Sampling Number
50 100 150 200 250 300 350 400 450 500

A
m

p
li

tu
d

e

-40

-20

0

20

40

60

Time Sampling Number
50 100 150 200 250 300 350 400 450 500

A
m

p
li

tu
d

e

-40

-20

0

20

40

60

(a) (b)

Time Sampling Number
50 100 150 200 250 300 350 400 450 500

A
m

p
li

tu
d

e

-40

-20

0

20

40

60

Time Sampling Number
50 100 150 200 250 300 350 400 450 500

A
m

p
li

tu
d

e

-40

-20

0

20

40

60

(c) (d)

Figure 5: (a)-(d) Original data (blue), its envelope (black) and its reconstruction (red) with

decreasing κ. Larger κ values lead to smoother envelope.
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Figure 6: Mean squared error (a) and signal-to-noise ratio (b) of the reconstructed envelope

as a function in κ% using ADOMP (red dash line) compared to Fourier approximation using

same number of coefficient as atoms used in ADOMP.
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Figure 7: (a) Number of elements used in ADOMP (red dash line) for approximation and

(b) storage cost relative to a full image storage as a function of κ%. The number of Fourier

coefficients needed to obtain the same approximation accuracy as well as their storage cost

is plotted as a comparison (blue solid line).
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Figure 8: Approximated data using the above stated algorithm with decreasing κ.
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Figure 9: (a) Synthetic seismic data. (b) Seismic impulse (solid blue line) and its envelope

(dotted blue line), the envelope reconstruction using GCM (dashed black line) and AGCM

(solid red line). (c) and (d) Reconstructed/detection arrival times using GCM and AGCM

(red lines plus furcation).
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Figure 10: (a) Reconstructed arrival times using AGCM with increased κ = 0.12, (b)

reconstructed ascending bandwidth (solid line) and descending bandwidth (dashed line) of

the first seismic response in Figure 9 (d).
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Figure 11: Marine shot gather (a) and its Hilbert transform (b).
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Figure 12: Detection of arrival time parameter τ using ADOMP for decreasing κ on real

pre-stack data shown in Figure 11.
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Figure 13: Detection of arrival time parameter τ using ADOMP for decreasing κ on real

data shown in Figure 3.


