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1 Installation

To use the PRwSC toolbox simply make sure that the folder which contains the toolbox is
on the MATLAB path. In order to be able to use the examples which use the shearlet trans-
form, you need to download ShearLab 3D from http://www.shearlab.org. Currently,
the toolbox is tested to work with ShearLab 3D version 1.1 which currently is available under
http://shearlab.org/files/software/ShearLab3Dv11.zip. An extensive de-
scription about the shearlet transform and its implementation in ShearLab 3D is given in [6].

*s.loock@math.uni-goettingen.de
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Make sure that the shearlet toolbox is on your MATLAB path as well in order to function prop-
erly.

1.1 Acknowledgements

This work has been funded by the Deutsche Forschungsgesellschaft (DFG) under the Sonder-
forschungsbereich 755 Nanoscale Photonic Imaging.

The file fresnel_prob.m which implements the discrete Fresnel transform used in the
toolbox is courtesy of Martin Krenkel. Please refer to [5] for more information.

The filecell256.mwhich is used for the simulation examples is courtesy of Klaus Gieweke-
meyer, see [4, 3].

If you use this toolbox, please cite the publications [7, 8].

2 Introduction

The phase retrieval problem in the general sense means to recover a function or a vector from
its modulus and it occurs in several disciplines such as astronomy, crystallography, and x-ray
imaging. While the problems in the different disciplines differ slightly and this toolbox is
designed for phase retrieval in the context of x-ray imaging, the toolbox should be general
enough to also cover different applications such as astronomy.

Most applications furthermore involve the propagation of a wave between the object plane
and a measurement plane. This document will only be concerned with the discrete version
of the problem and hence the quantities we are dealing with will be matrices and vectors.
For sake of simplicity we assume that the measurements and objects to be recovered are
vectors in Cd or Rd . The linear mappings modeling the propagation of a wave will then
be unitary matrices in Cd×d . Note that this setting can easily be generalized for when the
measured quantities are of a higher dimension, e.g. when they are matrices which relates to
two-dimensional images.

Let us denote by R+ the set of all positive real numbers including zero. We denote the
measurements by m ∈Rd+, i.e., the right-hand-side of the non-linear equation

|Ux| = m (1)

where |·| denotes the point-wise modulus and U a unitary mapping modeling the wave prop-
agation. In general, x ∈ Cd and hence, U ∈ Cd×d with U−1 = U∗ since we assume that U is
unitary. For a more detailed introduction of the problem, we refer to [7] and the references
therein.

2.1 Solving the Problem: Feasibility Formulation

This toolbox is a framework to solve problems of the form (1) using projection algorithms
or more generally speaking, algorithms which use proximity algorithms in some alternating
fashion to solve an optimization problem where the solution is a special solution of (1).
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The set of all admissible solutions to (1) will be denoted by

M :=
{

x ∈Cd | |Ux| = m
}

. (2)

In the presence of noisy measurements one may want to enlarge this set to

Mε :=
{

x ∈Cd | d (|Ux|,m) ≤ ε
}

(3)

where d(·, ·) : Cd ×Cd → R+ denotes an appropriate distance function. If additional infor-
mation about x is available, this can be incorporated into a constraint set C . A prominent
example of such a set is

C :=
{

x ∈Cd | supp x ⊂Λ
}

(4)

with a known index-setΛ⊂ {1, . . . ,d}.1

Following this notation, the task is to find x ∈ M ∩C or, if M ∩C =;, a solution x which is
simultaneously close to both sets. This, of course, translates to the case where noise is present
and M is replaced by Mε.

2.2 Solving the Problem: Algorithms

There is a wide range of algorithms which solves phase retrieval problems using projection
algorithms onto the sets M and C . For an overview, we refer to [1] and the references therein.
In the following, P A denotes the projection operator onto a set A. If A is non-convex and P A

therefore set-valued, with slight abuse of notation, we donate by P A any selection out of the
projection onto A. The following algorithms are part of the PRwSC toolbox:

• Method of alternating projections (MAP2):

xk+1 = PM PC xk (5)

• Relaxed averaged alternating reflections algorithm (RAAR3):

xk+1 = βk

2
(RM RC + I ) xk + (1−βk )xk (6)

where βk ∈ (0,1) and RM = 2PM − I , RC = 2PC − I .

Following the template given by MAP.m, one can easily implement further algorithms. For
more details, we refer to section 3.

1The support of x, or supp x, describes the set of all indices j such that x j 6= 0.
2Implemented in MAP.m.
3Implemented in RAAR.m.
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2.3 Solving the Problem: Constraints

The PRwSC toolbox contains several proximity / projections operators which are used as con-
straints. Depending on the type of objects, those constraints are

• support constraint

• range constraints:

– positivity constraint

– negativity constraint

– amplitude constraint

• sparsity constraints:

– shearlet soft-thresholding

– shearlet smooth-hard shrinkage

The problem types that are available are phase, amplitude, and mixed. The problem type is
specified in the field input_data.problem.type. The constraint type is specified in the
field input_data.problem.constraint.name.
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3 Design

The toolbox is structured in the following subdirectories:

• Algorithms: Contains implementations of the different algorithms which itself use
the appropriate projection and proximity operators as defined in theinput_data ob-
ject. In each iteration, an error is computed which will be returned in theoutput_data
object together with the reconstructed object.

• Drivers: This directory contains problem specific driver files. Here, for each prob-
lem, an input_data object is constructed which contains all necessary information
needed to solve the problem.

• InputData: Contains the corresponding data for each problem. For simulation pur-
poses, this will be the exact solution of the problem from which an appropriate right-
hand-side m will be constructed using the driver file or the experimental data obtained
in an experiment.

• OutputData: The folder to store reconstructions and plots calculated using the al-
gorithms.

• Processors: Methods handling the input data stored in the InputData directory
which will be called from the driver file. This is the place to write your own methods to
handle your experimental data in a suitable way and make it accessible to the toolbox.

• ProxOperators: Contains all necessary projection and proximity operators which
will be used by the algorithms such as the projection onto the set M , the set C and
variants of it but also proximity operators which are used as sparsity constraints.

• Utilities: The folder containing all little helper functions such as the wave propa-
gators, the thresholding functions, methods to compute an error such as the distance
function mentioned above and others.

There are two main (global) variables (or structures) used in the toolbox. Theinput_data
structure contains all information and data necessary to use the toolbox. Theoutput_data
structure contains all information and objects computed by the toolbox. In the following, we
describe what information these two structures contain and which of them are optional.
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3.1 The input_data structure

Field Values Description

data RN×M data used for simulation
problem structure contains problem type and information
algorithm structure information on the algorithm and parameters
physicalParameters struct physical parameters of the object
Psi ψ ∈CN×M wave function to be reconstructed
noise structure information on noise type and intensity
system structure shearlet system
initialGuess x(0) ∈CN×M initial guess

Table 1: The input_data field and its structure.

Field Values Description

type {’amplitude’, ’phase’, ’mixed’} type of the object determines wave function ψ
propagator {’Fourier’, ’Fresnel’} determines which transform U in (1) is used
Fx (0,∞) Fresnel number in horizontal direction
Fy (0,∞) Fresnel number in vertical direction
data RN×M measurements, right-hand-side in (1)
constraint structure constraint type and information

Table 2: The input_data.problem field and its structure.

Field Values Description

name ’support’ simple support constraint on the object
’support and range’ simple and a range constraint (e.g., positivity)
’shearlet thresholding’ thresholding of shearlet coefficients
’shearlet thresholding and range’ thresholding in combination with range constraint

info ’soft thresholding’ type of thresholding: soft-thresholding
’smooth hard’ type of thresholding: smooth-hard shrinkage

range ’positive’, ’negative’ specifies range information
parameter ’constant’ constant thresholding parameter γk ≡ γ0

’dynamic’ thresholding parameter γk = γ0/k
gamma0 (0,∞) initial thresholding parameter
support #supp×1 index-set of the assumed support of the object

Table 3: The input_data.problem.constraint field and its structure.
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Field Values Description

name ’RAAR’ uses the RAAR algorithm
’MAP’ uses the method of alternating projections

parameter ’constant’ uses a constant relaxation parameter βk ≡β0

’dynamic’ uses a variable relaxation parameter
beta structure contains additional parameters used for βk

maxit (0,∞) maximal number of iterations to perform
error (0,∞) approximation error, exits algorithms if achieved
metric ’norm’ ‖xk+1 −x‖F when x is known

‖xk+1 −xk‖F when x is unknown
’shadow’ ‖PS xk −x‖F when x is known

‖PS xk −PM xk‖ when x is unknown
’setdistance’ ‖PM PS xk −PS xk‖2

F /‖PS xk‖2
F

Table 4: The input_data.problem.algorithm field and its structure.

Field Values Description

delta decrement of real part of refractive index
beta imaginary part of refractive index
tau lateral thickness
lambda wavelength
P phase distribution
A amplitude distribution

Table 5: The input_data.problem.physicalParameters field and its structure.

Field Values Description

type ’poisson’ Poisson data
’gaussian’ additive gaussian noise
’none’ exact data

level intensity of the noise
error size of the ε in Mε

Table 6: The input_data.problem.noise field and its structure.

The shearlet system stored in input_data.system is described in [7, Table 3.1].
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3.2 Algorithms

As we briefly touched on in subsection 2.2, the problem is solved using projection algo-
rithms (and generalizations thereof). If you want to implement your own algorithm, the
MAP.m file is a good, minimal template to do so. Every algorithm should only have one in-
put variable (input_data) and one output variable (output_data). The structure of the
input_data object is discussed above. At this point, the output_data structure has the
following fields:

Field Type Description

reconstruction size of the object reconstruction xN

error N error for each iteration step

Table 7: The input_data.problem.noise field and its structure.

Your own implementation of algorithms should conform with some simple guidelines:

• The algorithm has one input (input_data) and one output (output_data) vari-
able. The structure of those variables should conform with those mentioned above.

• The iteration variable should be named x, temporary variables tmpN starting with N =
1 or x_old if they are a placeholder for the last iteration of x.

• The algorithm should calculate an error of some form and use the
input_data.algorithm.error variable to terminate if this error is achieved. It
furthermore should respect the
input_data.algorithm.maxit and finish after that number of iterations inde-
pendently of the error.

• The error for each iteration should be returned in the corresponding field as a vector.

function output_data = MAP(input_data)
% Input : input_data structure
% Output: output_data structure

x = input_data.initialGuess;
k = 1;
output_data.error = zeros(input_data.algorithm.maxit);
error = inf;

while ( k < input_data.algorithm.maxit || error < input_data.algorithm.error )

gamma = computeShrinkageParameter(input_data, k);
tmp1 = magnitudeProjection( input_data, x);
x_old = x;
x = constraintProximityOperator(input_data, tmp1, gamma);
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error = computeError(input_data, x, x_old, tmp1);
output_data.error(k) = error;
k = k+1;
itMsg = sprintf('Iteration: %d, Gamma: %.6f, Error: %.3f, Constraint: %s',

k, gamma, error, input_data.problem.constraint.name);
disp(itMsg);

end

output_data.error = output_data.error(1:k−1);
output_data.reconstruction = x;

end

3.3 Drivers

The driver files are used to create a input_data variable according to the guidelines de-
scribed above. Depending weather you are using experimental or simulated data, the cre-
ation of the driver file may differ slightly.

The toolbox contains a demo file named simulatedDataCellImage.m. You may fol-
low the naming convention which first asserts the type and later the specific name, e.g.
experimentalDataXY.m for a driver file using experimental data. The driver file should
only have one argument which is the filename containing the data. If you use a container
format, you may want to write a routine or extend the existing readDataFromFile.m to
your needs. The driver file needs to create all necessary fields covered above. If you need to
run multiple numerical experiments and want to modify yourinput_data, you can do that
still later on. Here is an example file:

function input_data = simulatedDataCellImage( filename )
%CELL256 Describes problem and creates data structure
% This driver file is an example file to explain
% how problems are created in the PRwSC toolbox.
%
% Input:
% filename − Name (string) of the file that contains the data.
% The input is assumed to be of the type .mat
% containing only one variable named 'pattern'.
%
% Output:
% input_data − A Matlab structure containing various
% information needed in the toolbox like
% the problem type, physical parameters,
% qualitative constraints and algorithmic
% parameters.
% For an explanation of the elements of the created structure,
% we refer to the documentation.
% Get preprocessed data. Right now, the method only returns the data
% itself.

input_data = readDataFromFile(filename);

% Since we don't now at this point which fields the readDataFromFile
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% function provides us, we check for necessary information and provide
% some reasonable choices ourselves if they are not set yet.

if ~isfield(input_data, 'problem')
input_data.problem.type = 'phase'; % 'phase', 'amplitude', 'mixed'

end

if ~isfield(input_data, 'algorithm')
input_data.algorithm.name = 'RAAR'; % currently: RAAR, MAP
input_data.algorithm.parameter = 'dynamic'; % 'dynamic', 'constant'
input_data.algorithm.beta.null = 0.99;
input_data.algorithm.beta.max = 0.55;
input_data.algorithm.beta.switch = 20;
% input_data.algorithm.beta.value = 0.55;

end

if ~isfield(input_data, 'physicalParameters')
if strcmp(input_data.problem.type, 'phase')
% decrement of real part of defr. idx

input_data.physicalParameters.delta = 1.6e−6;
else

input_data.physicalParameters.delta = 0;
end
if strcmp(input_data.problem.type, 'amplitude')
% imag. part of defr. idx

input_data.physicalParameters.beta = 8e−7;
else

input_data.physicalParameters.beta = 0.0;
end
% lateral thickness
input_data.physicalParameters.tau = 1e−5;
% Wave length
input_data.physicalParameters.lambda = 1e−10;
% Wave number
input_data.physicalParameters.k = 2*pi/input_data.physicalParameters.lambda;
% Phase distribution
input_data.physicalParameters.P = input_data.data * input_data.physicalParameters.tau;
% Amplitude distribution
input_data.physicalParameters.A = input_data.data * input_data.physicalParameters.tau;
% Wave function Psi
input_data.Psi = exp(−1i.*input_data.physicalParameters.k....

*input_data.physicalParameters.delta.*input_data.physicalParameters.P...
−input_data.physicalParameters.k.*input_data.physicalParameters.beta....
*input_data.physicalParameters.A);

end

if ~isfield(input_data.problem, 'noise')
input_data.noise.type = 'poisson'; % poisson or gaussian
input_data.noise.level = 50; % poisson: expct. photons/pixel, gaussian: variance
input_data.noise.error = 1e−2; % describes the phattening of the set M

end
if ~isfield(input_data.problem, 'propagator')

input_data.problem.propagator = 'Fresnel'; % Fresnel or Fourier
input_data.problem.Fx = 4*1e−3; % Fresnel number x−coordinate
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input_data.problem.Fy = 4*1e−3; % Fresnel number y−coordinate
% Measurement data are pointwise modulus in fresnel/fourier domain
input_data.problem.data = abs(wavePropagator(input_data, input_data.Psi,1));
input_data.problem.data = createNoisyMeasurements(input_data);
% shearlet, support, negativity, amplitude
input_data.problem.constraint.name = 'shearlet thresholding and range';
% optional (depends on constraint name). soft / smooth hard
input_data.problem.constraint.info = 'smooth hard';
input_data.problem.constraint.parameter = 'dynamic'; % dynamic = 1/k right now, const
input_data.problem.constraint.gamma0 = 0.001; % initial threshold parameter
% for the cell and box, we would chose R=0.75.
input_data.problem.constraint.support = createSupportIdx(input_data, 0.8, 'box');

end
end

4 Examples

The toolbox contains one example file for simulated data. This example should be sufficient
to write your own files and run your own reconstruction algorithms.

4.1 Simulated Data: Phase Object with Poisson Noise

We consider an object x ∈ Cn1×n2 of the form x = e−ikτδT where T ∈ Rn1×n2 . Objects of this
type are called phase objects, τ describes the maximal thickness of the objects and T the
relative lateral thickness profile. Furthermore, k = 2π/λ is the wave number. This object is
created using the driver file simulatedDataCellImage.m. The resulting configuration
file is given in Section 3.3. Since we want to compare the reconstruction using different con-
straints, we use thesimulationComparison.mfile to run several instances with different
constraints:

clear all
addpath('Algorithms', 'Drivers', 'InputData', 'OutputData',

'Processors', 'ProxOperators', 'Utilities')
addpath(genpath('../ShearLab3Dv11')) % Shearlet Toolbox

input_data = simulatedDataCellImage( 'cell256.mat' );

input_data.algorithm.maxit = 2000;
input_data.algorithm.error = 1e−10;
input_data.algorithm.metric = 'norm';

[sizex,sizey] = size(input_data.data);
useGPU = 0;
scales = 4; % number of scales
input_data.system = SLgetShearletSystem2D(useGPU,sizex,sizey,scales);

if ~isfield(input_data, 'initialGuess')
% initial guess is the simple back projection

input_data.initialGuess = wavePropagator(input_data,input_data.problem.data);
end
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%% shearlet soft thresh + range
input_data.problem.constraint.name = 'shearlet thresholding and range';
% optional (depends on constraint name). soft thresholding/ smooth hard
input_data.problem.constraint.info = 'soft thresholding';
% dynamic = 1/k. right now, const
input_data.problem.constraint.parameter = 'const';
% initial threshold parameter
input_data.problem.constraint.gamma0 = 0.005;
% for the cell and box, we would chose R=0.75.
input_data.problem.constraint.support = createSupportIdx(input_data, 0.75, 'ball');

% object that holds the reconstruction and errors
recDataShearletRangeSoft = RAAR(input_data);

%% shearlet smooth hard
input_data.problem.constraint.name = 'shearlet thresholding';
% optional (depends on constraint name). soft thresholding/ smooth hard
input_data.problem.constraint.info = 'smooth hard';
% dynamic = 1/k right now, const
input_data.problem.constraint.parameter = 'const';
% initial threshold parameter
input_data.problem.constraint.gamma0 = 0.007;
% for the cell and box, we would chose R=0.75.
input_data.problem.constraint.support = createSupportIdx(input_data, 0.75, 'ball');

recDataShearletSmoothHard = RAAR(input_data);

%% support and range
input_data.problem.constraint.name = 'support and range';
if isfield(input_data.problem.constraint, 'info')

input_data.problem.constraint = rmfield(input_data.problem.constraint, 'info');
end
% for the cell and box, we would chose R=0.75.
input_data.problem.constraint.support = createSupportIdx(input_data, 0.75, 'ball');

recDataSupportRange = RAAR(input_data);

Running this file yields three reconstruction, one where we used the combination of shear-
let soft-thresholding and a range constraint (the first one), one where we only used shearlet
thresholding but the so-called smooth-hard shrinkage (which is a type of thresholding, see
[2]) and the last one were we use the combination of the support and range constraint. The
last one is basically the benchmark we compare to since support information combined with
a range constraint is a strong a priori information.

We obtain three output structures which have the structure as described above. We can
now use theplotReconstructionResults.mfile to plot the reconstructions and errors
or use other methods to examine and compare the reconstruction quality.
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