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Abstract

In this paper, an anisotropic total variation (ATV) minimization is combined with the new adap-

tive tetrolet transform for discontinuity-preserving image processing. In order to suppress the

pseudo-Gibbs artefacts and to increase the regularity, the conventional shrinkage results are fur-

ther processed by a total variation (TV) minimization scheme, in which only the insignificant

tetrolet coefficients of the image are changed by the use of ATV constrained projection, instead

of previous TV projections. Numerical experiments of piecewise-smooth images show the good

performance of the proposed hybrid method to recover the shape of edges and important detailed

directional components, in comparison to some existing methods.
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1. Introduction

The wavelet transform is one of the most popular tools in image processing due to its promising

properties for singularity analysis and efficient computational complexity. However most natural

images/signals exhibit discontinuities across curves (so-called line or curve singularities). Although

applications of wavelets have become increasingly popular in scientific and engineering fields, tra-

ditional wavelets perform well only for representing point singularities, since they ignore the ge-

ometric properties of directed structures and do not exploit the regularity of edges. Therefore,

wavelet-based compression, denoising, or structure extraction become computationally inefficient

for geometric features with line and surface singularities.

The recently proposed geometric wavelets, e.g., curvelets [3, 16], contourlets [12], bandelets

[28], shearlets [19], can improve this drawback of traditional wavelets to some extent. Typically,
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curvelets proposed by Candès, Donoho, Demanet, and Ying [2, 3, 4] allow an almost optimal

sparse representation of objects with C2-singularities. For a smooth object f with discontinuities

along C2-continuous curves, the best m-term approximation fm by curvelet thresholding obeys

‖f − fm‖2
2 ≤ Cm−2 (logm)3, while for wavelets the decay rate is only m−1. Unfortunately, like

wavelets, the geometric wavelets still suffer from the pseudo-Gibbs artefacts and shift/rotation

variance, though they attempt to overcome these problems at least partially [14, 24].

The TV-synthesized wavelet transform can effectively overcome these problems. After Cham-

bolle et al. [6] have examined the close relationship between wavelet-based algorithms and varia-

tional problems, in the wide field of image processing, there have been proposed many approaches

combining TV methods and wavelet transforms to improve the performances. Besides [5, 9], we

mention the work by Chan and Zhou who combine wavelet shrinkage and TV minimization for

image compression in [8]. In [32] Starck et al. separate images into texture and piecewise smooth

parts, exploiting both the variational and the sparsity mechanisms. Their method combines a basis

pursuit denoising algorithm and a TV regularization scheme, too.

In this paper, we focus on a method originally proposed by Durand and Froment in [13]. The

main idea is to fix the significant coefficients after a classical wavelet thresholding and to change

the small coefficients in an iterative minimization process such that the TV norm of the image

becomes minimal. This method is really effective to reduce the pseudo-Gibbs oscillating artefacts

in the high pass part. In our previous work, we successfully applied the TV minimization/diffusion

in a denoising framework for complex wavelets [21], ridgelets [25], wave atoms [23], and curvelets

[22, 24, 29]. The hybrid methods show good performance for real applications on denoising of

engineering surfaces and images with textures.

In this work, we extend the TV minimization post-processing scheme from Durand and Froment

[13] with some essential modifications. Firstly, we propose the usage of the anisotropic total

variation instead of the traditional isotropic one. The anisotropy ensures smoothing in flat regions

while edges are preserved. The ATV is not new for image processing, but in this work it is the

first time to be used to reduce the pseudo-Gibbs artefacts resulted from wavelet shrinkage.

The second innovation is the combination of the post-processing TV minimization step with

the tetrolet transform, which is a recently proposed adaptive geometric wavelet filter bank [20].

This transform was especially designed for sparse representation. Therefore we thirdly apply our

hybrid method to image approximation while the minimization approach by Durand and Froment

was originally proposed in the image denoising framework.

Due to their small support tetrolets do not essentially suffer from oscillating Gibbs artefacts but

rather from their non-smoothness and the blocking artefacts (what we call pseudo-Gibbs artefacts).

We shall see that the ATV minimization is also able to overcome this drawback while preserving

the anisotropic edges and features, by smoothing the reconstructed image changing the small high

pass coefficients in a suitable way.

The paper is organized as follows. In Section 2 we recall the rough idea of the tetrolet trans-
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Figure 1: The five free tetrominoes.

Figure 2: The 22 fundamental forms tiling a 4× 4 board disregarding rotations and reflections.

form on which the hybrid method is based. Then, in the next section a description of the TV

minimization post-processing step is given. In Section 4 we extend this algorithm by proposing an

ATV functional which leads to a new powerful algorithm. Finally, in the last section we present

some numerical results applying the proposed algorithm to image approximation.

2. The Adaptive Tetrolet Transform

In order to apply our hybrid method to image compression we combine the ATV minimization

post-processing step with a suitable wavelet transform. We choose the tetrolet transform recently

introduced by one of the authors in [20]. It is a non-redundant adaptive geometric wavelet transform

(that means it is adapted to the local image geometry) especially designed for sparse representation.

We shortly recall the tetrolet transform. The underlying idea is simple but enormously effective.

The construction is similar to the idea of digital wedgelets where Haar functions on wedge partitions

are considered [11, 17].

In the two-dimensional classical Haar case, the low-pass filter and the high-pass filters are

just given by the averaging sum and the averaging differences of each four pixel values which are

arranged in a 2 × 2 square. Obviously, the fixed blocking by the dyadic squares is very inefficient

because the local structures of an image are disregarded. Our idea is, to allow more general

partitions such that the local image geometry is taken into account. Namely, we use tetromino

partitions. Tetrominoes became popular through the famous computer game classic ’Tetris’, they

are shapes made by connecting four equal-sized squares, each joined together with at least one other

square along an edge [18]. Disregarding rotations and reflections there are five different shapes,

the so called free tetrominoes (see Figure 1). It is easy to find out, that there are 117 solutions
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for disjoint covering of a 4 × 4 board with four tetrominoes (see Figure 2). Thus, we divide the

given image into blocks of size 4 × 4 and consider the 117 admissible tetromino partitions there.

Among them, we compute in each block the optimal tetromino partition which is adapted to the

image geometry in this block. Hence, we define on these geometric shapes Haar-type wavelets,

called tetrolets, which form a local orthonormal basis.

In the following we describe the computation of the tetrolet decomposition in more detail.

Let I = {(m1,m2) : m1,m2 = 0, . . . , N − 1} ⊂ Z
2 be the index set of a digital image a =

(a[m1,m2])(m1,m2)∈I with N = 2J , J ∈ N. We determine a 4-neighborhood of an index (m1,m2) ∈ I

by N4(m1,m2) := {(m1 − 1,m2), (m1 + 1,m2), (m1,m2 − 1), (m1,m2 + 1)}. An index that lies at

the boundary has three neighbors, an index at the vertex of the image has two neighbors.

We consider disjoint partitions of the index set I with subsets Iν that satisfy two conditions:

1. each subset Iν contains four indices, i.e., #Iν = 4, and

2. every index of Iν has a neighbor in Iν , i.e. ∀(m1,m2) ∈ Iν ∃(m′
1,m

′
2) ∈ Iν : (m′

1,m
′
2) ∈

N4(m1,m2).

We call such subsets Iν tetromino. Now, we restrict ourselves to a 4× 4 block Q ⊂ I and consider

the tetrolet representation locally. Let the image block Q be disjointly covered by four tetrominoes

{I0, I1, I2, I3} and L should be a bijective mapping which maps the four pixel pairs (m1,m2) in Iν

to the scalar set {0, 1, 2, 3}, i.e., it brings the pixels into a unique order. Then, for ν = 0, 1, 2, 3 the

discrete basis functions are defined by

φIν [m1,m2] :=

{

1/2, (m1,m2) ∈ Iν ,

0, else,

and

ψl
Iν

[m1,m2] :=

{

ǫ[l, L(m1,m2)], (m1,m2) ∈ Iν ,

0, else,

for l = 1, 2, 3. Due to their tetromino support the ψl
Iν

are called tetrolets and φIν is the corre-

sponding scaling function. The function values ǫ[l, L(m1,m2)] in the tetrolet definition come from

the Haar wavelet transform matrix

W := (ǫ[l,m])3l,m=0 =
1

2













1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1













.

With these functions we can decompose the image block a|Q = (a[m1,m2])(m1,m2)∈Q into a detail

part and an approximation part

a[m1,m2] =
3

∑

l=1

3
∑

ν=0

dl
ν [m1,m2]ψ

l
Iν

[m1,m2] +
3

∑

ν=0

cν [m1,m2]φIν [m1,m2],
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if {I0, I1, I2, I3} is a tetromino tiling of the 4 × 4 block Q ⊂ I. The approximation and tetrolet

coefficients are

cν [m1,m2] = 〈a[·, ·], φIν 〉 =
∑

(m′,n′)∈Iν

1

2
a[m′, n′],

dl
ν [m1,m2] = 〈a[·, ·], ψl

Iν
〉 =

∑

(m′,n′)∈Iν

ǫ[l, L(m′, n′)] a[m′, n′],

if (m1,m2) ∈ Iν . Obviously, the absolute size of the tetrolet coefficients depends on the underlying

tetromino support. In order to get a sparse representation we choose among the 117 possibilities

to cover the block Q with tetrominoes the covering where the tetrolet coefficients dl
ν have minimal

l1 norm.

The rough structure of the tetrolet filter bank algorithm is described in Table 1, a following

shrinkage procedure leads to a sparse representation of images. See [20] for more details.

Algorithm 1: Adaptive Tetrolet Decomposition

Input: Image f = (fp)p∈I with index set I = {0, . . . , N − 1}2, N = 2J , J ∈ N.

1. Divide the image into 4 × 4 blocks.

2. Find the sparsest tetrolet representation in each block .

3. Rearrange the low- and high-pass coefficients of each block into a 2 × 2 block.

4. Store the tetrolet coefficients (high-pass part).

5. Apply step 1 to 4 to the low-pass image for further decomposition.

Output: Tetrolet coefficients of the decomposed image.

Table 1: Adaptive tetrolet decomposition algorithm.

3. Project Gradient Descent Scheme

There are a lot of hybrid methods to combine wavelet and variational techniques in image

processing (see e.g. [5, 8, 9, 32]). Considering the variational part, we focus on TV minimization

which was introduced by Rudin, Osher, and Fatemi (ROF-model) in the framework of image

processing [30]. It has turned out that the usage of a TV norm is very convenient for image

denoising because the TV regularization technique reduces the noise while edges are preserved, in

contrast to the traditional L2 norm, where discontinuities are smoothed [7].

For a function f : Ω → R with Ω ⊂ R
2 and |∇f(x)| ∈ L1(R

2) the isotropic TV functional is

defined by

TV (f) =

∫

Ω
|∇f(x)| dx. (3.1)
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The variational formulation of the denoising problem leads to gradient descent schemes. Due

to the nondifferentiability of TV (f) one often replaces (3.1) by the regularized functional

TV (f) =

∫

Ω

√

|∇f(x)|2 + β2 dx, (3.2)

with a small parameter β > 0. Another possibility is to use a subgradient instead of a gradient.

In the context of image compression, Chan and Zhou apply in [8] an iterative TV minimization

algorithm in order to remove the pseudo Gibbs phenomenon which occurs with wavelet threshold-

ing. In the following we consider a very similar TV minimization technique proposed by Durand

and Froment [13] in the image denoising framework. Their subgradient descent scheme has al-

ready been successfully used in combination with complex wavelets [21], complex ridgelets [25] and

curvelets [22].

We follow the one dimensional discrete approach in [13] skipping the proofs for a better read-

ability. In doing so we immediately transfer the idea from the denoising framework in the approx-

imation framework. An extension to the two dimensional case is straightforward.

For a signal f = (f0, . . . , fN−1) ∈ R
N the discrete total variation of f is given by

TV (f) =

N−2
∑

k=0

|fk+1 − fk|, (3.3)

see [26, chapter 2]. We assume that N = 2J ′

with J ′ ∈ N, and using the DWT we decompose the

signal f into high pass parts and one low pass part. For this purpose we consider the continuous

function f c in the approximation space V0 that is linked with the given signal f by

f c =
N−1
∑

k=0

fk φ0,k, (3.4)

where fk = 〈f c, φ0,k〉 holds (if {φ0,k}N−1
k=0 forms an orthonormal basis of V0). Applying J decom-

position levels with 0 < J < log2(N) we have

f c =

−J
∑

j=−1

2jN−1
∑

k=0

dj,k(f
c)ψj,k +

2−JN−1
∑

k=0

c−J,k(f
c)φ−J,k

with the wavelet coefficients dj,k(f
c) := 〈f c, ψj,k〉 and the approximation coefficients c−J,k(f

c) :=

〈f c, φ−J,k〉. After a nonlinear wavelet shrinkage the function f̃ c has the form

f̃ c =

−J
∑

j=−1

2jN−1
∑

k=0

Sλ(dj,k(f
c))ψj,k +

2−JN−1
∑

k=0

c−J,k(f
c)φ−J,k (3.5)

with a thresholding operator Sλ. A common choice of Sλ is the global hard thresholding operator

Sλ(x) =

{

x, |x| ≥ λ,

0, |x| < λ,
(3.6)
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with a suitable threshold parameter λ. Finally, the reconstructed function in (3.5) can be displayed

in V0 again by

f̃ c =

N−1
∑

k=0

f̃k φ0,k

where the coefficients f̃k = 〈f̃ c, φ0,k〉 provide the approximated signal f̃ = (f̃0, . . . , f̃N−1) ∈ R
N of

f .

Let

Mfc,λ := {(j, k) : |dj,k(f
c)| ≥ λ}

be the index set of the retained coefficients after the shrinkage procedure. Further, let be X := R
N

the set of signals with length N . These signals have finite TV norm. Then we can define a subspace

U = UMfc,λ
⊂ X which contains the signals with finite TV norm which essentially correspond with

f̃ ,

U := {u ∈ X : dj,k(u
c) = dj,k(f

c) ∀(j, k) ∈Mfc,λ, c−J,k(u
c) = c−J,k(f

c) ∀k}.

Here, uc is the continuous function that corresponds to the discrete signal u in terms of (3.4).

The signals u ∈ U differ from the given f̃ at most in the small coefficients which do not contain

important information about f , i.e.

U = {f̃} + V,

with

V := {v ∈ X : dj,k(v
c) = 0 ∀(j, k) ∈Mfc,λ, c−J,k(v

c) = 0 ∀k}. (3.7)

Now, the idea is to find among these signals u ∈ U that one with minimal TV norm. Hence, we

solve the variational problem

Problem 3.1. Find u∗ ∈ U such that TV (u∗) = minu∈U TV (u).

Due to the convexity of the TV functional, the problem has a solution in the subspace U . This

finally brings us to the main theorem that a solution can be computed by a subgradient descent

scheme with a projection onto the linear space V .

Theorem 3.2. An approximation of the solution u∗ of Problem 3.1 is given by the algorithm

uk+1 = uk − tk PV (gTV (uk)), (3.8)

where PV is the orthogonal projection onto V , gTV (uk) is a subgradient of TV (uk), and the time

step tk satisfies the conditions

tk > 0, lim
k→∞

tk = 0,
∑

k∈N

tk = ∞ (3.9)

in order to obtain convergence.

The proof of the theorem can be found in [13]. It is based on the basic convergence results for

subgradient methods from [31].
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4. ATV Minimization Post-processing

In this section we extend the project gradient descent scheme in (3.8) by proposing a discrete

formulation of the ATV norm ATV (f) for a given signal f . In order to avoid a regularization we

handle again with the subgradient gATV (f). Instead of an ordinary wavelet transform we combine

the resulting post-processing method with the efficient tetrolet transform for image approximation.

From (3.8) we obtain the descent scheme

f (k+1) = f (k) − tk PV (gATV (f (k))), (4.1)

where the sequence of step size (tk)k∈N satisfies the conditions (3.9). Since (3.7) the projection PV

onto the subspace V for a signal g ∈ X is given by the inverse wavelet transform. Let gc be the

continuous function that corresponds to g in the sense of (3.4) and Mgc,λ should be the index set

of the significant coefficients. Then, we get with

∑

(j,k)/∈Mgc,λ

dj,k(g
c)ψj,k

a function which is reconstructed from the insignificant wavelet coefficients, that means from

c−J,k(g
c) := 0, dj,k(g

c) =

{

0, (j, k) ∈Mgc,λ,

dj,k(g
c), else.

(4.2)

If we represent this function with the basis function φ0,k in the start space V0, the coefficients

provide the entries of the discrete projection PV (g).

It remains to calculate the gradient gATV (f) in (4.1). The original (isotropic) TV functional

appearing in the ROF-model can be generalized in a natural way by using anisotropic energies [15].

This leads to a significant improvement since the smoothing procedure stops at edges.

Generalizing the discrete one-dimensional TV in (3.3), for two dimensional data f := (fp)p∈I

we define the discrete isotropic TV for a symmetric neighborhood N(p) of the pixel p by

TV (f) =
∑

p∈I

∑

p′∈N(p)

|fp′ − fp|. (4.3)

Usual neighborhoods are the 4-star-neighborhood N4(p) = {p′ ∈ I : ‖p − p′‖2
2 = 1} or the 8-

neighborhood N8(p) = {p′ ∈ I : ‖p − p′‖2
2 ≤ 2}. The discrete ATV functional is the weighted sum

[33]

ATV (f) =
∑

p∈I

∑

p′∈N(p)

√
wp,p′|fp′ − fp|, (4.4)

where the weights wp,p′ ≥ 0 cause the anisotropic smoothing taking the local image geometry

into account. That means, wp,p′ depends on the intensity difference |fp − fp′ |. More precisely, the
8



smoothing process across discontinuities (i.e. for large |fp−fp′ |) should be stopped while smoothing

in flat regions (i.e. for small |fp − fp′ |) should be encouraged. Therefore we require that wp,p′ is

monotone decreasing for fp−fp′ ≥ 0, and wp,p′ → 0 for |fp−fp′| → ∞. Secondly, wp,p′ is symmetric,

i.e. wp,p′ = wp′,p for all p, p′ ∈ I. Thirdly, we normalize the weights setting wp,p = 1.

There are many possibilities to choose the weights in such fashion, see [10]. A popular choice

are the weights from the bilateral filter [34] which contain of an intensity and a spatial component

wp,p′ = wp,p′(fp − fp′, p− p′) = exp

(

− 1

σ2
i

(fp − fp′)
2

)

· exp

(

− 1

σ2
s

‖p− p′‖2
2

)

.

The first term is the intensity weight which punishes pixel values fp′ from another image region

(and thus ensures edge preserving smoothing), the second term is the spatial weight which punishes

pixels p′ that are far away from p in the spatial domain. The parameters σi and σs are control

parameters.

Then, we compute the subgradient at the point p ∈ I applying the chain rule

gATV (f)|p =
∂ATV (f)

∂fp

=
∑

p′∈N(p)

√
wp,p′ sgn(fp′ − fp)(−1) +

∂

∂fp





∑

p′∈N(p)\p

∑

p′′∈N(p′)

√
wp′,p′′ |fp′′ − fp′ |





=
∑

p′∈N(p)

√
wp,p′ sgn(fp − fp′) +

∑

p′∈N(p)\p





∑

p′′∈N(p′)

√
wp′,p′′

∂

∂fp
|fp′′ − fp′ |



 .

The expression ∂
∂fp

|fp′′ − fp′| in the last term vanishes for all p′′ 6= p, i.e.

gATV (f)|p =
∑

p′∈N(p)

√
wp,p′ sgn(fp − fp′) +

∑

p′∈N(p)\p

√
wp′,p sgn(fp − fp′)

= 2
∑

p′∈N(p)

√
wp,p′ sgn(fp − fp′), (4.5)

with symmetric weights wp′,p = wp,p′ . In order to apply Theorem 3.2 we have finally to prove that

the derived formula gives a subgradient of the ATV norm. Indeed, this is the case:

Lemma 4.1. The expression in (4.5) is a subgradient of ATV, i.e., it holds

ATV (h) ≥ ATV (f) + 〈gATV (f), h− f〉 ∀h ∈ X.

Proof. It holds |y| ≥ |x|+sgn(x)(y−x), ∀x, y ∈ R. Let y :=
√
wp,p′(hp′ −hp) and x :=

√
wp,p′(fp′−

fp). Then we get

√
wp,p′ |hp′ − hp| ≥

√
wp,p′|fp′ − fp| + sgn(fp′ − fp) ·

√
wp,p′(hp′ − hp − fp′ + fp).
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Now we sum over p ∈ I and p′ ∈ N(p) and obtain

ATV (h) ≥ ATV (f) +
∑

p∈I

∑

p′∈N(p)

sgn(fp′ − fp) ·
√
wp,p′((hp′ − fp′) − (hp − fp))

= ATV (f) +
∑

p∈I

2
∑

p′∈N(p)

√
wp,p′ sgn(fp′ − fp) · (hp − fp)

= ATV (f) +
∑

p∈I

gATV (f)|p · (h− f)|p

= ATV (f) + 〈gATV (f), h− f〉.

Summing up, we have the following algorithm.

Algorithm 2: ATV Minimization of Tetrolet Coefficients

Input: Image f = (fp)p∈I with index set I = {0, . . . , N − 1}2, N = 2J , J ∈ N.

1. Compute the discrete tetrolet coefficients.

2. Apply thresholding and record indices of retained coefficients in Mfc,λ.

3. Reconstruct f̃ from the retained tetrolet coefficients by inverse tetrolet transform.

4. Set f (0) := f̃ . For k = 0, 1, ... minimize the ATV norm of f (k) by the following iterative

scheme

(i) Compute the subgradient gATV (f (k)) of f (k) by (4.5).

(ii) Decompose gATV (f (k)) into the tetrolet coefficients dj,k(gATV (f (k))) and

c−J,k(gATV (f (k))).

(iii) Compute PV (gATV (f (k))) by the inverse tetrolet transform from the coefficients

according to (4.2).

(iv) Set f (k+1) = f (k) − t(k) PV (gATV (f (k))).

Output: Image f (k).

Table 2: ATV minimization of tetrolet coefficients.

Finally, we mention that there exist other possibilities to define the discrete TV functional. Our

approach in (4.3) was a discretization of the continuous TV functional in (3.1). A discretization of

the regularized TV functional in (3.2) leads to the anisotropic discrete TV [33]

ATV (f) =
∑

p∈I

√

∑

p′∈N(p)

wp,p′ |fp′ − fp|2 + β2. (4.6)

In this case, instead of a subgradient gATV (f) we get a more complex gradient

∇fATV (f)|p =
∑

p′∈N(p)

wp′,p

(

Z(p, p′) + Z(p′, p′′)
)

(fp − fp′) (4.7)
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with Z(p1, p2) =
(

∑

p2∈N(p1) wp1,p2
(fp1

− fp2
)2 + β2

)−1/2
for p1, p2 ∈ I. We obtain this gradient

formula at the point p ∈ I applying the chain rule

∇fATV (f)|p =
∂ATV (f)

∂fp

=
∂

∂fp

√

∑

p′∈N(p)

wp,p′(fp − fp′)2 + β2

+
∂

∂fp





∑

p′∈N(p)\p

√

∑

p′′∈N(p′)

wp′,p′′(fp′ − fp′′)2 + β2





= Z(p, p′)





∑

p′∈N(p)

wp,p′(fp − fp′)



 +
∑

p′∈N(p)\p
Z(p′, p′′)

∑

p′′∈N(p′)

wp′,p′′
∂

∂fp
(fp′ − fp′′)

2.

The expression ∂
∂fp

(fp′ − fp′′)
2 in the last term vanishes for all p′′ 6= p, i.e.

∇fATV (f)|p = Z(p, p′)





∑

p′∈N(p)

wp,p′(fp − fp′)



 +
∑

p′∈N(p)\p
Z(p′, p′′)wp′,p(fp′ − fp)(−1)

=
∑

p′∈N(p)

wp′,p

(

Z(p, p′) + Z(p′, p′′)
)

(fp − fp′).

with symmetric weights wp′,p = wp,p′.

5. Application to Image Approximation

Originally, the TV minimization post-processing in [13] was proposed for noise removal, but

image approximation is also based on a wavelet shrinkage which leads to pseudo-Gibbs artefacts

in the high pass part. Therefore we apply the previously derived hybrid method to image ap-

proximation. In order to do this we combine the ATV minimization post-processing step with

an appropriate underlying wavelet transform, namely the tetrolet transform. In contrast to the

curvelet [3, 16] or contourlet transform [12] the tetrolet transform is non-redundant and adaptive

and thus particular suitable for sparse image representation.

The tetrolet transform does not essentially suffer from oscillating Gibbs artefacts due to the very

small support of the tetrolets. A major problem are the blocking artefacts and the non-smoothness

of the basis functions with approximation of images with higher regularity than piecewise constant.

The proposed ATV minimization is able to overcome this drawback, too. While we fix the essential

tetrolet coefficients we change the small ones by the iterative TV minimization process in order to

smooth the image regions and preserve the edges.
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5.1. Perfect reconstruction property for linear signals

In this subsection we illustrate that the proposed post-processing scheme increases the regularity

of the approximated signal which yields even to perfect reconstruction under several assumptions.

It is a first attempt to understand the theoretical properties of the combined tetrolet shrinkage

with ATV minimization.

The underlying tetrolet transform is a generalized adaptive Haar wavelet transform. Hence,

after a shrinkage procedure one obtains a piecewise constant approximation of the given image.

Restricting ourselves to the one-dimensional case (and thus to classical Haar wavelet transform),

we consider a linear input signal f = (f [k])N−1
k=0 with f [k] = a k+ b and its piecewise constant Haar

wavelet approximation f̃ . In the following we analyse whether we are able to improve f̃ by the

ATV minimization post-processing step such that we achieve perfect reconstruction of f .

Theorem 5.1. Let f = (f [k])N−1
k=0 be a linear signal with f [k] = a k + b. If we apply Algorithm

2 to f with a global shrinkage parameter 2−1/2a < λ < 2a, after only one single post-processing

TV minimization step with t(0) = a/2 we obtain perfect reconstruction of f using the neighborhood

N(k) = {k − 1, k + 1} and isotropic weights wk,k′ = 1, k, k′ ∈ {0, . . . , N − 1}.

Proof. We prove the perfect reconstruction property by a straightforward application of Algorithm

2.

Step 1. We start in the space V0 with the continuous function f c which corresponds to the discrete

signal f

f c =

N−1
∑

k=0

c0,k(f
c)φ0,k

with c0,k(f
c) = 〈f c, φ0,k〉 = f [k]. The discrete Haar wavelet transform leads in the j-th decompo-

sition level, j = −1, . . . ,−J , for k = 0, . . . , 2jN − 1 to

cj,k(f
c) =

1√
2
(cj+1,2k+1(f

c) + cj+1,2k(f
c)),

dj,k(f
c) =

1√
2
(cj+1,2k+1(f

c) − cj+1,2k(f
c)).

Particularly, in the first level the coefficients have the form for k = 0, . . . , N
2 − 1

c−1,k(f
c) =

1√
2
(c0,2k+1(f

c) + c0,2k(f
c)) =

1√
2
(f [2k + 1] + f [2k]) =

1√
2
(a(4k + 1) + 2b),

d−1,k(f
c) =

1√
2
(c0,2k+1(f

c) − c0,2k(f
c)) =

1√
2
(f [2k + 1] − f [2k]) =

1√
2
a.

Step 2. If we choose the threshold λ such that 2−1/2a < λ < 2a, the wavelet coefficients d−1,k(f
c)

in the first level are set to zero. All other coefficients c−1,k(f
c) are retained.

Step 3. The reconstruction leads to the Haar wavelet approximation f̃ c, whose coefficients in the

space V0 provide the discrete approximation f̃ = (f̃ [k])N−1
k=0 of the input signal f .

12
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Figure 3: Approximation of a linear signal with post-processing. (a) Input (�) and Haar wavelet approximation (o),

(b) Input (�) and smoothed approximation (+) after one single TV minimization step.

The reconstruction formula for the coefficients are

c0,2k+1(f
c) =

1√
2
(c−1,k(f

c) + d−1,k(f
c)),

c0,2k(f c) =
1√
2
(c−1,k(f

c) − d−1,k(f
c)), k = 0, . . . ,

N

2
− 1.

Since the wavelet coefficients d−1,k(f
c) were cut in the shrinkage procedure, the terms are simplified

such that we have for k = 0, . . . , N
2 − 1

c̃0,2k+1(f
c) = c̃0,2k(f

c) =
1√
2
c−1,k(f

c) =
1

2
(a(4k + 1) + 2b).

This means for k = 0, . . . , N − 1

c̃0,k(f
c) =

{

1
2(a(2k + 1) + 2b), k even
1
2(a(2k − 1) + 2b), k odd

=

{

2k+1
2 a+ b, k even

2k−1
2 a+ b, k odd

. (5.1)

Then we get the continuous approximation f̃ c of f c

f̃ c =
N−1
∑

k=0

c̃0,k(f
c)φ0,k,

which leads to the discrete approximation f̃ = (f̃ [k])N−1
k=0 of f , because it is f̃ [k] = c̃0,k(f

c). See an

illustration in Figure 3(a).
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Step 4. Set f (0) := f̃ . We minimize the TV norm of f (0) with only one iteration step of the

post-processing step. Note that it holds

sgn(f (0)[k] − f (0)[k + 1]) =

{

0, k even

−1, k odd
. (5.2)

(i) The subgradient gATV (f (0)) at the point k is given in (4.5) as

gATV (f (0))[k] = 2
(√

wk,k−1 sgn(f (0)[k] − f (0)[k − 1]) +
√
wk,k+1 sgn(f (0)[k] − f (0)[k + 1])

)

.

Because the values f [k] = a k + b in f = (f [k])N−1
k=0 are sampling points from a linear function

without any jump, it is reasonable to choose in this case isotropic weights wk,k+1 = 1 for all k.

Thus, the subgradient reduces to

gATV (f (0))[k] = 2
(

sgn(f (0)[k] − f (0)[k − 1]) + sgn(f (0)[k] − f (0)[k + 1])
)

.

(ii) Decomposition of the subgradient into Haar wavelet coefficients leads to

d−1,k(g
c
ATV (f (0))) =

1√
2
(gATV (f (0))[2k + 1] − gATV (f (0))[2k])

=
√

2 sgn(f (0)[2k + 1] − f (0)[2k + 2]) −
√

2 sgn(f (0)[2k] − f (0)[2k + 1]). (5.3)

(iii) The inverse Haar wavelet transform from the insignificant coefficients gives

N/2−1
∑

k=0

d−1,k(g
c
ATV (f (0)))ψ−1,k.

This is the corresponding continuous function to the discrete projection PV (gATV (f (0))) with V =

{v ∈ X : dj,k(v
c) = 0 ∀j < −1, c−1,k(v

c) = 0 ∀k}. A pointwise consideration for k = 0, . . . , N − 1 is

PV (gATV (f (0)))|k =







− 1√
2
d−1, k

2

(gc
ATV (f (0))), k even

1√
2
d−1, k−1

2

(gc
ATV (f (0))), k odd

.

With (5.3) and the property (5.2) of f (0) we get

PV (gATV (f (0)))|k =

{

− sgn(f (0)[k + 1] − f (0)[k + 2]) + sgn(f (0)[k] − f (0)[k + 1]), k even

sgn(f (0)[k] − f (0)[k + 1]) − sgn(f (0)[k − 1] − f (0)[k]), k odd

=

{

1, k even

−1, k odd
.

(iv) Considering the single iteration step

f (1) = f (0) − t(0)PV (gATV (f (0)))
14



at the point k = 0, . . . , N − 1, we get with (5.1) and the step size t(0) = a/2

f (1)[k] = f (0)[k] − t(0)

{

1, k even

−1, k odd
=

{

2k+1
2 a+ b− a/2, k even

2k−1
2 a+ b+ a/2, k odd

= ak + b,

which means perfect reconstruction.

If we consider signals with jumps of high amplitude, the choice of anisotropic weights is essential

in order to suppress the smoothing at jumps.

5.2. Numerical results

In Figure 3 the perfect reconstruction property is illustrated for a linear signal f = (f [k])15k=0

with f [k] = k. The Haar wavelet approximation f (0) in 3(a) can be smoothed by applying one

single TV minimization step of the proposed post-processing scheme according to Theorem 5.1.

The resulting approximation f (1) provides perfect reconstruction apart from the boundaries, see

3(b).

Figure 4 shows the input images that are tested for our method. Figure 5 and Figure 6 present

the smoothing effect of the ATV minimization combined with the tetrolet approximation. We

compare our results with the biorthogonal 9-7 filter. For the clock image in Figure 5 the PSNR value

only slightly increases after 5 iterations but the visual quality of the image is considerably improved

(notice the shadow of the book). For the piecewise smooth image in Figure 6 we notice after 10

iterations the strong smoothing which essentially piecewise constant tetrolet approximation. Here,

the results for the tetrolet transform and for the 9-7 filter are in the same scale. Note, that the

adaptive tetrolets already have anisotropic properties in themselves while the tensor wavelets in

the 9-7 filter do not have any directional sensitivity. Therefore, the application of the anisotropic

post-processing technique leads to a greater PSNR gain with the underlying 9-7 filter, namely the

PSNR increases from 36.07 dB to 38.24 dB, than with the tetrolet transform where the PSNR only

increases from 36.59 dB to 38.06 dB.

In both figures we have chosen as computational parameters a step size tk = 1
k+1 (according to

(3.9)) and the weight control parameters σs = 2, σi = 100 with an 8-neighborhood. Furthermore,

we have taken the regularized discrete TV functional in Ea. (4.6).

6. Conclusions

In this paper, an effective hybrid method is proposed for image compression by combining the

ATV minimization with tetrolet shrinkage. This algorithm can be easily extended for any other

wavelet transforms.

We used classic gradient method for computing the minimization of regularized TV norm in

our algorithm. Some advanced algorithms, e.g., first-order methods by Nesterov [27] and Aujol

[1], and fast algorithm by Wang et al. [35] can be incorporated into our framework to improve the
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Figure 4: Input images.

performance of the TV step. In a next work, we intend to combine the ATV minimization with

an underlying curvelet transform for image denoising with texture images. Furthermore, we will

present some theoretical results to measure the approximation improvement using the proposed

post-processing algorithm.
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