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Abstract:

In this paper we introduce a new construction of nonlinear
locally adaptive wavelet filter banks by connecting the lift-
ing scheme with the idea of image smoothing by nonlinear
diffusion methods.

1. Introduction

A crucial problem in data analysis is to construct effi-
cient low-level representations, thereby providing a pre-
cise characterization of features which compose it, such as
edges and texture components. Fortunately, in many rel-
evant applications, the components of given multidimen-
sional data are not independent, and the strong correlation
between neighboring data points can be suitably exploited.
In the two-dimensional case, tensor-product wavelets are
not optimal for representing geometric structures because
their support is not adapted to directional geometric prop-
erties.
Instead of choosing a priori a basis or a frame to approx-
imate the image, one can try to adopt the approximation
scheme to the image geometry. Within the last years, dif-
ferent approaches have been developed in this direction,
see e.g. [1, 4, 5, 7, 10, 12, 13]. In particular, the construc-
tion of non-linear filter banks by the lifting scheme has
been proposed already in [4, 8]. Since that time, there have
been different attempts to construct adaptive and direc-
tional lifting based, invertible transforms for sparse image
representation, see [2, 5, 6, 9, 12]. The lifting scheme for
representation of wavelet filter banks has originally been
suggested and analyzed by Sweldens [16]. It provides a
flexible tool for the construction of new nonlinear wavelet
filter banks. The main feature of lifting is that it provides
an entirely spatial-domain interpretation of the transform.
Besides wavelet shrinkage, other approaches like regular-
ization techniques and PDE-based methods (as nonlinear
diffusion) have been shown to be powerful tools in sig-
nal and image restoration in image processing, e.g., for
denoising purposes. In particular, the choice of nonlin-
ear diffusion filters leads to impressive results by remov-
ing insignificant, small-scale variations while preserving
important features such as discontinuities [3, 11, 17, 18].
In [15], certain connections between explicit discrete one-
dimensional schemes for non-linear diffusion and shift-
invariant Haar wavelet shrinkage have been established.

In this paper we wish to construct a new invertible non-
linear wavelet filter bank by connecting the two concepts
of the lifting scheme and the discrete nonlinear diffusion.
The main goal is to adapt the local geometry of images
suitably, in order to obtain highly efficient sparse image
representations.

2. Lifting and Nonlinear Diffusion

2.1 The Lifting Scheme

The typical lifting scheme consists of three steps: Split,
Predict and Update.

1. Split. Usually, in this step, the given data is split into
even and odd components. LetN ∈ N be of the form
N = 2l r with l, r ∈ N. For a given digital image of the
form a = (a(i, j))N−1

i,j=0 ∈ RN×N , we split the data into
the following two sets of equal size,

ae := (ai,j)N−1
i,j=0,i+j even,

ao := (ai,j)N−1
i,j=0,i+j odd,

and we denote the components ofae andao by ae
i,j and

ao
i,j , respectively. The data setsae andao split the image

a like a checkerboard.

2. Predict. The goal of the prediction step is to find a
good approximatioñao of the dataao of the form

ão = P1(ao) + P2(ae).

HereP1 andP2 can be nonlinear operators. Afterwards,
we consider the residual

do := ao − ão = ao − (P1(ao) + P2(ae)).

We have to assume that the mapping(ae, ao) 7→ (ae, do)
is invertible, i.e., the operatorI−P1 needs to be invertible
for arbitrary dataao. The operatorsP1 andP2 need to be
chosen such that the residualdo is very small.

3. Update. In the third step, we aim to find a smoothed
approximation of the dataae that can be regarded as a low-
pass filtered and subsampled version of the original image
a. The general update has the form

ãe := U1(do) + U2(ae)

with (possibly nonlinear) operatorsU1 andU2, where we
again want to assume the invertibility of the mapping



(ae, do) 7→ (ãe, do), i.e., U2 is assumed to be invertible
such that

ae = U−1
2 (ãe − U1(do)).

The complete scheme is illustrated in Figure 1.
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Figure 1: Illustration of the nonlinear filter bank using the
lifting scheme.

2.2 Nonlinear Diffusion

The nonlinear diffusion has been shown to be a very suc-
cessful model for image denoising. ForΩ = (0, N1) ×
(0, N1) we consider the diffusion equation

∂u

∂t
= div

(
g(|∇u|)∇u

)
on Ω× (0,∞) (1)

with a given noisy imagea as initial state

u(x, 0) = a(x), x ∈ Ω

and with Neumann boundary conditions∂u
∂n = 0 on ∂Ω.

Here,∇u = (ux1 , ux2)
T = (∂u/∂x1, ∂u/∂x2)T denotes

the gradient ofu, and|∇u| := √
u2

x1
+ u2

x2
.

The timet in (1) is a scale parameter. Increasingt cor-
responds to stronger filtering. The diffusivity function
g(|∇u|) is a non-negative function that determines the
amount of diffusion. It is decreasing in|∇u| in order to
ensure that strong edges are hardly blurred by the dif-
fusion filter while small variations (noise) are smoothed
much stronger. Frequently used bounded diffusivities are
the Perona-Malik diffusivity

g(x) :=
1

1 + x2/λ2
,

or the Weickert diffusivity

g(x) :=

{
1 x = 0,

1− exp
(
−3.315
(x/λ)4

)
x > 0,

see [14, 17]. One may also take a “robust” diffusivity of
the form

g(x) :=
{

1 0 ≤ x < θ,
0 |x| ≥ θ,

as it has been used in [14] with a suitably chosen threshold
θ.
Replacingg(|∇u|) by g(|∇uσ|), whereuσ denotes the
slightly smoothed image by convolution with the Gaus-
sian kernel,uσ := Kσ ? u, existence and uniqueness of a
solution of (1) have been shown in [3].
For application of the diffusion approach to digital images
we follow [11] and replace (1) by the following slightly
modified equation

∂u

∂t
= ∂x1(g(|∂x1u|) ∂x1u) + ∂x2(g(|∂x2u|) ∂x2u).

We use a discretization of the form

uk+1
ij − uk

ij

τ
= g(|uk

i+1,j − uk
i,j |)(uk

i+1,j − uk
i,j)

−g(|uk
i,j − uk

i−1,j |)(uk
i,j − uk

i−1,j)

+g(|uk
i,j+1 − uk

i,j |)(uk
i,j+1 − uk

i,j)

−g(|uk
i,j − uk

i,j−1|)(uk
i,j − uk

i,j−1), (2)

whereu0
i,j := aij for i, j = 0, . . . , N−1. Here,k denotes

the iteration step andτ is the step size of time discretiza-
tion. In our numerical examples we will use the step size
τ = 1/4.

3. The Nonlinear Diffusion Filter Bank

Now we want to apply the nonlinear diffusion filter for
the construction of prediction and update operators in the
lifting scheme, in order to obtain a new sparse represen-
tation of images. The nonlinear filter bank should satisfy
the following demands.
1. For linear (bivariate) polynomials, the residualdo found
in the prediction step should vanish. This condition is
equivalent with two vanishing moments of the high-pass
filter in a wavelet filter bank.
2. Near discontinuities (edges) ofu, the residualdo should
remain small.
3. The datãae should be a suitable (downsampled) ap-
proximation of the imagea with good low-pass filter prop-
erties in smooth areas ofa and without blurring of edges.

3.1 Choice of the Prediction Operator

Using equation (2) with the notationsao
i,j := u0

i,j , ão
i,j :=

u1
i,j for i+ j odd, andae

i,j = u0
i,j for i+ j even, we obtain

ão
i,j = ao

i,j + τ
[
g(|ae

i+1,j − ao
i,j |)(ae

i+1,j − ao
i,j)

+ g(|ae
i−1,j − ao

i,j |)(ae
i−1,j − ao

i,j)
+ g(|ae

i,j+1 − ao
i,j |)(ae

i,j+1 − ao
i,j)

+ g(|ae
i,j−1 − ao

i,j |)(ae
i,j−1 − ao

i,j)
]
.

A prediction could now be of the form

do
i,j = ao

i,j − ão
i,j

= −τ
[ 1∑

µ,ν=−1
|µ|+|ν|=1

g(|ae
i+µ,j+ν − ao

i,j |)(ae
i+µ,j+ν − ao

i,j)
]
.

Unfortunately, with this coice of prediction the desired in-
vertibility of the mapping(ae, ao) 7→ (ae, do) is not guar-
anteed since the nonlinear diffusiong depends on the data
ao

i,j . Therefore, we replace the valuesao
i,j that are used for

the computation of the function values ofg by the median
of its four direct neighbors,

ao
i,j≈median{ae

i,j+1, a
e
i,j−1, a

e
i+1,j , a

e
i−1,j}:= medao

i,j .

A normalization with

gij :=
1∑

µ,ν=−1
|µ|+|ν|=1

g(|ae
i+µ,j+ν −medao

i,j |)



now yields the prediction

do
i,j := −τ

gij

1∑
µ,ν=−1
|µ|+|ν|=1

g(|ae
i+µ,j+ν−medao

i,j |)(ae
i+µ,j+ν− ao

i,j)

= τao
i,j − τ

gij

1∑
µ,ν=−1
|µ|+|ν|=1

g(|ae
i+µ,j+ν−medao

i,j |) ae
i+µ,j+ν .

Now,the invertibility of the prediction is ensured forτ > 0
and we have

ao
i,j = do

i,j

τ + 1
gij

1∑
µ,ν=−1
|µ|+|ν|=1

g(|ae
i+µ,j+ν−medao

i,j |)ae
i+µ,j+ν .

Observe that the termgij is positive for alli, j if we take
Perona-Malik diffusivity or Weickert diffusivity. At the
boundary of the image, where not all four neighbors of a
data point are given, we slightly change the operator and
use only the three available neighbors in the sum (or even
only two neighbors at a vertex). Because of the normal-
ization with the (correspondingly defined constantsgij)
the properties of the prediction operator will not change.

3.2 Choice of the Update Operator

As update operator we simply apply a linear operator of
the form

ãe
i,j =

√
2ae

i,j + 1
4 (do

i+1,j + do
i−1,j + do

i,j+1 + do
i,j−1).

Invertibility is obviously satisfied and we find

ae
i,j = 1√

2

(
ãe

i,j − 1
4 (do

i+1,j + do
i−1,j + do

i,j+1 + do
i,j−1)

)
.

At the boundary, whereae
i,j has only three neighbors, we

slightly change the operator. For example, for0 < i <
N − 1 andj = 0, we take

ãe
i,0 :=

√
2ae

i,0 + 1
3 (do

i+1,0 + do
i−1,0 + do

i,1),

etc.. Analogously, at vertices, only two neighbors are
taken into account.
Observe that the low-pass filtered valuesãe

i,j are amplified

by
√

2 here (as it is usual also for orthogonal wavelet filter
banks).

3.3 Iterative Application of the Filter Bank

In order to obtain a suitable sparse representation of the
digital imagea, we now iteratively apply the nonlinear
filter bank described above, and we use a hard threshold
procedure to suppress small residual valuesdo

i,j .
After the first application of the filter bank, the (small)
residual datado

i,j , i, j = 0, . . . , N − 1, i + j odd, are
stored and we consider only theN2/2 valuesãe

i,j , i, j =
0, . . . , N − 1, i + j even. For a second application of
the filter bank toãe

i,j , we rename these data bya(1)
k,l :=

ãe
k−l,k+l, wherek = 0, . . . , N −1 andl = −min{k, N −

1− k}, . . . , min{k, N − 1− k}, and apply the filters now
to this data set, etc..
As usual, the complete procedure involves the following
three steps. First, we decompose the image by an iterative

application of the diffusion filter bank. Secondly, we apply
the shrinkage function

Sθ(x) :=
{

x |x| ≥ θ,
0 |x| < θ,

to the residual coefficients. In our numerical experiments
we will take a level-independent thresholdθ. Finally, we
reconstruct the image with the modified residual coeffi-
cients.

4. Properties of the Diffusion Filter Bank

We can show the following

Theorem 1.
Let g be a diffusivity function satisfying0 < g(|x|) ≤ 1
for x ∈ R. The diffusion filter bank determined in Section
3 reproduces linear polynomials.

Proof. We consider a linear polynomial of the form

a(x1, x2) = a0 + b0x1 + c0x2, a0, b0, c0 ∈ R.

Let the digital image now be given by

ai,j = a(ih, jh) = a0 + b0 ih + c0 jh.

Then we obtain for data that are not at the boundary

medao
i,j = median{a0 + b0(i− 1)h + c0jh, a0 +

b0(i + 1)h + c0jh, a0 + b0ih + c0(j − 1)h,

a0 + b0ih + c0(j + 1)h}
= a0 + b0ih + c0jh +

median{−b0h, b0h,−c0h, c0h}
= a0 + b0ih + c0jh = ao

i,j

and

do
i,j = −τ

gij

1∑
µ,ν=−1
|µ|+|ν|=1

g(|ae
i+µ,j+ν− ao

i,j |)(ae
i+µ,j+ν− ao

i,j)

= −τ
gij

[
g(b0h)(ae

i+1,j + ae
i−1,j − 2ao

i,j)

+g(c0h)(ae
i,j+1 + ae

i,j−1 − 2ao
i,j)

]

= 0.

Hence the prediction operator leads todo
i,j = 0 and the

update yields̃ae
i,j =

√
2ae

i,j for all i, j with i + j even.
¤

Further, one can show in case studies, that the proposed fil-
ter bank behaves well at vertical, horizontal and diagonal
edges, i.e., the obtained residual values using the nonlinear
prediction operator remain to be small.

5. Numerical Results

We apply the above described nonlinear diffusion filter
bank in order to achieve sparse image representations.
In the experiment, we consider the monarch image. We
use the Perona-Malik diffusivity withλ = 28 and with
τ = 0.25. We apply 8 levels of the nonlinear filter bank,
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Figure 2: Original image Monarch (left), sparse image representation with 449 coefficients using the proposed nonlinear
diffusion filter bank (middle) and the biorthogonal filter bank with 7-9 filter (right).

i.e., there will remain 16 low-pass coefficients. For thresh-
olding we use the hard shrinkage function withθ = 13.
In Figure 2(left), we present the original image. Figure
2(middle) shows the obtained compressed image with 449
remaining coefficients using the new diffusion filter bank.
For comparison, we apply 8 decomposition levels of the
two-dimensional biorthogonal wavelet shrinkage with the
7−9 filter with the same number of 449 remaining nonzero
coefficients, see Figure 2(right). As we can see, the non-
linear filter bank not only gives an optically better result
but also achieves a better PSNR value (26.41 dB) while
the biorthogonal filter bank achieves a PSNR of 24.73 dB.
We remark that our method is especially designed for con-
structing efficient low-level representations and does not
work well for image denoising.
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