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In this paper, we want to reconstruct polygonal shapes in the real plane
from as few Fourier samples as possible, that is, we want to recover an original
polygonal domain D with N vertices by using sparse sampling values of the
Fourier transform of the characteristic function of the polygonal domain. We
consider only simply-connected polygons, i.e. polygons with non-intersecting
edges. For this purpose, we need to reconstruct the vertices of the polygon.
In the case of non-convex polygons, we also need to reconstruct the order of
the vertices to determine the correct boundary line segments. The method
presented here is based on the Prony method.
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1 Introduction

In several scientific areas, such as radio astronomy, computed tomography,
and magnetic resonance imaging, [1], the reconstruction of structured func-
tions from the knowledge of samples of their Fourier transform is a common
problem. For the analysis of the examined object, it is important to recon-
struct the underlying original signal as exactly as possible. In this paper,
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we aim at unique recovery of polygonal domains in the real plane from a
smallest possible set of Fourier data.

One main ingredient of our reconstruction approach is the Prony method,
[12, pp. 457–462]. Within the past few years, the Prony method has been
increasingly applied in the field of parameter estimation. It enables the
determination of exponential sums using only few sampling values.

Several numerically stable variants of the original Prony method, [5], have
been derived. Potts and Tasche have developed the Approximate Prony
method in [21,22], which works also in the case of noisy measurements. An-
other stabilization of the Prony method is proposed in [8], where the possibly
perturbed sampling values are not used directly, but a windowed average of
their autocorrelation sequence is used instead. This approach is motivated
by the application of operators of the form

∑N
k=0 g

(
k
N

)
f̂(k) exp(i k·) with a

suitable filter g in [15] and [16], where such operators have been applied in
order to detect singularities of piecewise smooth functions f .

There are also well-known parameter identification methods in signal pro-
cessing, such as the ESPRIT method, [25], the Matrix pencil method, [13],
and the MUSIC method, [26]. In [24], it has been pointed out that these
methods are equivalent to the Prony method such that they can be seen as
so-called Prony-like methods, see also [18, Chapter 3].

The problem of reconstructing polygonal shapes in the real plane from as
few Fourier samples as possible using the Prony method has been briefly
introduced in [27]. The reconstruction is based on the observation that the
Fourier transform of the characteristic function 1D of a polygonal domain D
can be represented as an exponential sum where the exponential parameters
(frequencies) contain the information on the vertices while the corresponding
coefficients cover further information on the slopes of the edges of D. In the
paper on hand, we will examine this problem in detail, and we will show
that we are able to reconstruct convex and non-convex polygonal domains D
with N vertices by taking only 3N samples of the Fourier transform of 1D on
three lines through the origin. For this purpose, we use an adaptive sampling
scheme. We consider two predetermined lines, while the third sampling line
is chosen dependently on the results obtained by employing the samples from
the first two lines. The adaptive sampling idea has also been applied in our
recent paper [20], where we presented a reconstruction method for sparse ex-
pansions of non-uniform translates of a known low-pass filter function from
a small number of Fourier samples in the bivariate case. This approach can
also be generalized to d-variate functions with d > 2. A similar idea of trans-
ferring a multidimensional problem into several one-dimensional problems by
considering different sampling lines has been pursued in [23]. But there, in
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contrast to our reconstructing scheme with a fixed, small number of sampling
lines, it is not directly clear how many lines are needed since they are not
chosen adaptively. Due to the solvability of a linear system, it is decided if
further sampling liens are needed.

Considering convex polygons, it is sufficient to know the vertices in order
to obtain a reconstruction of the polygon. But in the case of non-convex poly-
gons with at least four vertices, there are always several distinct polygons
which have the same vertices. Thus, we have to reconstruct the order of the
vertices in order to know which vertices are connected by line segments. We
use an approach consisting of two steps. First, we compute the vertices by
applying the Prony method to Fourier samples taken on three lines through
the origin in the frequency domain. The obtained sparse exponential sum
provides not only the vertices (as exponential parameters) but also the cor-
responding coefficients which we use in the second step of our approach to
determine the order of the vertices.

The problem of reconstructing polygons from some given data has also
been examined in [7, 9, 17]. In these papers, the given data are complex
moments, i.e. integral moments of the analytic power function f(z) = zk

over the characteristic function of the polygonal domain D with z = x+ i y,
x, y ∈ R. The given data are of the form

k(k − 1)

∫
D

zk−2 d(x, y) =
N∑
j=1

ajz
k
j , k = 0, . . . , 2N − 1, (1)

where zj are the vertices of the polygon in the complex plane, and Prony-like
methods are employed in order to determine the vertices. In [9, 17], it is
discussed that, even if besides the vertices also the coefficients aj in (1) are
given, the interior of the polygon is not always uniquely determined. Also in
cases of a unique solution, the step of ordering the vertices to determine the
interior of the polygon yields the problem of deciding on the right configur-
ation of up to at most 2N−1 possible scenarios for the sides of the polygon,
see [9, Subsection 3.2], that is, it leads to a problem in computational geo-
metry and graph theory, see [6]. In contrast to these approaches, we will
present an iterative algorithm to determine the correct order of the vertices
of D.

Finally, we want to mention that there are approaches to reconstruct con-
vex polytopes from moments, [3, 10]. The paper [4] describes an idea to
reconstruct more general shapes of compact objects from moments.

This paper is organized as follows: Section 2 provides an overview of the
Prony method in such a formulation as we need later on in Section 3 for
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the reconstruction of polygonal shapes in the real plane from sparse Fourier
data. We illustrate the proposed reconstruction method with some numerical
experiments in Section 4 showing the applicability for exact input data.

2 Prony method

We briefly summarize the Prony method, which we will apply in the form
presented below.

Let us consider an exponential sum where the coefficients are real numbers,
i.e. a trigonometric function P : R→ C of the form

P (ω) =
N∑
j=1

cj e− iωTj (2)

with N ∈ N, non-zero coefficients cj ∈ R, and real-valued frequencies Tj in
ascending order, i.e. −∞ < T1 < T2 < . . . < TN <∞.

We want to compute the frequencies T1, . . . , TN as well as the coefficients
c1, . . . , cN from the sampling values P (`h) for ` = 0, . . . , N where h is as-
sumed to be a positive constant with hTj ∈ (−π,π] for all j ∈ {1, . . . , N}.
For this purpose, the Prony method can be applied as follows.

First, we consider the so-called Prony polynomial Λ : C→ C defined by

Λ(z) :=
N∏
j=1

(
z − e− ihTj

)
=

N∑
`=0

λ`z
`, (3)

which possesses the values e− ihTj for j = 1, . . . , N with the unknown fre-
quencies Tj from (2) as zeros. The leading coefficient of Λ in the monomial
representation on the right-hand side of (3) is given as λN = 1 by definition
of Λ. Then we obtain the following for m = 0, . . . , N :

N∑
`=0

λ`P
(
h(`−m)

)
=

N∑
`=0

λ`

N∑
j=1

cj e− ih(`−m)Tj

=
N∑
j=1

cj eihmTj
N∑
`=0

λ` e− ih`Tj

=
N∑
j=1

cj eihmTj Λ(e− ihTj )
(3)
= 0,

(4)
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which means that the coefficient vector λ :=(λ0, . . . , λN )T is the solution of
the linear system

TN+1λ = 0 (5)

with the Toeplitz matrix

TN+1 :=
(
P
(
h(`−m)

))N
m,`=0

∈ C(N+1)×(N+1).

All (N2 + 2N + 1) entries of TN+1 are given by the 2N + 1 function values
P (`h), ` = −N, . . . ,−1, 0, 1, . . . , N . Since

P (−`h) = P (`h), ` = 1, . . . , N, (6)

the Toeplitz matrix TN+1 is completely determined by the sampling values
P (`h), ` = 0, . . . , N .

The further approach is based on matrix analysis. With the Vandermonde
matrix

VN,N+1 :=
(
exp(− ihkTj)

)N
j=1,k=0

,

we find

TN+1 = V ∗N,N+1 · diag(c1, c2, . . . , cN ) · VN,N+1 and rank(TN+1) = N.

Thus, the eigenvector λ of TN+1 corresponding to the eigenvalue 0 is uniquely
determined by (5) and λN = 1.

The next step consists of the computation of the zeros zj := e− ihTj , j =
1, . . . , N , of the polynomial Λ, which is determined by the coefficient vector
λ of Λ. Using the assumptions about h (see also Remarks 2.2, 1.) and the
principal branch of the complex logarithm, we get the frequencies T1, . . . , TN
by the evaluation Tj = − Im

(
ln(zj)

)
/h for j = 1, . . . , N .

Finally, we obtain the coefficients cj , j = 1, . . . , N , from the linear Vander-
monde-type system

P (`h) =

N∑
j=1

cj e− i `hTj , ` = 0, . . . , N.

In summary, we have the following algorithm:

Algorithm 2.1.

• Input:

– P (`h), ` = 0, . . . , N ;

– step size h with hTj ∈ (−π,π] for all j ∈ {1, . . . , N}.
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• Computation:

1. Compute P (−`h), ` = 1, . . . , N , using (6).

2. Construct the Toeplitz matrix TN+1 :=
(
P
(
h(`−m)

))N
m,`=0

.

3. Solve the system TN+1λ = 0 where λ = (λ0, λ1, . . . , λN−1, 1)T.

4. Consider the polynomial Λ(z) :=
∑N

`=0 λ`z
`, and compute all its

zeros zj := e− ihTj , j = 1, . . . , N .

5. Determine the frequencies T1, . . . , TN ∈
(
−π
h ,

π
h

]
by

Tj =
− Im

(
ln(zj)

)
h

, j = 1, . . . , N.

6. For the frequencies Tj , j = 1, . . . , N , compute the correspond-
ing coefficients cj , j = 1, . . . , N , as least squares solution to the
Vandermonde-type system

N∑
j=1

cj e− i `hTj = P (`h), ` = 0, . . . , N.

• Output: Sequences (Tj)
N
j=1 and (cj)

N
j=1, determining P in (2).

Remarks 2.2.

1. In order to compute the frequencies Tj for j = 1, . . . , N uniquely, we
need to ensure that hTj ∈ (−π,π] since the function ω 7→ e− iω is 2π-
periodic. Otherwise, we will not be able to extract the values Tj from
the zeros zj = e− ihTj of Λ on the unit circle uniquely.

2. While the frequencies Tj are not known, we only need to find a suitable
upper bound for |Tj | in order to fix a suitable step size h.

3. In applications, also the number N of terms in (2) is usually unknown.
Having given at least an upper bound M ≥ N and M + 1 sampling
values P (`h) for ` = 0, . . . ,M , we can also apply the above procedure
(replacing N by M) and obtain N by examining the rank of TM+1

numerically. In this case, (5) cannot longer be solved uniquely, but
each eigenvector corresponding to the eigenvalue 0 will serve for the
determination of the zeros of Λ on the unit circle and hence of Tj , j =
1, . . . , N , see [21], for example.

Remark 2.3. The Prony method as shown here is a method for parameter
estimation in exponential sums where the exponential sum is univariate. In
the next section, we want to use this method for solving a parameter esti-
mation problem in bivariate exponential sums. For this purpose, we reduce
the two-dimensional problem to some one-dimensional problems in order to
be able to apply the Prony method as presented here.
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Figure 1 Example for a function of the form (7) with 5 vertices.

3 Reconstruction of polygonal shapes in the space R2

Consider a function f : R2 → R of the special form

f(x) := 1D(x), x ∈ R2, (7)

where 1D is the characteristic function of the domain D ⊂ R2. Here, D is
a polygonal domain determined by the N vertices vj ∈ R2, j = 1, . . . , N ,
which are numbered anticlockwise. We always assume the polygon to be non-
degenerated such that three neighbouring vertices do not lie on the same line.
In the following, we will refer to the function f as unit-height polygon.

We gain to reconstruct the domain D from sparse Fourier samples. The
Fourier transform of f is given by

f̂(ξ) =

∫
R2

1D(x) e− i〈ξ,x〉 dx =

∫
D

e− i〈ξ,x〉 dx, ξ ∈ R2. (8)

In order to reconstruct the polygonal domain from Fourier samples, we
have to extract information about D from these samples. Therefore, we need
a representation of f̂ where information about its vertices and its edges can
be easily extracted.

We employ a formula by Komrska, [14], and transfer it to our setting.

Proposition 3.1 (Fourier transform of a unit-height polygon).
Let D be a polygonal domain in R2 with the N vertices vj = (vj,1, vj,2)

T,
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j = 1, . . . , N , which are numbered anticlockwise with vN+1 :=v1. For ξ 6= 0,
the Fourier transform of the function f : R2 3 x 7→ 1D(x) is given by

f̂(ξ) =

∫
D

e− i〈ξ,x〉 dx =
1

‖ξ‖22

N∑
j=1

〈ξ,nj〉
〈ξ,vj+1 − vj〉

(
e− i〈ξ,vj〉− e− i〈ξ,vj+1〉

)
(9)

with

nj :=

(
0 1
−1 0

)
(vj+1 − vj), j = 1, . . . , N,

and the convention

〈ξ,nj〉
〈ξ,vj+1 − vj〉

(
e− i〈ξ,vj〉− e− i〈ξ,vj+1〉

)
= i〈ξ,nj〉 e− i〈ξ,vj〉

if 〈ξ,vj+1 − vj〉 = 0 for some j ∈ {1, . . . , N}.

The proof of this proposition follows the lines in [14].

Now we have a representation of the Fourier transform of the unit-height
polygon where the vertices of the polygon occur. We aim to derive a the-
ory for the reconstruction of the polygonal domain D from sparse Fourier
samples.

We want to assume that no edge of the polygon D is parallel to the x1-axis
or the x2-axis in the plane. Then it holds that

〈ξ,vj+1 − vj〉 6= 0 for all j ∈ {1, . . . , N}

for vectors ξ of the form

ξ = (ξ1, 0)T or ξ = (0, ξ2)
T with ξ1, ξ2 6= 0.

Using this assumption, we can rephrase (9) as

f̂(ξ) =
1

‖ξ‖22

N∑
j=1

(
〈ξ,nj〉

〈ξ,vj+1 − vj〉
− 〈ξ,nj−1〉
〈ξ,vj − vj−1〉

)
e− i〈ξ,vj〉 (10)

for vectors ξ of the form ξ = (ξ1, 0)T or ξ = (0, ξ2)
T with ξ1, ξ2 6= 0, where

we use the conventions v0 :=vN , n0 :=nN , and vN+1 = v1.
By considering the function

g(ξ) :=‖ξ‖22f̂(ξ), (11)

we obtain a bivariate exponential sum with the vertices vj of the polygon
D as exponents. Assuming that the vertex coordinates vj,1, j = 1, . . . , N ,
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Figure 2 Example for two different unit-height polygons with the same 5 vertices.

as well as the coordinates vj,2, j = 1, . . . , N , are pairwise different, we will
be able to compute the vertices by applying the Prony method to sampling
values from three straight lines through the origin where the third line is
determined adaptively.

The assumption that the vertex components vj,1 and vj,2 are distinct in
the x1- and x2-direction of the Cartesian coordinate system respectively also
ensures that no edge of the polygon is parallel to the x1- or x2-axis.

However, it does not suffice to know the vertices of D, see Figure 2, since
the polygon can be non-convex. Thus, we also need to determine which
vertices have to be connected by line segments in order to reconstruct the
original polygonal domain.

The ordering of the computed vertices will be done with the help of the
coefficients which are obtained by applying the Prony method to three uni-
variate problems, i.e. to the sampling values from three straight lines in the
plane.

The proof of the following theorem is constructive and provides us also
with an algorithmic scheme for the reconstruction of polygonal domains.

Theorem 3.2 (Reconstruction of polygonal domains).
Let f be a unit-height polygon as defined in (7), i.e. f : R2 → R with

f(x) := 1D(x), x ∈ R2,

where D is a non-degenerated polygon in R2 with the vertices vj = (vj,1, vj,2)
T

for j = 1, . . . , N , which are numbered anticlockwise. Assume that the ver-
tex components vj,1 and vj,2 are distinct in the x1- and x2-direction of the
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Cartesian coordinate system respectively. Further, assume that the constant
h > 0 satisfies the condition h‖vj‖2 < π for all j ∈ {1, . . . , N}. Then we get
the following reconstruction result:

The polygon D can be uniquely recovered from the 3N Fourier
samples f̂(ξ) for

ξT ∈
{(
`h, 0

)
,
(
0, `h

)
,
(
cos(ϑπ)`h, sin(ϑπ)`h

)
| ` = 1, . . . , N

}
where ϑ ∈ (0, 1) \ {12} needs to be chosen suitably.

Proof. The proof consists of five major parts. In the first two parts, we use
the Prony method (applied to sampling values of f̂ from two straight lines
in the frequency domain) in order to compute the coordinate values vj,1 and
vj,2 of the vertices v1, . . . ,vN .

But we are faced with the problem of combining these coordinate values
to points in the plane which are the original vertices. Thus, in the third
part, we determine a candiate set of points that are possible vertices of D.
Dependently on this candidate set, we determine a third sampling line. We
apply the Prony method to sampling values from this third line in order to
uniquely determine the original vertices in the fourth part of the proof.

In the fifth and last part, we establish the right order of the computed
vertices, for which we use the coefficients that we have obtained by the ap-
plication of the Prony method.

Part 1:
The representation of the Fourier transform of f in (10) yields

g(ξ) =
N∑
j=1

(
〈ξ,nj〉

〈ξ,vj+1 − vj〉
− 〈ξ,nj−1〉
〈ξ,vj − vj−1〉

)
e− i〈ξ,vj〉 (12)

with g as in (11) and the conventions

vN+1 = v1, v0 = vN , n0 = nN . (13)

Taking vectors ξ of the form ξ = (ξ1, 0)T, ξ1 6= 0, we obtain

g(ξ1, 0) =
N∑
j=1

(
ξ1nj,1

ξ1(vj+1,1 − vj,1)
− ξ1nj−1,1
ξ1(vj,1 − vj−1,1)

)
e− i ξ1vj,1 ,

where
nj,1 = vj+1,2 − vj,2, j = 0, . . . , N.
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Thus, we have the univariate exponential sum

g(ξ1, 0) =
N∑
j=1

aj e− i ξ1vj,1 (14)

with the coefficients

aj :=
vj+1,2 − vj,2
vj+1,1 − vj,1

− vj,2 − vj−1,2
vj,1 − vj−1,1

, j = 1, . . . , N. (15)

Observe that the coefficient aj for j ∈ {1, . . . , N} is the difference of the slopes
of the two line segments connecting the vertex vj with its neighbours vj−1
and vj+1. By assumption, the polygon D is non-degenerated. In particular,
aj is non-zero and well defined. Hence, the values of the slopes of the edges
are finite.

In order to obtain the vertex coordinates vj,1 and the corresponding coeffi-
cients aj , j = 1, . . . , N , we apply the Prony method to the univariate function
g(·, 0) in (14). Note that we have

g(0, 0) =

N∑
j=1

aj =

N∑
j=1

(
vj+1,2 − vj,2
vj+1,1 − vj,1

− vj,2 − vj−1,2
vj,1 − vj−1,1

)
=
vN+1,2 − vN,2
vN+1,1 − vN,1

− v1,2 − v0,2
v1,1 − v0,1

= 0

(16)

by (13). Further, the coefficients aj are real-valued, and we have h|vj,1| ≤
h‖vj‖2 < π for all j ∈ {1, . . . , N} by assumption. We apply the Prony
method from Section 2 using the function values

g(`h, 0), ` = 0, . . . , N,

which are given by (16) and by

g(`h, 0) = |`h|2f̂(`h, 0), ` = 1, . . . , N.

The application of the Prony method then yields the set {v1,1, . . . , vN,1}
of frequency values together with the set {a1, . . . , aN} of corresponding coef-
ficients. We consider the ordered set {α1, . . . , αN} = {v1,1, . . . , vN,1} with

α1 < α2 < . . . < αN

and corresponding coefficients aα,j with {aα,1, . . . , aα,N} = {a1, . . . , aN}. Ob-
serve that the order of the vertex components is still unknown and has to be
determined later.
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Part 2:
Analogously, we compute a set of values containing all vertex coordinates
vj,2 and corresponding coefficients by applying the Prony method to the
univariate function

g(0, ξ2) =

N∑
j=1

bj e− i ξ2vj,2 (17)

where the coefficients bj are defined by

bj :=
vj,1 − vj+1,1

vj+1,2 − vj,2
− vj−1,1 − vj,1
vj,2 − vj−1,2

, j = 1, . . . , N. (18)

We obtain values
β1 < β2 < . . . < βN

with corresponding coefficients bβ,1, . . . , bβ,N where we have

{β1, . . . , βN} = {v1,2, . . . , vN,2} and {bβ,1, . . . , bβ,N} = {b1, . . . , bN}.

As before, the correct order of the vertex components vj,2 is still unknown.

Part 3:
Now we compute the original vertices v1, . . . ,vN . We consider the Cartesian
product of the sets {α1, . . . , αN} and {β1, . . . , βN} as a set of candidate points
for the original vertices,

K :=
{

(αk, β`)
T : k = 1, . . . , N, ` = 1, . . . , N

}
.

Obviously, we have {v1, . . . ,vN} ⊂ K.
In order to determine the N original vertices, we apply the Prony method

to Fourier samples from a third sampling line through the origin.
For this purpose, we choose a parameter ϑ ∈ (0, 1)\{12} such that the ortho-

gonal projections of all candidate points in K onto the line x2 = tan(ϑπ)x1
are pairwise different, see Figure 3. This parameter ϑ determines the third
sampling line in the frequency domain. We use equispaced sampling loca-
tions on this third sampling line ω2 = tan(ϑπ)ω1 with step size h, see Figure
3, and take the N Fourier samples

f̂
(
cos(ϑπ)`h, sin(ϑπ)`h

)
, ` = 1, . . . , N.

Since the orthogonal projections of all points in K onto the line x2 =
tan(ϑπ)x1 are distinct, no possible edge of the polygon D, i.e. possible con-
nection between two points in K, is perpendicular to the line x2 = tan(ϑπ)x1.
Thus, we have

〈ξ,vj+1 − vj〉 6= 0 for all j ∈ {1, . . . , N} (19)
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Figure 3 Left: Determination of the parameter ϑ in the time domain. Right: Third sampling
line in the frequency domain with sampling locations (displayed example: ` = 3).

for ξ =
(
cos(ϑπ)ξ1, sin(ϑπ)ξ1

)T
with ξ1 6= 0, and we can use the representa-

tion of g in (11) with f̂ in (10) along this third sampling line,

g
(
cos(ϑπ)ξ1, sin(ϑπ)ξ1

)
=

N∑
j=1

cj e− i ξ1
(
cos(ϑπ)vj,1+sin(ϑπ)vj,2

)
(20)

where the coefficients cj for j = 1, . . . , N are given by

cj :=
cos(ϑπ)(vj+1,2 − vj,2) + sin(ϑπ)(vj,1 − vj+1,1)

cos(ϑπ)(vj+1,1 − vj,1) + sin(ϑπ)(vj+1,2 − vj,2)

− cos(ϑπ)(vj,2 − vj−1,2) + sin(ϑπ)(vj−1,1 − vj,1)
cos(ϑπ)(vj,1 − vj−1,1) + sin(ϑπ)(vj,2 − vj−1,2)

.

(21)

Note that these coefficients are non-zero and well defined due to (19). This
can be seen similarly as in the cases of the coefficients aj and bj in Parts
1 and 2 of this proof since the coefficient cj for j ∈ {1, . . . , N} is also a
difference of slopes of two neighbouring line segments.

In order to determine the frequency values cos(ϑπ)vj,1 + sin(ϑπ)vj,2 and
the coefficients cj for all j ∈ {1, . . . , N} in (20), we apply the Prony method.
Observe that the assumption that h‖vj‖2 < π for all j ∈ {1, . . . , N} is
satisfied. Indeed, the rotated vectors(

cos(ϑπ) sin(ϑπ)
− sin(ϑπ) cos(ϑπ)

)
vj , j = 1, . . . , N,
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fulfil the same norm condition. Thus, we have

h
∣∣cos(ϑπ)vj,1 + sin(ϑπ)vj,2

∣∣
= h

√(
cos(ϑπ)vj,1 + sin(ϑπ)vj,2

)2
≤ h

√(
cos(ϑπ)vj,1 + sin(ϑπ)vj,2

)2
+
(
− sin(ϑπ)vj,1 + cos(ϑπ)vj,2

)2
=

∥∥∥∥( cos(ϑπ) sin(ϑπ)
− sin(ϑπ) cos(ϑπ)

)
vj

∥∥∥∥
2

< π

for j = 1, . . . , N . Hence, we can apply the Prony method as described in
Section 2, where we use the function values

g
(
cos(ϑπ)`h, sin(ϑπ)`h

)
= |`h|2f̂

(
cos(ϑπ)`h, sin(ϑπ)`h

)
, ` = 1, . . . , N.

Further, we have g(0, 0) = 0 by (20) and (13).
We obtain the ordered frequency values

γ1 < γ2 < . . . < γN

with corresponding coefficients cγ,1, . . . , cγ,N , where

{γ1, . . . , γN}
=
{(

cos(ϑπ)v1,1 + sin(ϑπ)v1,2
)
, . . . ,

(
cos(ϑπ)vN,1 + sin(ϑπ)vN,2

)}
and {cγ,1, . . . , cγ,N} = {c1, . . . , cN}.

Part 4:
The previous results now enable us to compute the original vertices vj ,
j = 1, . . . , N , by comparison of the set K of candidate points with the set
{γ1, . . . , γN}. We determine all points (αk, β`)

T in the set K for which there
exist indices j ∈ {1, . . . , N} such that cos(ϑπ)αk + sin(ϑπ)β` = γj . Then the
set

G̃ :=
{

(αk, β`)
T ∈ K | ∃ j ∈ {1, . . . , N} : cos(ϑπ)αk + sin(ϑπ)β` = γj

}
contains all N original vertices vj , j = 1, . . . , N , of the polygon D and it
holds that ∣∣G̃∣∣ = N ;

that is, the set G̃ contains only the vertices vj and no other elements. We

sort the elements of G̃ in an arbitrary order such that we have

G̃ =
{
ṽ1, . . . , ṽN

}
with ṽj =

(
α̃j , β̃j

)T
for j = 1, . . . , N.
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Part 5:
Recall that each element ṽj of G̃ has three corresponding coefficient values

ãj , b̃j , and c̃j ,

which are the coefficients obtained by applying the Prony method to the
three problems (14), (17), and (20).

In this part, we establish the right order of the vertices of D. Using the
coefficient values ãj , b̃j , and c̃j , we can compute the slopes of the polygon’s
edges such that we are able to determine a predecessor and a successor for
each vertex in the set G̃.

Part 5a: First, let us take a look at the original edges of the polygon D.
We define

mj :=
vj+1,2 − vj,2
vj+1,1 − vj,1

, j = 1, . . . , N,

describing the slope of the line which contains the edge connecting vj and
vj+1. Observe that mj is well defined and non-zero by assumption. Using
this definition of mj , the coefficients aj , bj , and cj in (15), (18), and (21)
respectively, corresponding to the vertex vj for j = 1, . . . , N , can be written
as follows:

aj =
vj+1,2 − vj,2
vj+1,1 − vj,1

− vj,2 − vj−1,2
vj,1 − vj−1,1

= mj −mj−1, (22)

bj =
vj,1 − vj+1,1

vj+1,2 − vj,2
− vj−1,1 − vj,1
vj,2 − vj−1,2

= − 1

mj
+

1

mj−1
, (23)

cj =
mj −mj−1

[cos(ϑπ) + sin(ϑπ)mj ] · [cos(ϑπ) + sin(ϑπ)mj−1]
. (24)

The representations (22), (23), and (24) can now be used to compute the
slope mj if the coefficients aj , bj , and cj are known. For j = 1, . . . , N , we
obtain the following system of equations:

aj = mj −mj−1,

bj = − 1

mj
+

1

mj−1
,

cj =
mj −mj−1

[cos(ϑπ) + sin(ϑπ)mj ] · [cos(ϑπ) + sin(ϑπ)mj−1]
,

with m0 :=MN . As the solution to this system, we find

mj−1 =
aj

2cj sin(ϑπ) cos(ϑπ)
− aj

2bj
tan(ϑπ)− aj

2
− cot(ϑπ) (25)
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and

mj =
aj

2cj sin(ϑπ) cos(ϑπ)
− aj

2bj
tan(ϑπ) +

aj
2
− cot(ϑπ). (26)

Observe that the slopes mj−1 and mj of the edges connecting vj with its
predecessor and successor respectively can be computed separately for each
j by using only the coefficient values corresponding to the considered vertex
vj .

Further, note that the computation of mj−1 and mj in (25) and (26) is
well defined since the values bj and cj are non-zero.

Moreover, observe that we have sin(ϑπ) 6= 0 and cos(ϑπ) 6= 0 since ϑ ∈
(0, 1) \ {12}. Therefore, also tan(ϑπ) and cot(ϑπ) are well defined.

Part 5b: Let us turn back to the set

G̃ =
{
ṽ1, . . . , ṽN

}
(27)

of the vertices of the polygonal domain D, where we have to establish which
elements have to be connected by edges in order to uniquely reconstruct D.
Since we have three corresponding values ãj , b̃j , and c̃j for each element ṽj in

G̃, we can use the formulae (25) and (26) in order to determine a predecessor
and a successor for each vertex.

We start with one vertex of the convex hull of G̃. Without loss of generality,
let this be ṽ1. Then initialize the set G of ordered vertices of D to

G = {v1} with v1 := ṽ1.

Further, we update the set G̃ of the not yet ordered vertices,

G̃ := G̃ \ {v1} =
{
ṽ2, . . . , ṽN

}
.

Using (26), we compute the slope m1 of the edge that connects the vertex
v1 with its successor v2 by

m1 =
ã1

2c̃1 sin(ϑπ) cos(ϑπ)
− ã1

2b̃1
tan(ϑπ) +

ã1
2
− cot(ϑπ).

The line containing the edge between v1 and v2 is then given by the equation

x2 = m1 ·
(
x1 − v1,1

)
+ v1,2.

Now we determine all points ṽj = (ṽj,1, ṽj,2)
T in G on this line, i.e. the points

satisfying
ṽj,2 = m1 ·

(
ṽj,1 − v1,1

)
+ v1,2 (28)
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and hence obtain the set

S1 :=
{
ṽj ∈ G̃ | ṽj fulfils (28)

}
of possible successors of v1. Now we have to establish which point in S1 is
actually the successor v2. For this purpose, we have to consider the following
cases:

(1a) |S1| = 1: If S1 contains only one element, i.e.

S1 =
{
ṽj1
}

for some j1 ∈ {2, . . . , N},

then the successor v2 is given by ṽj1 , and we set

G = {v1,v2} with v2 := ṽj1

and G̃ := G̃ \ {v2}.
(1b) |S1| ≥ 2: Remember that v1 is a vertex of the convex hull of G̃. Thus,

if S1 contains at least two elements, all these elements can only lie in
the same direction from v1, and only the point in S1 which is nearest
to v1 is a possible choice for v2, see Figure 4. Otherwise, we would
have a degenerate case, but such a case is excluded by assumption.
Having given the only possible choice for the successor v2, we proceed
as described in the case (1a).

Now we repeat the approach explained above in order to determine the
successor v3 of the vertex v2. The line which contains the edge connecting
v2 and v3 is described by

x2 = m2 ·
(
x1 − v2,1

)
+ v2,2 (29)

where the slope m2 is computed using (26). The set of possible successors of
v2 is given by

S2 :=
{
ṽj ∈ G̃ | ṽj fulfils (29)

}
.

(2a) |S2| = 1: If S2 contains only one element ṽj2 , then ṽj2 is the successor
of v2, and we set

G = {v1,v2,v3} with v3 := ṽj2

and G̃ := G̃ \ {v3}.
The case |S2| ≥ 2 is a bit different from the case (1b) since v2 may lie

inside the convex hull of D.
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Figure 4 Left: Original unit-height polygon. Right: Determination of the order of the computed
vertices. Start with v1 :=(1, 1)T. Computation of m1 accordingly to (26) leads to (2, 2)T and
(4, 4)T as candidates for v2. Choice of (4, 4)T would lead to a degenerate case. Hence, v2 =
(2, 2)T.

(2b) |S2| ≥ 2: Note that we only know the line containing the edge between
v2 and v3, but we do not know in which direction we have to go on this
line, starting at v2, in order to reach the successor v3. For each of the
two directions, only the point in S2 which is the nearest neighbour of
v2 is a possible choice for v3. Otherwise, we would have a degenerate
case. Thus, we obtain a new set S̃2 which contains at most two points
that fulfil (29) and hence are possible choices for the successor v3. If∣∣S̃2∣∣ = 1, then we follow the lines in the case (2a).

Consider now the case
∣∣S̃2∣∣ = 2, i.e.

S̃2 =
{
ṽj2 , ṽj3

}
for some j2, j3 ∈ {2, . . . , N} \ {j1}.

For each candidate point v3,c,j in S̃2 (j = j2, j3), we compute the slope
m3−1,c,j of the line containing the edge between this point and its pre-
decessor by using formula (25). The successor v3 is now given by the
point v3,c,j for which we have

m2 = m3−1,c,j , (30)

see also Figure 5, and we proceed as described in the case (2a).

We use this approach iteratively in order to determine the order of the
remaining vertices until we have computed a successor for every element in
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Figure 5 Left: Original unit-height polygon. Right: Determination of the order of the computed
vertices. Starting with v1 :=(5, 5)T leads to v2 = (3, 3)T. Computation of m2 accordingly to (26)
leads to (2, 4)T and (4, 2)T as candidates for v3 (blue, dashed line). Equation (25) yields that
the predecessor of (2, 4)T lies on the blue, dashed line, and that the predeccessor of (4, 2)T lies
on the red, dashed line. Thus, v3 = (2, 4)T.

the set given in (27) such that the successor of the last considered vertex is
the vertex v1, with which we have started.

If (30) holds for both candidate points at some stage of the iteration, we
have to choose arbitrarily one of those points as the next successor vertex.
If this choice is the wrong one, the algorithm will also terminate when a
computed successor is equal to the first considered vertex v1. But in this
case we will not have determined a successor for all elements in the set G̃ in
(27) such that we have to turn back to the stage of the iteration where we
had to choose a successor arbitrarily and continue the iteration by choosing
the other candidate point.

In this manner, we uniquely reconstruct the polygonal domain D. This
concludes the proof. �

Remarks 3.3.

1. It may happen that an incorrect, arbitrary choice is not discovered in-
stantly as being wrong, but it is possible that other arbitrary choices
have to be made until the algorithm terminates without determining
successors for all vertices. In this case, one has to go back to the stages
of the iteration where an arbitrary choice has been made, and where the
at that time not considered candidate has not been used as a successor
afterwards. The edges constructed there have to be erased, and one has
to proceed with the unused candidates.
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2. In order to avoid the problems mentioned in the first remark, one can
determine sets of possible successors and sets of possible predecessors
for each vertex ṽj in the set G̃ given in (27). Starting with sets which
contain only one possible successor or predecessor, one can construct all
edges of the polygon step by step. For this purpose, one has to update
the sets of possible successors and predecessors every time when an edge
is constructed.

Note that at least each of the vertices of the convex hull of G̃ has only
one possible successor and one possible predecessor, see the case (1b) in
the proof of Theorem 3.2.

3. In Part 3 of the proof of Theorem 3.2, we have to choose a parameter
ϑ ∈ (0, 1) \ {12} such that the orthogonal projections of all candidate
points in K onto the line x2 = tan(ϑπ)x1 are pairwise different. In order
to improve the robustness of the reconstruction method, ϑ should be
chosen in such a way that the minimal distance between two orthogonal
projections of candidate vectors from K onto the line x2 = tan(ϑπ)x1

is maximized. With u :=
(
cos(ϑπ), sin(ϑπ)

)T
, the orthogonal projection

P(v) of v ∈ K onto this line is given by

P(v) = 〈v,u〉u =
(
cos(ϑπ)v1 + sin(ϑπ)v2

)
u,

and the distance between two projections P(v) and P(w), v,w ∈ K,
v 6= w is given by ‖P(v)− P(w)‖2, for which we have

‖P(v)− P(w)‖22 =
(
〈v −w,u〉

)2
since ‖u‖2 = 1. Thus, in order to choose ϑ as mentioned, we need to
maximize the minimal distance between two projections with respect to
ϑ, that is, we have to solve the max-min problem

max
ϑ∈(0,1)\{ 1

2
}

min
v,w∈K
v 6=w

(
〈v −w,u〉

)2
.

4. The scheme for the reconstruction of polygonal domains from sparse
Fourier data as proposed in Theorem 3.2 can also be used if the number
N of the vertices of the polygon D is not known a priori. In that case,
we need an upper bound M ≥ N and 3M sampling values of the Fourier
transform of 1D, compare Remarks 2.2, 3.

We summarize the proposed reconstruction scheme in the following al-
gorithm:
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Algorithm 3.4 (Reconstruction of polygonal domains).

• Input:

– Step size h > 0 with h‖vj‖2 < π for j = 1, . . . , N ;

– Fourier samples f̂(ξ) for

ξT ∈
{(
`h, 0

)
,
(
0, `h

)
,
(
cos(ϑπ)`h, sin(ϑπ)`h

)}
, ` = 1, . . . , N,

where ϑ ∈ (0, 1) \ {12} needs to be chosen suitably, see Step 6 of the
computation.

• Computation:

1. Compute the values g(`h, 0) = |`h|2f̂(`h, 0) for ` = 1, . . . , N and
set g(0, 0) = 0.

2. Use Algorithm 2.1 in order to compute the parameters vj,1 and aj
of g in (14).

3. Compute the values g(0, `h) = |`h|2f̂(0, `h) for ` = 1, . . . , N and
set g(0, 0) = 0.

4. Use Algorithm 2.1 in order to compute the parameters vj,2 and bj
of g in (17).

5. Compute the Cartesian product {v1,1 . . . , vN,1}×{v1,2, . . . , vN,2} as
the set of possible candidates for the true vertices, i.e.

K :=
{

(vk,1, v`,2)
T : k = 1, . . . , N, ` = 1, . . . , N

}
.

6. Choose a parameter ϑ ∈ (0, 1) \ {12} such that the orthogonal pro-
jections of all candidate points in K onto the line x2 = tan(ϑπ)x1
are pairwise different.

7. Acquire the Fourier samples f̂
(
cos(ϑπ)`h, sin(ϑπ)`h

)
, ` = 1, . . . , N .

Then compute

g
(
cos(ϑπ)`h, sin(ϑπ)`h

)
= |`h|2f̂

(
cos(ϑπ)`h, sin(ϑπ)`h

)
for ` = 1, . . . , N and set g(0, 0) = 0.

8. Use Algorithm 2.1 in order to compute the parameters of g in (20),
namely γj =

(
cos(ϑπ)vj,1 + sin(ϑπ)vj,2

)
and cj .

9. Determine the true vertices v1, . . . ,vN by comparison of K with
the set {γ1, . . . , γN}; that is, determine all points (αk, β`)

T in the
set K for which there exist indices j ∈ {1, . . . , N} such that

cos(ϑπ)αk + sin(ϑπ)β` = γj .

This results in the set G̃ of all true vertices.
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10. Establish the right order of the elements in G̃ by computing suc-
cessors and predecessors for each vertex. For this purpose, consider
the explanations following (27) as well as Remarks 3.3, 1. and 2.

• Output:

Set G = {v1, . . . ,vN} of ordered vertices; that is, the boundary
�D of the polygon D is determined by the closed polygonal
chain [v1—v2—v3—. . .—vN−1—vN—v1].

Remark 3.5.
In the proof of Theorem 3.2 and in the above algorithm, we rely upon the
assumption that the coordinates of the vertices of the polygons to be recon-
structed are pairwise different in both dimensions.

Our reconstruction method uses the orthogonal projections of the vertices
onto the x1- and the x2-axis in the time domain, which are computed by
using Fourier samples from corresponding sampling lines in the frequency
domain, i.e. the ω1- and the ω2-axis.

The assumption that the vertex coordinates vj,1, j = 1, . . . , N , as well as
the coordinates vj,2, j = 1, . . . , N , are pairwise different is needed since the
computed orthogonal projections onto the x1- and the x2-axis have to be
distinct such that we can use the formula (10) for the Fourier transform of
the unit-height polygons.

One may be able to generalize formula (10) such that this restriction is not
necessary. Then we could reconstruct general polygons, i.e. polygons without
any restrictions on the vertex coordinates, using our proposed reconstruction
scheme.

Without such a generalized formula, we need to take much more Fourier
samples for the reconstruction of general polygons. By using Fourier data
sampled on distinct lines l̃k :={λuk |λ ∈ R}, k = 1, . . . , r, in the frequency
domain where uk are unit vectors, we obtain the orthogonal projections of
the vertices onto the distinct lines lk :={λuk |λ ∈ R}, k = 1, . . . , r, in the
time domain. For all k ∈ {1, . . . , r}, these orthogonal projections are given
by

〈uk,vj〉uk, j = 1, . . . , N.

Thus, we have to ensure that we have always two distinct lines on which
the projections are pairwise different. For this purpose, we need N(N−1)

2 + 2

pairwise different lines lk and l̃k in the time domain and the frequency domain
respectively, see [2, §3], where Buhmann and Pinkus use this approach for a
similar problem.

We take the usual coordinate axes and consider the vertical and horizontal
axes of N(N−1)

2 rotated versions of the usual Cartesian coordinate system
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Figure 6 Left: Unit-height polygon determined by (vj)
4
j=1 given in Table 1. Right: Unit-height

polygon determined by (vj)
4
j=1 given in Table 2.

as further sampling lines. Let us assume that the orthogonal projections of
the vertices are pairwise different onto the lines l1 and l2. Then we can use
the Fourier samples from the lines l̃1 and l̃2 as initializations for Algorithm
3.4. Observe that we have to use an appropriate coordinate transformation,
corresponding to the coordinate system spanned by l1 and l2, in order to
continue with Algorithm 3.4.

Altogether, we need Fourier samples from N(N−1)
2 + 3 sampling lines. But

we will only use the Fourier data from three lines. Therefore, it would be
of high interest to have an approach similar to our proposed reconstruction
method where only three sampling lines are needed. This means that another
representation for the Fourier transform of a unit-height polygon is required.

4 Numerical results

In this section, we want to illustrate the developed reconstruction method
with a few numerical examples. We use simulated Fourier data on the x1-
axis, on the x2-axis, and on a third, adaptively chosen sampling line.

Observe in the following examples that some vertices have nearly the same
first or second coordinate. But nevertheless we are able to recover the original
vertices, and the maximal reconstruction error for the vertex coordinates has
an order of magnitude equal to −7.

Further, note that concave polygons are considered in the second, third,
and fourth example such that the step of determining the order of the com-
puted vertices is very important in order to recover the original shape.
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j vj,1 |vj,1 − v∗j,1| vj,2 |vj,2 − v∗j,2|
1 -1 8.882 · 10−16 1 7.649 · 10−14

2 1 1.91 · 10−14 3 4.441 · 10−16

3 3 2.665 · 10−15 0.9 8.737 · 10−14

4 0.9 8.626 · 10−14 -1 2.22 · 10−16

Table 1 Vertices of the unit-height polygon displayed in Figure 6 (left) and approximate recon-
struction errors. The sampling step size is h = 0.7, and the measure of the angle between the
first and the third sampling line is 64◦.

j vj,1 |vj,1 − v∗j,1| vj,2 |vj,2 − v∗j,2|
1 0.05 2.732 · 10−12 0 9.992 · 10−16

2 0 2.273 · 10−12 4 3.109 · 10−15

3 0.5 2.224 · 10−12 3 2.665 · 10−15

4 2 1.776 · 10−15 2.4 0

Table 2 Vertices of the unit-height polygon displayed in Figure 6 (right) and approximate re-
construction errors. The sampling step size is h = 0.7, and the measure of the angle between the
first and the third sampling line is 10◦.
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Figure 7 Left: Unit-height polygon determined by (vj)
5
j=1 given in Table 3. Right: Unit-height

polygon with 12 vertices. The approximate reconstruction errors are given in Table 4.

j vj,1 |vj,1 − v∗j,1| vj,2 |vj,2 − v∗j,2|
1 1 1.601 · 10−9 3 2.792 · 10−7

2 1.95 2.677 · 10−7 2 5.788 · 10−12

3 1.1 5.524 · 10−9 0.4 1.197 · 10−13

4 4 1.403 · 10−13 3.005 1.68 · 10−7

5 1.96 4.96 · 10−7 4 7.994 · 10−13

Table 3 Vertices of the unit-height polygon displayed in Figure 7 (left) and approximate recon-
struction errors. The sampling step size is h = 0.4, and the measure of the angle between the
first and the third sampling line is 45◦.
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j |vj,1 − v∗j,1| |vj,2 − v∗j,2|
1 1.014 · 10−11 1.11 · 10−14

2 1.399 · 10−10 2.132 · 10−14

3 8.304 · 10−14 2.887 · 10−15

4 4.441 · 10−16 9.992 · 10−16

5 3.161 · 10−10 8.882 · 10−16

6 3.238 · 10−11 9.326 · 10−16

j |vj,1 − v∗j,1| |vj,2 − v∗j,2|
7 1.94 · 10−12 2.665 · 10−15

8 3.758 · 10−11 9.77 · 10−15

9 1.052 · 10−13 0
10 8.882 · 10−16 1.11 · 10−16

11 8.695 · 10−11 4.885 · 10−15

12 6.564 · 10−12 3.197 · 10−14

Table 4 Vertices of the unit-height polygon displayed in Figure 7 (right) and reconstruction
errors. The sampling step size is h = 0.7, and the measure of the angle between the first and the
third sampling line is 56.75◦.

5 Conclusion and Outlook

In this paper, we have asked how to reconstruct polygonal shapes in the real
plane by means of a smallest possible set of Fourier data. Answering this
question, we have derived a novel algorithm for the unique reconstruction
of polygonal shapes, based upon the Prony method. It suffices to take only
3N Fourier samples to recover polygons with N vertices, where we have
emphasized that this does not only works for convex polygons but also for
non-convex polygons.

We have illustrated our proposed approach with numerical experiments
where we use exact (simulated) Fourier data. However, in the case of noisy
measurements, the performance of the reconstruction can be greatly im-
proved if a larger number of Fourier data is available, see [8, 19, 21]. In
particular, for small data sets we recommend the preprocessing step of data
filtering presented in [8].

It would be of great interest to generalize, and maybe combine, the ap-
proaches for the reconstruction of non-uniform translates in [20, Section 4.2],
which can be generalized to a d-variate setting, and the reconstruction of
polygonal shapes in Section 3 of this paper such that more general func-
tions and shapes can be considered. For example, the shape from moments
problem, see [7, 9, 17], is extended from polygons to algebraic curves in [11].

In this context, the question arises if an approach for a d-dimensional set-
ting can be combined with the reconstruction of polygonal shapes such that
we can transfer it to the reconstruction of polytopes. This is, for example,
treated in [3, 10], where integral moments of a d-dimensional polytope are
used, together with the Prony method, in order to reconstruct the polytope.
But there are considered only convex polytopes. Thus, it would be interesting
to extend the theory developed in this paper.
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