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In signal analysis, there often is some a priori knowledge about the underlying
structure of the wanted signal. Thus, one is faced with the problem of extracting
a certain number of parameters from the given signal measurements. Considering
for example a structured function of the form

f(ω) =

k∑
j=1

cj e
ωTj

with complex parameters cj and Tj , j = 1, . . . , k, and assuming that −π < ImT1 <
. . . < ImTk < π, one aims to reconstruct cj and Tj from a given small amount
of (possibly noisy) measurement values f(`). Using Prony’s method or one of its
stabilized variants, one is able to reconstruct f with only 2k function values f(`),
` = 0, . . . , 2k − 1. The solution of this problem involves the determination of a
so-called “Prony polynomial”

Λ(z) =

k∏
j=1

(z − eTj ) =

k∑
`=0

α`z
`

with αk = 1. Using the structure of f , a short computation yields

(1)

k∑
`=0

f(`+m)α` = 0, m = 0, 1, . . . .

The homogenous Hankel system (1) provides the coefficients α` of the Prony poly-
nomial Λ(z), and the unknown parameters Tj can now be extracted from the zeros
of Λ(z). Afterwards, the coefficients cj are obtained by solving a linear system.

In recent years, the Prony method has been successfully applied to different
inverse problems as e.g. for analysis of ultrasonic signals or for the approximation
of Green functions in quantum chemistry or fluid dynamics, see e.g. [2, 3]. The
renaissance of Prony’s method originates from some modifications of the corre-
sponding algorithm that considerably stabilize the original approach, [4, 7].

Searching the literature, one finds different further reconstruction methods that
are closely related to Prony’s method at second glance. In spectral analysis the
annihilating filter method is frequently applied. This idea has also been used
already long ago for the construction of cyclic codes, [8]. For a given signal S[n],
the FIR filter A[n] is called annihilating filter of S[n], if

(A ∗ S)(n) =
∑
j∈Z

A[j]S[n− j] = 0.

Using the z-transform A(z) =
∑k

n=0A[n]z−n and comparing this equation to (1),
we observe that zkA(z) undertakes the task of the Prony-polynomial.
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In computer algebra, one is faced with the computation and processing of mul-
tivariate polynomials of high order. But if the polynomial f is k-sparse, i.e.,

f(x1, . . . , xn) =

k∑
j=1

cjx
dj1
1 x

dj2
2 · · ·xdjn

n

with c1, . . . , ck ∈ C and with k pairwise different vectors (dj1 , . . . , djn) ∈ Nn, the
polynomial can be completely recovered using only 2k suitably chosen function
values. Here again, the number of needed evaluations does not depend on the
degree of the polynomial f but on the number k of active terms. The correspond-
ing algorithm goes back to Ben-Or and Tiwari [1], and has recently been shown
to be closely related to the Prony method. In [6], we considered the function
reconstruction problem for sparse Legendre expansions of order N of the form

f(x) =
k∑

j=1

cjPnj
(x)

with 0 ≤ n1 < n2 . . . < nk = N , where k � N , aiming at a generalization of
Prony’s method for this case. We succeeded to derive a reconstruction algorithm
involving the function and derivative values f (`)(1), ` = 0, . . . , 2k − 1. The re-
construction is based on special properties of Legendre polynomials and does not
provide an idea for further generalization of the method to other orthogonal poly-
nomial bases or to other function systems apart from exponentials and monomials.

Just recently, we developed a new perception of Prony’s method based on eigen-
functions of linear operators, see [5]. This new insight gives us a tool for unification
of all Prony-like methods on the one hand and for an essential generalization of the
Prony approach on the other hand. This generalization will open a much broader
field of applications of the method.
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