Necessary and Sufficient Conditions
for Orthonormality of Scaling Vectors

Gerlind Plonka

Abstract. The paper studies necessary and sufficient orthonormality condi-
tions for a scaling vector in terms of its two-scale symbol and its corresponding
transfer operator. In particular, it is shown that the conditions of Hogan [10]
for the two-scale symbol and the criteria of Shen [21] for the transfer operator
are equivalent.

1. Introduction

In this paper we shall discuss orthonormality of compactly supported scaling vec-
tors. These are solutions of functional equations of type

N

B(z)=> Pid(2s-1) (1)

=0

with real r x r coefficient matrices P; (r € IN, » > 1) and with an r-dimensional
function vector ® = (¢1,...,¢,)?. Equations of the form (1) are called matrir
refinement equations.

If additionally, the functions ¢, (-—1) (l € Z, v =1, ..., r) form an orthonor-
mal or an L?-stable basis of their span, then ® is called multi-scaling function. In
this case, ® can generate a multiresolution analysis with multiplicity r (see [7]).
Once, an MRA generated by an orthonormal multi-scaling function ® is given, the
construction of an orthonormal multiwavelet ¥ = (31, ...,%,)T can be reduced
to a problem of matrix extension, as described in [17].

By Fourier transform of (1), we have

() = P(5) 8 (5), (2)
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2 G. Plonka
where @ is taken componentwisely, i.e., <i>(w) = (q@l(w), o quSr(w))T with
¢ (w) = f_oooo ¢u(z)e"™dx (v=1,...,7), and where

P(w) := ZP; et (3)

denotes the two-scale symbol of ®.

Hence, we are faced with the problem of how the orthonormality or L?-
stability condition for a solution vector ® can be ensured by appropriate choice of
P(w).

As in the scalar case (r = 1), we observe three different methods to express
necessary and sufficient stability (orthonormality) conditions in terms of the two-
scale symbol P(w).

The first method is based on the so-called transfer operator T' associated with
P(w). Under certain basic conditions on P(w), L?-stability (and orthonomality,
respectively) of ® can be ensured if the transfer operator T' associated with P(w)
satisfies special spectral conditions. This method can also be applied in the multi-
variate setting (see [21]). In the meantime, it turned out that the basic conditions
assumed by Shen [21] are necessary for stability of ® (see [4,11,14]).

In order to handle the transfer operator 7' in practice, one has to use its
representing matrix, which in fact can be given explicitly in terms of Kronecker
products of coefficient matrices Py, (see [15,20]). The resulting conditions, which
are spectral conditions to the representing matrix, can be seen as generalization
of Lawton’s criteria for scaling functions (see [5,16]).

Second, there are some successful attempts to find necessary and sufficient
conditions directly in terms of the trigonometric polynomial matrix P(w) in order
to ensure orthonomality, stability or even local linear independence of the solution
vector ® (see [10,22]). These results generalize the well-known Cohen criteria [1]
and the conditions of Jia and Wang [13]. But this time, the conditions for the
two-scale symbol P(w) are much more complicated, since products of matrix poly-
nomials generally do no commute. Moreover, one is faced with a problem which
need not to be handled in the scalar case, namely, of how to ensure the algebraic
linear independence of the components ¢, (v = 1,...,7) of ® and their translates
in terms of P(w).

Third, we want to mention that the stability of scaling vectors is closely
related with the convergence of corresponding subdivision schemes and cascade
algorithms. In fact, the convergence of the stationary subdivision scheme can be
taken as a criteria for stability of ® in L?(IR). This subject is addressed in [3,4,12].
In particular, relations between spectral conditions of the transfer operator and
the convergence of the cascade algorithm are considered in [21].

We are especially interested in the first two methods. The purpose of this
paper is to study the relation between the spectral properties of the transfer oper-
ator T" and the properties of the two-scale symbol P(w) in the case of orthonormal
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scaling vectors. In particular, we shall show that the conditions of Hogan [10] and
Shen [21] are indeed equivalent.

2. Basic conditions and uniqueness of ®

In this section we want to provide some necessary conditions for orthonormal-
ity of a compactly supported solution vector ® of a matrix refinement equation
(1). These basic conditions will also ensure that ® is unique, and moreover that
the components of @ are contained in L?(IR).

We say that a function vector @ (with ¢, € L*(IR)) is L%-stable if the integer
translates of ¢, are algebraically linearly independent and if there are constants
0 < A< B < oo, such that

AN das<| Y. dac-nE.<B Y g (4)

l=—0 l=—0 l=—0

for any vector sequence {¢; iez € l5. Here l5 denotes the set of sequences of vectors
(c)iez (¢ € C7) with Y2 cl'e/ < 0o. @ is called orthonormal if (4) is satisfied
with A = B = 1, in other words, if

(Gu, Sv(-—=n))r2 = 60,0 0 (5)

Introducing the autocorrelation symbol

QW) =D (Sur Sul- = n))ra)] oy "

new

=> (/Z ®(z) ®(x —n)*dx) eiwn

new -

(with ®(z)* := ®(x)T) we simply observe that (5) is equivalent with Q(w) = I,

where I'denotes the unit matrix of size . Further, the stability condition (4) implies

that the autocorrelation symbol is strictly positive definite for all w € R (see [7]).
From

| ewree-nrar= o [ a0 e

o) ﬁ —00
1 27 . . .
=5 i e'n Z@(w—i—?wl)@(w—l—?wl)*dw

leEZ

1t follows that

Q) = ®(w+2nl) B(w+27)*  ae.. (6)
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Substituting (2) leads to

- “ b~ b~ S *
Q(w) _le%P(Q +7l) B + ) @ (5 + 7l)" P + 7).
Splitting the sum into even and odd [, it follows that

Q) =P QRUFPE) +PG+m QS + PG+ ac..

Since P(w) and £2(w) are assumed to be matrices of trigonometric polynomials, the
a.e. can be droped. In particular, for orthonomal L?-solutions of (1), the condition

I=P()P(S) + P +m P + ) (7)

2

1s necessarily satisfied.
Let H = Hy be the space of trigonometric polynomials of degree at most
N, ie., the elements of H are of the form h(w) = ZnN:—N hy e~ (b, € C). We

introduce the following transfer operator T : H™*" — H"*"

THW) = P(5)H(Z) P(5)" + P(5 + mH(G + ) P(S + 7",

2
acting on (r x r)-matrices H(w) with elements of T as entries. Observe that the
autocorrelation symbol 2(w) is an eigenmatrix of the transfer operator T' corre-
sponding to the eigenvalue 1.

For a square matrix M (or a linear operator) let us introduce the following

Condition E. The spectral radius of M is less than or equal to 1, i.e. p(M) < 1,
and 1 is the only eigenvalue of M on the unit circle. Moreover, 1 is a simple
eigenvalue.

Assuming that the components of a solution vector ® of (1) are compactly
supported and in L?(IR), it necessarily follows that they are also contained in

LY(IR). As shown in [4,11], we have:

Proposition 1. Let ® be a stable Ly-solution vector of (1). Then for the corre-
sponding symbol P(w) we have:
a) P(0) satisfies Condition E.
b) There exists a nonzero vector y € IR such that y' P(0) = y and y' P(r) =
0" . Equivalently, the solution vector ® provides approximation order 1, I.e.,
we have

o) e(-l)=c
l=—cc
where y is a left eigenvector of P(0) to the eigenvalue 1, and ¢ is a nonvanishing
constant.

The necessary conditions of Proposition 1 for P(w) are called basic conditions.

In the rest of the paper, we want to assume that the basic conditions and the
orthonomality condition (7) are satisfied for the two-scale symbol P(w). Indeed,
these assumptions already imply the uniqueness of a solution vector of compactly
supported L?-functions. Using the results of Jiang and Shen [14], we find:
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Proposition 2. Let P(w) be of the form (3) satisfying the basic conditions of
Proposition 1, and let a be a right eigenvector of P(0) corresponding to the eigen-
value 1. Then (1) provides a compactly supported distribution solution ®, where

L

. w

(@)= flim [ [P(57) a ®)
j=1

This solution vector ® is unique up to multiplication with a constant.

Note that this result is nontrivial; it is based on the observation that the
growth of ¢, ..., ¢, is at most polynomial on IR (see also [9]). Proposition 2 can
be seen as a generalization of an analogous result for scalar refinement equations
by Deslauries and Dubuc [6]. Let us mention, that the pointwise convergence of
the infinite product in (8) can even be shown, if only p(P(0)) < 2 is satisfied (see
[2,8]).

Further, we find:

Proposition 3. Let P(w) be of the form (3), satisfying the basic conditions of
Proposition 1 and the orthonormality condition (7). Further, let a be a right eigen-
vector of P(0) to the eigenvalue 1. Then the function vector ® given in (8) is
contained in L*(IR").

Proof: We introduce II,(w) := H;:l P(:5) and f[n(w) = X[em,n] (27w) I, (W),
where x[_r »] denotes the characteristic function over [—m, x]. Obviously, I, (w)

converges pointwise to IT(w) := [[;2; P(%). By (7), we find that

1 oQ - - 1 2”71’

7 . IT, (w) II, (w)*dw = 7 o IT, (w) I, (w)* dw
1 antln

=9- i I, (w) IT,, (w)” dw
1 2T w w w w

= — IT, _ P(—)P(—)"+P(— P(— >, — *d
[ ) PP+ PO+ m) P )L o)
1 2”71’

=5 i I,y () I, (w) dw = . ..
1 4w 1 27

= — IT) (w) I (w)* dw = — Idw=1
27T 0 27T 0

for all n € IN. Let now || - || denote the spectral matrix norm and the Euklidian

vector norm, respectively. Using the Lemma of Fatou, it follows that

o

1/ R T A
I gy o= 5 [ P A < Binsup s [ L )] o

Lo
:limsupH—/ IL, (w) I, (w)*dwl|| = 1.

n—00 27 — 00
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Finally, observing that

i 1 0o 1/2
@0y = (50 [ Mol dw) < I o) = ] <,
the assertion follows. Il

Remark. This result is a direct generalization of the result of Mallat [19]. For the
characterization of L?-solutions of (1) see also [9,14].

3. Algebraic linear independence of scaling vectors

We say that a compactly supported function vector ® is (algebraically) linearly
independent if for a finite linear combination

chu,l¢u('—1):0 = ¢u=0 forall uwvl

leZZ v=1

Equivalently, ® is algebraically linearly independent if
AWT®w) =0 = ATw) =0"

for arbitrary vectors A(w) of trigonometric polynomials. Note that the linear in-
dependence is necessary for L?-stability or orthonormality of ®.

In the scalar case, the problem of linear independence of integer translates
of a scaling function ¢ € L'(IR) need not to be handled, since A(w) qz;(w) =0
for some trigonometric polynomial A(w) would imply that for all w € IR either
A(w) =0 or qg(w) = 0. But from (/;(0) # 0 1t follows, by continuity, that qg(w) #0
in a neighborhood of 0. So, A(w) = 0 for w in a neighborhood of 0, and hence for
all w € IR.

For r > 1, we need to investigate this problem. First we observe:

Lemma 4. Assume that the compactly supported function vector ® € L*(IR")
satisfies the Poisson summation formula. Then we have:

® is algebraically linearly dependent if and only if its autocorrelation symbol £(w)
satisfies

det Q(w) =0
for allw € [—m, 7).

Proof: The Poisson summation formula implies that the autocorrelation symbol
Q(w) of @ is of the form (6), where the a.e. can be droped.

1. Assume that ® is algebraically linearly dependent, then, by definition, there
exists a nontrivial vector of trigonometric polynomials A(w) such that

A(w)T ®(w) =0
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for all w € [—m, 7). Hence, we have

A(w)” i ®(w + 2nl) ®(w + 271)* A(w) = 0,

l=—0

that means, det Q(w) = 0 for all | € ZZ.

2. Assume that Q(w) is singular for all w € [—m, 7). Then there exists a vector
A(w) of 2m-periodic functions such that
AW Qw)Aw) = Aw)T Z ®(w + 2nl) ®(w + 271)* A(w) = 0.

l=—0

Moreover, since £(w) is a matrix of trigonometric polynomials, we can also find a
suitable A(w) with trigonometric polynomials as entries. Observing that each sum-
mand 'i)(w +2nl) <i>(w + 27l)* is positive semidefinite, it follows that A(w)? <i>(w +
2nl) = 0 for alll € ZZ, i.e., ® is linearly dependent. W

Note that Lemma 4 is not restricted to scaling vectors.
For r > 1 the following conditions on the two-scale symbol P(w) imply linear
dependence of the solution vector ® of (1):

Theorem 5. Let P(w) be of the form (3), satisfying the basic conditions of Propo-

sition 1 and (7). Let a be a right eigenvector of P(0) to the eigenvalue 1. Then the

following assertions are equivalent:

(a) The solution vector ® of (1), determined in (8), is algebraically linearly de-
pendent. ~

(b) There exists an (r — s) x r matrix M(w) of trigonometric polynomials with

rank(M(0)) = r — s such that

M(0)a=0,

- (9)
M(2w) P(w) M(w) =0

with zero matrices of suitable size, and where M(w) is an r x s matrix of
trigonometric polynomials with M(w) M(w) = 0.
(c) There exists a positive semidefinite, hermitian matrix F(w) € H " with

det F(w) = 0 for allw € [—n, ) and satisfying T F(w) = F(w), i.e.,
P(w) F(w) P(w) + P(w + 7) F{w + ) P(w 4+ ) = F(2w). (10)

Proof: The equivalence of (a) and (b) was already shown by Hogan [10].

We only need to show the equivalence of (a) and (c).

1. Let @ be linearly dependent. Then, by Lemma 4, its autocorrelation symbol
Q(w) satisfies det Q(w) = 0 for all w € IR. Moreover, ©2(w) is an eigenmatrix of T
corresponding to the eigenvalue 1.
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2. Assume that ® is linearly independent, and that F(w) is a positive semidef-
inite, hermitian matrix of trigonometric polynomials satisfying (10) and with
det F(w) = 0 for all w. Then, there exists a nontrivial vector A(w) of trigonomet-
ric polynomials such that

A(w)T F(w) m =0 forallwelR.

Hence, (10) implies that also A(w)? P(4)F(%)P(%)" A( ) = 0 and A(w)T P(% +
m)F(% 4+ m)P(% + n)*A(w) = 0. Using the notion f[n(w) = X[emm (27"
T, P(5r), it follovvs by repeated application of (10), that

Aw)T 0, (w) F(=

), (o) A =

and finally for n — oo, for all w € IR,
Aw)! TI(w) F(0) TI(w)* A(w) = 0 (11)

with II(w) = [];2, P(57). (Observe that, by basic conditions, I, converges point-
wise to II(w) for all w.)

3. Let a be a right eigenvector, and let ¥ be a left eigenvector of P(0) to the
simple eigenvalue 1, then y” a # 0. We show that y? F(0)¥ = 0:

We can assume that F(0) is of the form caa* + Fy(0), where ¢ is a suit-
able nonnegative constant and Fy(0) is a positive semidefinite matrix satisfying
y'Fo(0)¥ = 0. Then (11) implies that ¢ A(w)? TI(w) aa*l_[(w)*m = 0 for all

w, and hence

cAw)T (Z (w + 27l) aa" I (w + 271'1)*) A(w)

leEZ

=cA(w (Z ®(w + 2nl) ®(w + 271'1)*) AW) = cAW)T Qw)Aw) =0

leEZ

But, since ® is assumed to be linearly independent, its autocorrelation symbol is
nonsingular a.e., and hence ¢ = 0. So, we find y? F(0)¥ = 0.

4. We introduce the space Vi := {H € H™*" : y' H(0)¥ = 0}, which was
already considered in [21]. Observe that F € V7. Using Proposition 3.5 in [21],
it follows that the transfer operator T, restricted to V7 has spectral radius < 1,
contradicting (10). Note that Proposition 3.5. in [21] (see also [18])) can be used
since the integrability of II,, f[fl is ensured by (7). W

Remark. 1. Note, that condition (7) can be replaced by a weaker condition in
this theorem. We only need to ensure that the solution vector ® is contained in

L2(IR).
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2. Note that for a given (r — s) X r matrix M(w) of trigonometric poly-
nomials we can find an r x s matrix M(w) with M(w)M(w) = 0, everytimes.
Introducing the determinants Ay, 4. (w) of (r — s) x (r — s) submatrices of
M(w) consisting of the dith, dsth,..., and the d._;th column of M(w), and letting
M(w) = (myx(w))i=1,.. r k=1, s, choose

0 I<korl>k+r—s,
_ Aipr o gr—s (W) =k,
M) = (1) Ay, s (@) l=k+r—s,

(L)AL km1 kg1, —s (W) E<l<k+r—s.

4. Necessary and sufficient conditions for orthonormality

Let us introduce the following definition. We say that an w € (0, 27) is cyclic,
if there exists an integer m > 2 such that 2™w = w (mod 2r). Equivalently, w is
cyclic, if and only if it is of the form

_ 2mp
Tom1
forsomem € N, m > 2and pp € {1,...,2™—1}. Considering a cyclic wy € (0, 27),
we can associate a cycle of numbers {wy,...,wp}, where wy := 2wy41 (mod 27)
and wp, 1= 2w; (mod 27). With wy = ;ffl we obtain
2m—k+2ﬂ_ﬂ

W =

W(mod?ﬂ') (]{7:1,,7’71)
It can easily be shown that w and w + 7 (mod 27) can not both be cyclic.
We are now ready to state the following theorem giving the relation between

orthonormality conditions in terms of the transfer operator T' (see [21]) and direct
conditions to the two-scale symbol P (see [10,22]).

Theorem 6. Let P(w) be of the form (3), satisfying the basic conditions of Propo-

sition 1 and (7). Further, let a be a suitable right eigenvector of P(0) corresponding

to the eigenvalue 1. Then the following assertions are equivalent:

(A) The solution vector ® of (1) determined by (8) is orthonormal (up to multi-
plication with a constant).

(B) (i) The two-scale symbol P(w) does not satisfy the linear dependence condition
(9), and
(ii) for all cycles {w1,...,wm} in (0, 27) for the operation w — 2w (mod 27),
and for all x € IR there exists ann € INy and an k € {0,...,m—1} such that

x' Q) P(w1)...Plwy) Plwgyr + ) # 0",

where Q, := P(w1) ... P(wp,).
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(C) The transfer operator T possesses a simple eigenvalue 1.

Proof: We show that (A) = (B) = (C) = (A).

1. (A) = (B): Let @ be an orthonormal solution vector of (1). We show the
necessity of the conditions (B). Here, we only need to consider condition (ii), the
condition (i) is already proved to be necessary in Theorem 5.

We show that: If (B) (ii) is not satisfied, then the solution vector @ is not
L?-stable (and hence not orthonormal). Assume that there is a cycle {wq, ..., wm}
and a nonzero vector x € IR” satisfying x Q), P(wy).. . Pwy) Plwkgr + ) = ol
for all n € INg and all k € {0,...,m — 1}. We show that x* Q(w,,) % = 0:

By definition of a cycle, wy equals 2wy (mod 27), and wy, = 2wy (mod 27). For
an arbitrary, fixed | € 7, choose [y, such that w,, + 2xl = 2w + 27l;. Hence, the
refinement equation implies that x7 <i>(wm +27l) = xF <i>(2w1 + 271'11) is either (for
odd ;) equal to x¥ P(w; + ) <i>(w1 +7l) = 0 or (for even ly) to x¥ P(w;) ®(w; +
mly) = xI P(w)) <i>(2w2 + 27ly) for some I with |l2] < 1+ |{1]/2. Now, we can use
the same argument again, and find that x? P(w;) <i>(2w2 + 2mly) either equals to

x7 P(wl) P(ws + ) <i>(w2 +mls) = 0 or to xI P(w;) P(ws) <i>(2w3 + 2ml3) and so on.
Ifx <I>(wm +27l) is of the form x” P(wy) .. . P(wy,) <i>(wm +7l,) =x''Q,, <i>(wm +
mlym), we can keep going through the cycle as before. The procedure comes to
an end, since the sequence {|lx|}x>1 is monotonly decreasing; in fact we have
o1l < 1+ |1kl /2.

Hence, it follows that x” <i>(wm + 2nl) = 0 for all l € ZZ implying that

x’ Z (wm + 27) (wm—l—Qﬂ'l)*i:xT Qwm)X=0
leZZ

and contradicting the positive definiteness of the autocorrelation symbol Q(w).

2. In the next steps we show that (B) = (C).

Let Hy € H™*" be an eigenmatrix of 1" corresponding to the eigenvalue 1.
Since, by (7), Iis already an eigenmatrix of T to 1, we have to show that, under
the assumptions (B), the assertion Hy(w) # cI leads to a contradiction.

So, let us suppose that H(w) # ¢I. Observe that THy(w) = Hy(w) implies that
THy(w)* = Hy(w)*. Since each matrix is representable as a sum of a hermitian and
an antihermitian part, we can restrict us to the case that Hy(w) is hermitian. Hence,
the eigenvalues of Hy(w) are real. Introducing the minimum and the maximum
eigenvalue of Hy:

Amin = minA;(w)  with  Aj(w) ;= min{A: Hy(w)x = Ax, x # 0},
Amax ‘= minAz(w)  with  Az(w) := max{A: Hy(w)x = Ax, x # 0},

we consider the matrices

Fi(w) :=Hy(w) — Amin L, F3(w) := Apax I — Hy(w).
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Assuming that Apin = A1(wo), Amax = A2(@0), it follows that the matrices Fy (w),
F;(w), both are hermitian and positive semidefinite with det Fy(wp) = 0 and

det Fo(wg) = 0. Further, observe that both, Fy(w) and Fy(w), are eigenmatrices
of T' to the eigenvalue 1.

3. We show that there is an wy € (0, 27) such that either det Fy(w;) = 0 or
det Fa(wy) = 0: If this assertion were not true, then we would have det Fy(w) # 0
and det Fy(w) # 0 for all w € (0,2r). But the determinants of F; and Fy have
at least one zero by construction, hence det F1(0) = det F3(0) = 0. That means,
there exist nonzero vectors x and y with x” F;(0)X = y' F5(0)¥ = 0. In case of
X = ¢y, it follows from the definition of Fy and F, that

7 (Hy(0) = AminD) X = X7 (Ammaxd — Ho(0)) X = 0,

ie,x’ (Amax —Amin) IX = 0, implying Amin = Amax. Hence, all eigenvalues of Hy(w)
are equal, and Hy(w) = ¢I. This contradicts our assumption.
So, we only need to consider the case that x and y are linearly independent.

Using that TF,(w) = F,(w) (v = 1,2), it follows that

implying that
x! P(m)Fy(n) P(n)* X = y! P(x) Fo(n) P(x)*¥ = 0.

Since Fy(7), Fa(m) were supposed to be nonsingular, it follows that x'P(7) =
y' P(r) = 0" Hence, (7) implies that x’P(0) P(0)*X = x! X and y? P(0) P(0)*§ =
¥¥. But this is a contradiction to the basic condition that P(0) possesses a simple
eigenvalue 1.

4. Let F be one of the matrices Fy, Fy satisfying det F(w;) = 0 for some
wy € (0,27). Let x; be a right eigenvector corresponding to the eigenvalue 0, i.e.,
x5 F(wy)x; = 0. Hence,

0=x{F(w))x=x{(TF)(w1) x4

= x; P(1) F(SP(5) %1 +xi P(S- + 1) B + ) P(5 4+ 7)'x,
implying that y y y
1 1 1
X P() F()P() ™ = 0
as well as w w w
Xt P(71 + )F(71 + ) P(71 + )% =
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Observing that, by (7), never both xj P(%) and xj P(*}* + 7) can be zero vectors
at the same time, it follows that either det F(%) = 0 or det F(*- + 7) = 0 with
corresponding left eigenvectors xy P(“+) and x{ P(“} + 7) to the eigenvalue 0,
respectively. Let wy be equal to - or to “* + 7 such that det F(w;) = 0. With
x% = X P(w2) we then have x5 F(w2) X2 = 0. We again apply the transfer operator
and find a further zero of det F, namely either <2 and 2 4 7.

Continuing this process, to each wy € (0, 27) with x5 F(w1)x; = 0 we can find
a chain of zeros of det F, wy, wo,...in (0,27), where wg 1 is either %& or %+ (or,
equivalently, wi = 2wy 41 (mod 27)) with x5 Fwy)xx = 0 and X =X P(wi41)
(k=1,2,...).Since det F(w) is a trigonometric polynomial, it can only have a finite
number of different zeros. The case det F(w) = 0 for all w can not happen, since,
by Theorem 5 (c), this assertion contradicts the assumption (i) of (B). Hence, the
chain wy, wa, ... 1is finite, i.e., there is an | € IN, such that w; = wy for some k < [,
that means, wy = 2'"%w; (mod 27) = 2!=%wy, (mod 27). Thus, wy is cyclic, and
moreover, by

w2k (mod 27) = 2k, 2R (mod 27) = 2% (mod 27) = wy (mod 27),

wy is cyclic. The same procedure can be applied to all zeros of det F(w) in (0, 27)
yielding a finite number of cycles. In particular, det F(w) only has cyclic zeros.

5. Since w and w + 7 can not both be cyclic at the same time, it follows from
det F(w) = 0 that det F(w + ) # 0. Using again that F(w) = T F(w), we find for
a cycle {wi, ..., wn} with x{ F(wg) xx = 0 and det F(wgyq1 + m) # 0 from

0 =x} Pwit1) Flwrt1) Plwgs1) %6 + X5 P(wip1 + ) Flwggr +7) Plwgyr +7)" %

that x} P(wr41 + ) = (g (k =0,...,m—1). This process can be continued by
going again through the cycle. Hence, there is a cycle {wy,...,w, } and a nonzero
vector X, which does not satisfy the condition (B) (ii), and we have found the
contradiction.

6. We finally observe that (C) = (A): Let the eigenvalue 1 of T' be simple. By
(7), I is already an eigenmatrix of T to the eigenvalue 1. Since the autocorrelation
symbol (w) is also an eigenmatrix of T' corresponding to 1, it is a multiple of L
Hence, @® is orthonormal (up to multiplication with a constant). W

Remarks. 1. The above Theorem 6 can be seen as a generalization of Theorem
6.3.5 in [5] showing the equivalence between Lawton’s condition [16] and Cohen’s
criteria [1].

2. As shown in [10], condition (B) (ii) is already satisfied if there is no cycle
{wi,...,wm} with det P(wp + 7) =0 (k=0,...,n).
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