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Abstract

We consider a modification of Prony’s method to solve the problem of best approx-
imation of a given data vector by a vector of equidistant samples of an exponential
sum in the 2-norm. We survey the derivation of the corresponding non-linear eigen-
vector problem that needs to be solved and give its interpretation as a maximum
likelihood method. We investigate numerical iteration schemes to solve this problem
and give a summary of different approaches including the Levenberg-Marquardt algo-
rithm which is a regularized Gauss-Newton method on the one hand and the Iterative
Quadratic Maximum Likelihood (IQML) method as well as the Gradient Condition
Reweighted Algorithm (GRA) on the other hand. We propose ourselves two further
iteration schemes based on simultaneous minimization (SIMI) being more stable with
regard to the choice of the initial vector, and where particularly the second scheme
requires less computational cost. For parameter identification, we highly recommend
a pre-filtering method to reduce the noise variance. We show that all considered
iteration methods converge in numerical experiments.

Key words. Prony method, nonlinear eigenvalue problem, nonconvex optimization,
structured matrices, nonlinear structured least squares problem
AMS Subject classifications. 65F15, 62J02, 15A18, 41A30

1 Introduction

The recovery of structured functions from noisy samples is a fundamental problem in
signal processing. In particular, the efficient approximation by sums of exponentials
plays a significant role in frequency analysis and parameter estimation but also for
sparse signal approximation. Let us suppose that the signal is of the form or can be
well approximated by an exponential sum

f(x) =
M∑
j=1

cje
Tjx =

M∑
j=1

cj z
x
j (1.1)
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with unknown coefficients cj ∈ C and parameters Tj ∈ C with ImTj ∈ [−π, π)
or zj := eTj ∈ C, respectively. For parameter estimation problems, our goal is to
recover all parameters cj and Tj determining f from given perturbed observations
yk = f(xk) + εk, where xk = x0 + kh, h > 0, and εk are pairwise independent random
variables with mean value zero and variance σ2. For sparse signal approximation
problems, we want to approximate a bounded sequence of function values by an
exponential sum of the form (1.1) such that the error is minimized in some sense. The
sparse approximation problem is very similar to the parameter estimation problem
above, but here we do not require a priori knowledge about the error values εk.

One reason for the strong interest in signal approximation by exponential sums
is the wide field of applications. Examples are synchrophasor estimation [41], es-
timation of mean curve lightning impulses [13], parameter estimation in electrical
power systems [29], the localization of particles in inverse scattering [15] and sparse
deconvolution methods in ultrasonic nondestructive testing [8].

The great importance of the topic can also be observed from the many reconstruc-
tion approaches related to the subject, as e.g. the annihilating filter method in signal
processing [12], Padé approximation [45], the reconstruction of signals with finite rate
of innovation [12] and linear prediction methods [24]. For a survey on these relations
we refer to our paper [34]. Further important applications regard quadrature formulas
for higher-dimensional integrals, see [9].

If f(x) indeed possesses the exact structure in (1.1) and if M is given in advance,
then the parameters cj , Tj can be computed by the well-known Prony method from
equidistant samples f(k), k = 0, . . . , 2M − 1. The basic idea to solve the problem is
to understand the exponential sum as the solution of a difference equation of order M
with constant coefficients and to separate the evaluation of the parameter sets. First,
one determines the characteristic polynomial (Prony polynomial) of the underlying
difference equation and extracts the Tj from its zeros zj . Then the cj are obtained
by solving an (overdetermined) Vandermonde equation system.

However, the classical Prony method is not numerically stable. Therefore, differ-
ent numerical methods have been (partially independently) developed to recover the
parameters in model (1), see e.g. multiple signal classification (MUSIC) by Schmidt
[40], estimation of signal parameters via rotational invariance techniques (ESPRIT)
by Roy and Kailath [39], the matrix pencil method by Hua and Sakar [16] and the
approximate Prony method (APM) by Potts and Tasche [36]. The paper [37] contains
a summary of all these algorithms and also studies their close relations.

Contributions of the paper and related work
In this paper, we are interested in the following problem. For a vector of given (noisy)
measurements y = (yk)

L
k=0 at equidistant points (xk)

L
k=0 with L ≥ 2M we want to

compute the parameters cj ∈ C and parameters Tj ∈ C with ImTj ∈ [−π, π) such
that ∥∥∥y − ( M∑

j=1

cje
Tjxk

)L
k=0

∥∥∥
2

=
∥∥∥y − ( M∑

j=1

cjz
xk
j

)L
k=0

∥∥∥
2

(1.2)

is minimized.

The considered problem can be seen as a nonlinear structured least squares prob-
lem (NSLRA), see [22, 25, 26, 44] and references therein. It can be rewritten as a
nonconvex minimization problem with rank reduction constraints, see e.g. [44]. One
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essential idea is to apply the variable projection [14], where the problem of minimiz-
ing with respect to the two parameter vectors c = (c1, . . . , cM ) and z = (z1, . . . , zM )
is reduced to a nonlinear minimization problem with regard to z only, while c can
be simply obtained by a linear least squares method once z is known. The obtained
nonlinear problem can then be tackled using standard optimization routines based on
Gauss-Newton iterations or the Levenberg-Marquardt algorithm. We will summarize
this approach in Section 4.1 and compare it with other concepts that are based on a
non-linear eigenvalue problem formulation.

The minimization problem in (1.2) is also related to the problem of low-rank
approximation of Hankel matrices. Taking fk =

∑M
j=1 cje

Tjxk for k = 0, . . . , L, one
may consider instead of ‖y− f‖2 the matrix norm ‖Hy −Hf‖, where Hy and Hf are
Hankel matrices generated by y and f . The special structure of f then implies that
Hf has only rank M . Thus we arrive at the problem of best low-rank approximation
with Hankel structure. Besides numerical approaches to solve this problem, see e.g.
[17, 3] and references therein. Several papers considered the connection between low-
rank approximation of Hankel matrices and AAK theory [1] being related with the
approximation by exponential sums, see e.g. [5, 6, 2, 35]. However, we emphasize that
these methods do not exactly solve the problem (1.2) but only a related approximation
problem since the spectral norm of Hy (or the operator norm in AAK theory) cannot
be exactly related to the Euclidean norm of y.

For the special case when cj ∈ R and |zj | = 1 for j = 1, . . . ,M , iterative approaches
have been proposed to solve (1.2) that try to improve the estimate of Tj directly at
each iteration step, see e.g. [4, 7]. We also like to mention that approximation in the
1-norm has been considered in [42].

In this paper, we will employ a direct approach to tackle that problem (1.2) based
on former ideas on maximum likelihood modifications of Prony’s method, see [10, 11,
31]. We show that this approach can be also applied to sparse approximation of y
where we do not need to assume that y is “close” to a vector that can be approximated
by an exponential sum. However, if the components of y are perturbed observations
of f(xk) in (1.1) then a statistical interpretation as a maximum likelihood method
is possible. The modified Prony method leads to a general non-linear eigenvector
problem. There exist essentially two different iterative algorithms in the literature to
solve this nonlinear problem, the Iterative Quadratic Maximum Likelihood algorithm
(IQML) [10, 11] and the Gradient Condition Reweighting Algorithm (GRA) [31]. For
both methods the search for z = (z1, . . . , zM )T in a first step is converted to the search
for a vector p ∈ CM+1 of polynomial coefficients such that the knots zj are the zeros
of the corresponding polynomial of degree M . The IQML algorithm has been further
studied in [23]. Both, IQML and GRA algorithm have been shown to converge locally
under certain conditions, which cannot simply be checked in practice. Our numerical
experiments showed however that the IQML algorithm converges very quickly for
arbitrary starting vectors while the GRA algorithm only provides reasonable results
if the starting vector is already very close to the solution vector. Similar results have
been also reported in [21].

We propose two new iteration schemes that are based on simultaneous minimiza-
tion (SIMI) and work equally well as IQML and GRA and are less sensitive with
respect to the initial vector. The second proposed scheme completely avoids inverse
covariance matrices in the iteration process. We particularly show the connections to
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the IQML and the GRA algorithm. Further, we propose a low-pass filtering proce-
dure that can be employed as a preprocessing step for each of the considered iteration
methods.

Our numerical experiments show that for stronger noise the pre-filtering step is
crucial in order to obtain good parameter estimates. Furthermore, the pre-filtering
step strongly reduces the computational effort for all considered iteration methods.

The paper is organized as follows. In Section 2, we shortly recall the Prony method
and give some first ideas for its stabilization in case of noisy data, as e.g. given already
by Pisarenko [33]. Section 3 is devoted to the maximum likelihood formulation of
the Prony method in order to minimize (1.2). In Section 4 we survey the existing
different iteration methods VARPRO (based on the Levenberg-Marquardt algorithm),
GRA and IQML, and derive two new iteration schemes. Employing a suitable pre-
processing step, particularly the second new iteration scheme requires considerably
smaller computational costs than the other methods. Finally, we study different
numerical examples to compare the efficiency of the iterative methods in Section 5.

2 Prony’s method

The classical Prony method for parameter estimation works for exactly sampled data
in the case of a known number M of terms, see e.g. [34]. For given data x0 ∈ R,
h > 0, the samples of f(x) in (1.1) are of the form

fk = f(x0 + hk) =

M∑
j=1

(cje
Tjx0)eTjkh =

M∑
j=1

djz
k
j , k = 0, . . . , L, L ≥ 2M, (2.1)

where dj := cje
Tjx0 and zj := eTjh, j = 1, . . . ,M , the goal is to recover all parameters

cj , Tj , j = 1, . . . ,M , or equivalently dj , zj , j = 1, . . . ,M , determining f(x). With
f := (f0, f1, . . . , fL)T , d := (d1, . . . , dM )T , z := (z1, . . . , zM )T , and the Vandermonde
matrix

V(z) = VL+1,M (z) :=


1 1 . . . 1
z1 z2 . . . zM
z2

1 z2
2 . . . z2

M
...

...
...

zL1 zL2 . . . zLM

 , (2.2)

the corresponding matrix equation reads

f = V(z) d. (2.3)

We want to extract z and d from f . It is clear that once we found z, the coefficient
vector d can be obtained by solving the overdetermined linear system (2.3). In order
to compute z, we introduce the Prony polynomial being determined by its zeros
zj ∈ C,

p(z) :=

M∏
j=1

(z − zj) =

M∑
k=0

pkz
k =

M−1∑
k=0

pkz
k + zM , z ∈ C,
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with coefficients pk ∈ C and pM = 1. Then, observing the relation

M∑
k=0

pkfk+m =

M∑
k=0

pk

 M∑
j=1

djz
k+m
j

 =

M∑
j=1

djz
m
j

(
M∑
k=0

pkz
k
j

)

=
M∑
j=1

djz
m
j p(zj) = 0 (2.4)

for m = 0, . . . , L−M , we obtain the homogeneous linear system

Hfp =


f0 f1 . . . fM
f1 f2 . . . fM+1
...

...
...

fL−M fL−M+1 . . . fL




p0

p1
...
pM

 =


0
0
...
0

 , (2.5)

where the coefficient matrix Hf := (fj+k)
L−M,M
j=0,k=0 ∈ C(L−M+1)×(M+1) has Hankel

structure and p contains the coefficients of the Prony polynomial. Assuming that the
knots zj , j = 1, . . . ,M , are pairwise different and that dj 6= 0 for j = 1, . . . ,M , the
structure of f implies the factorization

Hf = VL−M+1,M (z) diag(d1, . . . , dM ) VM+1,M (z)T

=


1 1 . . . 1
z1 z2 . . . zM
z2

1 z2
2 . . . z2

M
...

...
...

zL−M1 zL−M2 . . . zL−MM



d1

d2

. . .

dM




1 z1 . . . zM1
1 z2 . . . zM2
1 z3 . . . zM3
...

...
...

1 zM . . . zMM

 ,

and therefore rank (H) = M , since the two Vandermonde matrices and the diagonal
matrix in this factorization have full rank M . Thus, a right-singular vector p of Hf to
the singular value 0 is uniquely defined using the normalization pM = 1. Knowing p,
we can extract the vector z from the Prony polynomial. Now, the function f can be
completely recovered by performing the following three steps, as given in Algorithm
2.1.

Algorithm 2.1 (Prony method)
Input: M , x0, h, fk, k = 0, . . . , L, with L ≥ 2M .

1. Compute the right singular vector p = (p0, . . . , pM−1, 1)T of Hf := (fj+k)
L−M,M
j=0,k=0

corresponding to the zero singular value.

2. Compute the zeros zj, j = 1, . . . ,M , of the Prony polynomial p(z) =
∑M

k=0 pkz
k.

3. Compute the coefficients dj, j = 1, . . . ,M by solving the overdetermined system

M∑
j=1

djz
k
j = fk, k = 0, . . . , L,

using the least squares approach, and derive cj := e−Tjx0dj = z
x0/h
j dj.

Output: Parameter vectors z, c.
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Note that in Algorithm 2.1 the recovery of z and c is even possible using only 2M
equidistant samples. By rewriting the equation system (2.4) as

M−1∑
k=0

pkfk+m = −fM+m, m = 0, . . . ,M − 1,

we can compute p by solving this equation system instead of solving the singular
vector problem in step 1 of Algorithm 2.1.

If L > 2M , instead of employing the sampled data fk, k = 0, . . . , L to compute p
in (2.5) we can also apply an averaging operator first. Let

f̃k :=
L−2M∑
`=0

w`f`+k, k = 0, . . . , 2M, (2.6)

with some low-pass filter w = (w0, . . . , wL−2M ) satisfying w` ≥ 0 for all ` and∑L−2M
`=0 w` = 1. With f̃ := (f̃k)

2M
k=0 we observe that

H
f̃

:= (f̃j+k)
M
j,k=0 = LTHf

with

LT = LTL−M+1,M+1 (2.7)

:=


w0 w1 . . . wL−2M 0 . . . 0

0 w0 . . . wL−2M
...

...
. . .

. . . 0
0 . . . 0 w0 . . . wL−2M

∈ C(M+1)×(L−M+1)

is a quadratic matrix of size (M + 1) × (M + 1) with rank M , and we indeed have
H

f̃
p = 0 if Hf p = 0. Therefore, the first step in the Algorithm 2.1 for the classical

Prony method can be replaced by computing the normalized zero eigenvector p =
(p0, . . . , pM−1, 1)T of H

f̃
.

Prony method for noisy measurements. In case of noisy input data,

y = (yk)
L
k=0 = (fk + εk)

L
k=0,

we have to consider the Hankel matrix Hy := (yj+k)
L−M,M
j=0,k=0 instead of Hf that usually

does not possess exactly the rank M . In this case, we study the singular vector
p̃ = (p̃k)

M
k=0 corresponding to the smallest singular value of Hy, i.e.,

H∗yHy p̃ = σ2
M+1 p̃,

in order to fix the coefficients of an approximate Prony polynomial p̃(z) =
∑M

k=0 p̃kz
k

and to extract the parameters, see e.g. [36]. Employing here the normalization p̃M = 1,
the least squares problem

p̃ := argmin
p∈CM+1

pM=1

p∗H∗yHyp (2.8)

is solved. This approach is also known as the Pisarenko method if we take the nor-
malization ‖p‖2 = 1 instead of pM = 1.

6



Let us now write the problem in a different way. Introducing the Toeplitz matrix
Xp ∈ C(L+1)×(L−M+1) of the form

Xp :=



p0

p1 p0
... p1

. . .
... p0

pM p1

pM
...

. . .

pM


, (2.9)

we obtain
Hyp̃ = XT

p̃y, (2.10)

and the problem in (2.8) for noisy data y is equivalent with

p̃ := argmin
p∈CM+1

pM=1

y∗XpXT
p y. (2.11)

We summarize this procedure in Algorithm 2.2.

Algorithm 2.2 (Prony method for noisy measurement vector y)
Input: M , x0, h, yk, k = 0, . . . , L, with L ≥ 2M .

1. Form Hy := (yj+k)
L−M,M
j=0,k=0 and compute the right singular vector p = (pk)

M
k=0 of

Hy corresponding to its smallest singular value.

2. Compute the vector z of zeros zj, j = 1, . . . ,M , of the Prony polynomial p(z) =∑M
k=0 pkz

k by solving an eigenvalue problem for the corresponding companion
matrix.

3. Compute the coefficients dj, j = 1, . . . ,M by solving the least squares problem

min
d∈CM

‖V(z)d− y‖2

and derive cj := e−Tjx0dj = z
x0/h
j dj.

Output: Parameter vectors z, c.

To improve the numerical stability of Algorithm 2, one can employ the approxi-
mate Prony method (AMP), see [36], that usually gives better solutions as ESPRIT.
Having a larger number of measurements L > 2M , we can apply a preprocessing step
that employs a low-pass FIR-filtering as given in (2.6) to obtain

ỹk =

L−2M∑
`=0

w`yl+k, k = 0, . . . , 2M.

Then, with the Hankel matrix Hỹ := (ỹj+k)
M
j,k=0 of size (M+1)×(M+1), we compute

p0 := argmin
p∈CM+1

pM=1

p∗H∗ỹHỹp = argmin
p∈CM+1

pM=1

p∗H∗yLLTHyp (2.12)
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instead of p̃ in (2.8) with L in (2.7). The main advantage of taking the averaged
values ỹk is a significantly reduced noise variance. For yk = fk+ εk with i.i.d. random
variables εk ∈ N(0, σ2) and with w` = 1

L−2M+1 , ` = 0, . . . , L − 2M , we obtain

ỹk = f̃k + ε̃k with

ε̃k :=
1

L− 2M + 1

(
k+L−2M∑
`=k

ε`

)
∈ N

(
0,

σ2

L− 2M + 1

)
, k = 0, . . . , 2M.

Using this modification, the first step in the Algorithm 2 has to be replaced by:

1. Compute the singular vector p = (p0, . . . , pM−1, 1)T of Hỹ = LTHy correspond-
ing to its smallest singular value.

Note however, that the random variables ε̃k are linearly dependent, where the
dependency is caused by the filter w. We obtain for ε = (ε0, . . . , εL)T

E(ε̃ ε̃∗) = E((LT ε)(LT ε)∗) = LTE(ε ε∗)L = LTL.

If we have L + 1 = (2M + 1)K measurement values yk where K > 1 is an integer,
then we can also construct local low-pass filters such that the filtered signal possesses
i.i.d. Gaussian noise variables. Taking e.g.

ỹk :=
1

K

K(k+1)−1∑
r=Kk

yr =
1

K

K(k+1)−1∑
r=Kk

fr +
1

K

K(k+1)−1∑
r=Kk

εr = f̃k + ε̃k, k = 0, . . . , 2M, (2.13)

the new variables ε̃k are linearly independent with mean value zero, and the noise
variance is reduced to σ2/K. Similarly, we can choose for example

ỹk =
1

K

K−1∑
r=0

yk+(2M+1)r, k = 0, . . . , 2M, (2.14)

for strongly decaying sequences y.

Remark 2.3 Algorithm 2 is equivalent with the Pisarenko method [33] and with the
total least squares method considered by Rahman and Yu, [38]. If H∗ỹHỹ has more
than one singular value in the range [0, ε], than p is computed as a special linear com-
bination of the corresponding singular vectors such that the norm of the partial vector
(p0, . . . , pM−1)T of p is minimal. The APM method in [36] also uses two singular vec-
tors corresponding to the two smallest singular values of H∗ỹHỹ in [0, ε] and averages
the zero values that are found from the two corresponding “Prony” polynomials.

A slightly different more expensive iteration method is used for autoregressiv mov-
ing average (ARMA) models by Therrien and Velasco [43].
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3 Maximum likelihood modification of Prony’s method

Let us assume that yk = f(xk) + εk. We want to approximate y = (yk)
L
k=0 by a

sequence generated by an exponential sum with M terms. Formula (2.3) implies that
we have to solve the nonlinear least squares problem

min
z,d∈CM

‖y −V(z)d‖22 = min
z,d∈CM

L∑
k=0

|yk −
M∑
j=1

djz
k
j |2, (3.1)

where we use the notations as in Section 2. If some a priori knowledge is known
about z and d as e.g. |zj | < 1 or dj ∈ R, we can restrict the range CM for the
parameter vectors to the suitable subspaces in the minimization process. Following
the arguments in [10], we observe that for given z, the minimization problem turns
into a linear least squares problem

min
d∈CM

‖y −V(z)d‖22

with the solution
d = V(z)+ y = [V∗(z)V(z)]−1V(z)∗y, (3.2)

since V(z) can be assumed to have full rank M . Thus (3.1) can be rewritten as

min
z∈CM

‖y −V(z)V(z)+ y‖22 = min
z∈CM

‖(I−V(z)V(z)+) y‖22

= min
z∈CM

y∗(I−V(z)V(z)+)∗(I−V(z)V(z)+)y

= min
z∈CM

y∗y − y∗V(z)[V∗(z)V(z)]−1V(z)∗y,

where we have used the definition of V(z)+ in (3.2) and the fact that [V∗(z)V(z)]−1

is Hermitian. Thus,

z̃ := argmin
z∈CM

(
y∗y − y∗V(z)[V∗(z)V(z)]−1V(z)∗y

)
= argmax

z∈CM

(
y∗V(z)[V∗(z)V(z)]−1V(z)∗y

)
. (3.3)

We want to rephrase this nonlinear least squares problem for z = (z1, . . . , zM )T by
means of the coefficients of the Prony polynomial p(z) =

∏M
j=1(z − zj) =

∑M
k=0 pkz

k

with ‖p‖ = 1.

Theorem 3.1 For given data y = (y0, . . . , yL)T the parameter vectors z and d min-
imizing the nonlinear least squares problem

min
z,d∈CM

‖y −V(z)d‖22 = min
z,d∈CM

L∑
k=0

|yk −
M∑
j=1

djz
k
j |2

can be obtained by the following procedure.
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1. Solve

p̃ = argmin
p∈CM+1

‖p‖=1

y∗Xp[XT
pXp]−1XT

py = argmin
p∈CM+1

‖p‖=1

p∗H∗y[XT
pXp]−1Hyp. (3.4)

2. Compute the vector of zeros z = (z1, . . . , zM )T of the polynomial p(z) =
M∑
k=0

pkz
k.

3. Compute
d = V(z)+ y = [V∗(z)V(z)]−1V(z)∗y.

Proof: We follow the ideas in [10] and give a short proof for the convenience of
the reader. For a given vector z = (z1, . . . , zM ) ∈ CM of pairwise distinct knots let
p = (p0, . . . , pM )T be the normalized coefficient vector of the corresponding Prony

polynomial p(z) =
∏M
j=1(z − zj) =

M∑
k=0

pkz
k. Now, we observe that the matrices Xp

in (2.9) and V(z) in (2.2) satisfy

XT
p V(z) = 0.

Note that rank(Xp) = L + 1 − M and rank(V(z)) = M . Thus, the L + 1 − M
columns of Xp span the orthogonal complement of the range of V(z) spanned by
the columns of V(z) in CL+1, i.e., each vector v ∈ CL+1 can be uniquely written
as v = V(z)v1 + Xpv2 with v1 ∈ CM , v2 ∈ CL+1−M . Therefore, we find for all
v ∈ CL+1 on the one hand

V(z)[V∗(z)V(z)]−1V(z)∗v = V(z)[V∗(z)V(z)]−1V(z)∗V(z)v1 = V(z)v1

and on the other hand

[I−Xp[XT
pXp]−1XT

p ] v = V(z)v1 + Xpv2 −Xp[XT
pXp]−1XT

pXpv2

= V(z)v1.

We conclude that

V(z)[V∗(z)V(z)]−1V(z)∗ = I−Xp[XT
pXp]−1XT

p , (3.5)

i.e., solving the maximization problem in (3.3) is equivalent with solving the mini-
mization problem

p̃ := argmin
p∈CM+1

pM=1

y∗Xp[XT
pXp]−1XT

py,

and extracting the vector z̃ of zeros of
∑M

k=0 p̃kz
k. The second representation in (3.4)

is due to XT
py = Hyp. The remaining computation of d is the same as in (3.2).

Remarks 3.2
1. Compared to the Prony method applied to noisy data that can be formulated as
in (2.11), the maximum likelihood modification in (3.4) contains the further term
[XT

pXp]−1 that makes the minimization problem nonlinear.
2. Theorem 3.1 shows that similarly as for the Prony method, the determination

of the parameter vectors z and d can be separated. Formula (3.4) is the variable

10



projection formulation of the Hankel structured low-rank approximation, see e.g. [14,
26]. We emphasize that Theorem 3.1 can be applied to an arbitrary vector y, i.e., we
do not need prior knowledge that y is of the form (f(xk) + εk)

L
k=0 with f(x) in (1.1).

In other words, no prior knowledge on εk is needed.
3. A similar idea for fitting exponential models has been already given by Ku-

maresan et al. [20] even before [10]. An optimization problem similar to that in (3.4)
has been also derived by Hua and Sakar [16] and has been called whitened TLS-LP
method.

4. We note that the normalization of p in (3.4) does not effect the objective
function in (3.4), see e.g. [30]. Indeed we have Xcp = cXp and therefore

Xcp[XT
cpXcp]−1XT

cp = Xp[XT
pXp]−1XT

p

for all c 6= 0. The normalization pM = 1 is often used for the classical Prony method.
The Pisarenko method, see [33] and in the modified Prony method by Osborne and
Smith [30, 32] preferred the normalization ‖p‖2 = 1. Observe that the vector z of
zeros of p(z) does not depend on the normalization of p, but the Lagrange function
used by Osborne and Smith [30, 32] changes.

5. The minimization problem in (3.1) can also be written equivalently as the
NSLRA problem

min
ŷ,V(z)

‖y − ŷ‖2 subject to ŷ = V(z)d and rank V(z) = M

with y, ŷ ∈ CL+1 and V(z) in (2.2), or with the parameter vector p instead of z as

min
ŷ,Xp

‖y − ŷ‖22 subject to XT
p ŷ = 0 and rank Xp = L+ 1−M

with Xp in (2.9), see e.g. [44].
6. While the procedure derived in Theorem 3.1 works for arbitrary data y, it can

be interpreted also statistically, see [30, 19]. Assume that yk = f(xk) + εk where εk ∈
N(0, σ2) are i.i.d. Gaussian variables. Introducing the residual vector r := Hyp =
XT

p y, where p is the (unknown) vector of the exact Prony polynomial coefficients

satisfying Hfp = XT
p f = 0, we observe that

r = (rk)
L−M
k=0 = XT

py = XT
p f + XT

pε = XT
p ε,

where ε = (εk)
L
k=0. Thus, while the components rk of r have still mean value zero, we

obtain for the covariance matrix of r

E(rr∗) = E(XT
pyy∗Xp) = E(XT

pε ε
∗Xp) = XT

pE(ε ε∗)Xp = σ2XT
pXp (3.6)

i.e., the errors rk are not longer independent. Therefore, Osborne and Smith [30, 32]
propose to employ a reweighted residual vector

r̃ := (XT
pXp)−1/2 r

such that E(r̃r̃∗) = σ2I. Minimization of

‖r̃‖22 = r∗(XT
pXp)−1r = y∗Xp(XT

pXp)−1XT
py

11



leads to the same Prony modification that we derived in (3.4).
7. Using the method of Lagrangian multipliers, the model in (3.4) has been derived

in [11] from the following reformulated problem: For given noisy data y, solve

min
s∈CL+1,p∈RM

‖y − s‖22 subject to Hsp = 0 and ‖p‖22 = 1.

4 Numerical algorithms for the ML-Prony method

In this section we will survey some existing numerical iterations to solve the problem
in (3.4) and present two further iteration algorithms based on viewing the problem
as a generalized eigenvalue problem.

We start with deriving a necessary condition for the vector p̃ in (3.4). This
condition has been also found in different forms in earlier papers, see e.g. [30, 32, 31]
but without giving direct matrix representations of the Jacobian and the gradient.
Let

G(p) := y∗Xp[XT
pXp]−1XT

py = ‖r(p)‖22 (4.1)

with r(p) := Xp[XT
pXp]−1XT

py = (X+
p )TXT

py = XpX
+
py ∈ CL+1 such that p̃ in

(3.4) minimizes G(p). Here X+
p denotes the Moore Penrose generalized inverse of

Xp. Obviously, r(p) is closely related to r̃ in Remark 3.2, but we avoid to take square
roots of matrices. For this special problem we can derive now the Jacobian of r(p)
as follows.

Theorem 4.1 Let p = a + ib with a, b ∈ RM+1, and let for p̆ = (aT ,bT )T

J(p̆) = J(a,b) :=

((∂rj(p)

∂ak

)L,M
j=0,k=0

,
(∂rj(p)

∂bk

)L,M
j=0,k=0

)
∈ C(L+1)×2(M+1)

be the Jacobian of the vector r(p) = (rj(p))Lj=0 = (X+
p )TXT

py. Then we have

J(a,b) = (I−Xp[XT
pXp]−1XT

p)Xv(p) (I, −iI) + (X+
p )THy−r(p) (I, iI) ,

where v(p) := X
+
py and Hy−r(p) = Hy −Hr(p) with Hr(p) being the Hankel matrix

of size (L + 1 −M) × (M + 1) generated by r(p). The gradient of G(p̆) := G(p) in
(4.1) reads

∇G(p̆) = 2 J(a,b)∗r(p) = 2

(
I

−iI

)
H∗y−r(p)(X

T
pXp)−1Hyp. (4.2)

Further, we obtain

J(p̆)TJ(p̆) =

(
I
iI

)
XT

v(p)(I−Xp(XT
pXp)−1XT

p)Xv(p) (I, −iI)

+

(
I

−iI

)
HT

y−r(p)(X
T
pXp)−1Hy−r(p) (I, iI) .

12



Proof: First, we observe that
∂Xp

∂ak
= Xk for k = 0, . . . ,M , where the matrix Xk ∈

C(L+1)×(L−M+1) is of the form

Xk :=



0 . . . 0
...
1

. . .

1
...

0 · · · 0


=

 0k×(L−M+1)

I(L−M+1)×(L−M+1)

0(M−k)×(L−M+1)

 ,

and where 0 and I denote zero matrices and the identity matrix of given size. We
obtain

∂

∂ak
r(p) =

∂

∂ak
(Xp[XT

pXp]−1XT
py)

= Xk[X
T
pXp]−1XT

py + Xp[−XT
pXp]−1(XT

kXp + XT
pXk)[X

T
pXp]−1XT

py

+Xp(XT
pXp)−1XT

k y

= Xkv(p)− (X+
p )TXT

k r(p)− (X+
p )TXT

pXkv(p) + (X+
p )TXT

k y

= Xv(p)ek − (X+
p )THr(p)ek − (X+

p )TXT
pXv(p)ek + (X+

p )THyek

= (I− (X+
p )TXT

p)Xv(p)ek + (X+
p )THy−r(p)ek,

where ek denotes the k-th unit vector. Here we have used that Xkv(p) = Xv(p)ek for

v(p) ∈ CL+1−M and XT
k r(p) = Hr(p)ek as well as XT

k y = Hyek for the two vectors
r(p) and y of length L + 1. The partial derivatives with respect to bk are obtained

similarly using
∂Xp

∂bk
= iXk. Taking these derivatives for all k we arrive at J(p̆). For

the gradient it now follows by X
+
pXpX

+
p = X

+
p that

∇G(p̆) = 2 J(p̆)∗r(p)

= 2

((
I

iI

)
X∗v(p)(I−Xp[XT

pXp]−1XT
p) +

(
I

−iI

)
H∗y−r(p)X

+
p

)
XpX

+
py

= 2

(
I

−iI

)
H∗y−r(p)X

+
py = 2

(
I

−iI

)
H∗y−r(p)(X

T
pXp)−1Hyp.

The representation for J(p̆)∗J(p̆) follows similarly.

Corollary 4.2 A normalized vector p ∈ CM+1 that minimizes G(p) necessarily sat-
isfies the eigenvector equation

H∗y−r(p)(X
T
pXp)−1Hyp =

(
H∗y(XT

pXp)−1Hy −H∗r(p)(X
T
pXp)−1Hr(p)

)
p = 0. (4.3)

Proof: The assertion directly follows from Theorem 4.1 and Hr(p)p = XT
pr(p) since

we observe that

H∗r(p)(X
T
pXp)−1Hr(p)p = H∗r(p)(X

T
pXp)−1XT

pr(p) = H∗r(p)(X
T
pXp)−1XT

py.
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Let us now shortly review the algorithms that can be found already in the liter-
ature. All considered algorithms are iterative and aim at successive improvement of
the coefficient vector p. As a suitable initial vector we will use

p0 := argmin
p∈CM+1

‖p‖2=1

p∗H∗yHyp. (4.4)

Obviously, p0 is the eigenvector corresponding to the smallest eigenvalue of the pos-
itive semidefinite Hermitian matrix H∗yHy obtained by the Pisarenko method (2.8).
Since y is noisy, the obtained smallest singular value is usually nonzero.

Further, we will compare the algorithms taking either the full data vector y ∈ CL+1

or a pre-smoothed data vector ỹ ∈ C2M+1 obtained by (2.13) or (2.14), respectively.

4.1 Gauß-Newton and Levenberg-Marquardt iteration

We approximate r(p + δ) by its first order Taylor expansion. Here again we map

p = a+ib to p̆ := (aT ,bT )T ∈ R2(M+1) and δ = δ1+iδ2 to δ̆ := (δT1 ,δ
T
2 )T ∈ R2(M+1).

Then
r(p̆ + δ̆) = r(p̆) + J(p̆)δ̆,

where J(p̆) = J(a,b) and r(p̆) = r(p), and we compute

G(p̆ + δ̆) ≈ (r(p̆) + J(p̆)δ̆)∗(r(p̆) + J(p̆)δ̆)

= r(p̆)∗r(p̆) + r(p̆)∗J(p̆)δ̆ + δ̆
∗
J(p̆)∗r(p̆) + δ̆

∗
J(p̆)∗J(p̆)δ̆.

Minimization of this expression with regard to the vector δ̆ gives

2Re (J(p̆)∗r(p̆)) + 2J(p̆)∗J(p̆)δ̆ = 0.

The corresponding Gauss-Newton iteration J(p̆)∗J(p̆)δ̆ = −Re (J(p̆)∗r(p̆)) leads in
our case at the jth step to

J(p̆j)
∗J(p̆j)δ̆j = −Re (J(p̆j)

∗r(p̆j))

to get the improved vector p̆j+1 = p̆j+ δ̆j , where the needed expressions can be taken
from Theorem 4.1. However, while the coefficient matrix J(p̆j)

∗J(p̆j) is obviously
positive semidefinite, it is not always positive definite. Particularly, if pj is a real
vector, i.e. p̆j = (pTj ,0

T )T , then

J(p̆j)
∗J(p̆j)p̆j = J(pj ,0)TJ(pj ,0)p̆j

=

((
I
−i I

)
X∗v(pj)(I−Xpj (X

T
pj

Xpj )
−1XT

pj
)Xv(pj)

+

(
I
i I

)
H∗y−r(pj)(X

T
pj

Xpj )
−1Hy−r(pj)

)
pj = 0. (4.5)

Indeed we observe for pj ∈ RM+1 and v(pj) = X
+
pj

y = X+
pj

y that

X∗v(pj)(I−Xpj (X
T
pj

Xpj )
−1XT

pj
)Xv(pj)pj

= X∗v(pj)(I−Xpj (X
T
pj

Xpj )
−1XT

pj
)Xpjv(pj)

= X∗v(pj)(I−Xpj (X
T
pj

Xpj )
−1XT

pj
)Xpj [X

T
pj

Xpj ]
−1XT

pj
y = 0
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and similarly H∗y−r(pj)(X
T
pj

Xpj )
−1Hy−r(pj)pj = 0.

Levenberg-Marquardt iteration. The Levenberg-Marquardt algorithm introduces
a regularization changing the coefficient matrix at each iteration step to J(p̆j)

∗J(p̆j)+
λjI which is always positive definite for λj > 0. The iteration then reads

(J(p̆j)
∗J(p̆j) + λjI) δ̆j = −Re (J(p̆j)

∗r(p̆j)) .

In this algorithm, we need to fix the parameter λj which is usually taken very small.
If we arrive at a (local) minimum of G(p), then the right-hand side in the Levenberg-

Marquardt iteration vanishes, and we obtain δ̆j = 0.
The optimization algorithm is very fast and tends to converge to the next local

minimum. Therefore, the solution strongly depends on the initial vector p̆0 that we
take as given in (4.4). For existing software packages to implement this method we
refer to [27].

4.2 Algorithms for the nonlinear eigenvector problem

We consider two other algorithms to solve (3.4) that are based on considering the
underlying nonlinear eigenvector problem.

Gradient Condition Reweighting Algorithm (GRA). Employing the necessary
condition (4.3) in Corollary 4.2, the GRA scheme of Osborne and Smith can be written
in the form (

H∗y−r(pj)(X
T
pj

Xpj )
−1Hy − µjI

)
pj+1 = 0,

p∗j+1pj+1 = 1.
(4.6)

Comparison with Theorem 4.1 shows that the generalized eigenvalue equation above
is equivalent with Bpjpj+1 = µjpj+1, where Bp = H∗y−r(p)(X

T
pXp)−1Hy such that

Bpp = ∇G(p). In the j-th step of the iteration, inverse iteration is applied to
compute the eigenvector pj+1 of Bpj corresponding to the smallest eigenvalue by
modulus µj . In this iteration, the necessary condition in Corollary 4.2 has been
simplified by replacing pj+1 in the matrix Bpj by the vector pj . It is clear from
Corollary 4.2 that µj tends to zero for j → ∞. The algorithm stops when µj+1 is
small enough compared to ‖Bpj‖.

Algorithm 4.3 (GRA)
Input: M , yk, k = 0, . . . , L, with L ≥ 2M .

1. Initialization

• Optional: Compute ỹ in (2.13) or (2.14) and replace in all further steps y
by ỹ.

• Compute p0 in (4.4).

2. Iteration: For j = 0 . . . till convergence

• Compute pj+1 according to (4.6), i.e., compute the eigenvector pj+1 of Bpj

corresponding to its smallest eigenvalue by modulus.

3. Denote by p the vector obtained by that iteration.

4. Compute the vector z of zeros zj, j = 1, . . . ,M , of the Prony polynomial p(z) =∑M
k=0 pkz

k by solving an eigenvalue problem for the corresponding companion
matrix.
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5. Compute the coefficients dj, j = 1, . . . ,M by solving the least squares problem

V(z)d = y

and derive cj := e−Tjx0dj = z
x0/h
j dj.

Output: Parameter vectors z, c.

Iterative Quadratic Maximum Likelihood (IQML). Further, we present the
iterative quadratic maximum likelihood (IQML) algorithm in [10, 11] and the algo-
rithm ORA (Objective function Reweighting Algorithm) in [18]. In both methods the
iteration

pj+1 = argmin
p∈CM+1

‖p‖=1

p∗H∗y[XT
pj

Xpj ]
−1Hyp, (4.7)

is proposed. Compared to the representation of the gradient in Theorem 4.1 and to
the GRA iteration in (4.6) the IQML iteration just does not take the second term
H∗r(p)(X

T
pXp)−1Hyp into account.

This iteration works well in practice, see Algorithm 4.4. However, it is not obvious
whether the solution vector pj is indeed a fixed point of the IQML iteration. We can
apply this scheme also to the filtered data ỹ.

Algorithm 4.4 (IQML)
Input: M , yk, k = 0, . . . , L, with L ≥ 2M .

1. Initialization

• Optional: Compute ỹ in (2.13) or (2.14) and replace in all further steps y
by ỹ.

• Compute p0 in (4.4).

2. Iteration: For j = 0 . . . till convergence

• Compute pj+1 according to (4.7), i.e., compute the right-singular vector
pj+1 of [XT

pj
Xpj ]

−1/2Hy corresponding to its smallest singular value.

3. Denote by p the vector obtained by that iteration and compute the vector z of
zeros zj, j = 1, . . . ,M , of the Prony polynomial p(z) =

∑M
k=0 pkz

k by solving an
eigenvalue problem for the corresponding companion matrix.

4. Compute the coefficients dj, j = 1, . . . ,M by solving the least squares problem

V(z)d = y

and derive cj := e−Tjx0dj = z
x0/h
j dj.

Output: Parameter vectors z, c.

4.3 New iteration schemes based on simultaneous minimization

Based on the ideas of Osborne, we want to consider an extended iteration scheme
in order to relax the problem of getting stuck at the next local minimum. For two
normalized vectors p and q in CM+1 we introduce the matrix

A(p,q) := Xp[XT
qXq]−1XT

p .
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Then, (3.4) can be written as p̃ = argmin
p∈CM+1

‖p‖2=1

y∗A(p,p)y. Our goal is now to improve p

during an iteration by simultaneously minimizing y∗A(pj ,p)y and y∗A(p,pj)y with
respect to p to obtain pj+1. Therefore, we consider the new iteration scheme

pj+1 := argmin
p∈CM+1

‖p‖2=1

(y∗A(pj ,p)y + y∗A(p,pj)y) , (4.8)

and denote by

F (pj+1,pj) := y∗A(pj ,pj+1)y + y∗A(pj+1,pj)y (4.9)

= (pj)
∗H∗y(XT

pj+1
Xpj+1)−1Hypj + (pj+1)∗H∗y(XT

pj
Xpj )

−1Hypj+1

the obtained functional value. The iteration schemes based on (4.8) will be shortly
called simultaneous minimization approach (SIMI). We start with the following The-
orem that gives us a necessary condition for the sequence of vectors (pj)

∞
j=0 similarly

as in Corollary 4.2.

Theorem 4.5 Let y = (yk)
L
k=0 be given with 2M ≤ L. Then, the vector pj+1 com-

puted in (4.8) necessarily satisfies the eigenvector equation(
H∗y

(
XT

pj
Xpj

)−1
Hy −XT

wj
Xwj

)
pj+1 = 0, (4.10)

where Xwj is generated as in (2.9) with the vector wj := (XT
pj+1

Xpj+1)−1XT
pj

y.

Proof: The proof is similar to that of Theorem 4.1 and Corollary 4.2. With p =
a+ib = (ak)

M
k=0+i(bk)

M
k=0 and p̆ = (aT ,bT )T ∈ R2M+2 it follows from (4.8) necessarily

that ∇p̆F (p,pj) = 0 for p = pj+1. As before, the conditions

∂F (p,pj)

∂ak
= 0 and

∂F (p,pj)

∂bk
= 0, k = 0, . . . ,M

imply with Xp =
∑M

`=0 p` X` that

M∑
`=0

p`y
∗
(

Xk

(
XT

pj
Xpj

)−1
XT
` −Xpj

(
XT

pXp

)−1
XT
` Xk

(
XT

pXp

)−1
XT

pj

)
y = 0.

(4.11)

Taking w :=
(
XT

pXp

)−1
XT

pj
y and observing that Xk

(
XT

pXp

)−1
XT

pj
y = Xk w =

Xwek, we can conclude from (4.11)

M∑
`=0

p`

(
y∗Xk

(
XT

pj
Xpj

)−1
XT
` y − eT` XT

wXwek

)
= 0

for k = 0, . . . ,M . Since XT
k y = Hyek, it follows that pj+1 necessarily satisfies the

eigenvector equation

H∗y

(
XT

pj
Xpj

)−1
Hypj+1 −XT

wj
Xwjpj+1 = 0.

Thus the assertion follows.

17



Remark 4.6 Observe that the eigenvector equation in (4.10) is still an implicit equa-
tion since wj contains pj+1 in its definition. In particular, (4.10) implies by multi-
plication with (pj+1)∗ that

p∗j+1H
∗
y(XT

pj
Xpj )

−1Hypj+1 = p∗j+1X
T
wj

Xwjpj+1

= w∗jX
T
pj+1

Xpj+1wj

= y∗Xpj (X
T
pj+1

Xpj+1)−1XT
pj

y

= (p∗jH
∗
y(XT

pj+1
Xpj+1)−1Hypj

and thus
y∗A(pj+1,pj)y = y∗A(pj ,pj+1)y. (4.12)

This result is remarkable since A(pj+1,pj) is similar to the pseudo inverse of
A(pj ,pj+1).

Theorem 4.7 Let y = (yk)
L
k=0 be given with 2M ≤ L. Suppose that the normalized

vector pj+1 obtained by the iteration (4.8) or by the condition (4.10) respectively,
is always uniquely defined. Then the sequence (F (pj ,pj+1))∞j=0 obtained by (4.9)
converges to a limit F ∗. Moreover, the desired vector

p̃ = argmin
p∈CM+1

‖p‖2=1

y∗Xp[XT
pXp]−1XT

p y (4.13)

is a fixed point of the iteration (4.8).

Proof: 1. First we observe that A(pj ,pj+1) and A(pj+1,pj) are Hermitian and
positive semidefinite, therefore F (pj ,pj+1) is for all j ∈ N bounded from below by 0.
By definition of the functional in (4.9) we have

F (pj ,pj+1) ≤ F (pj ,pj) = 2y∗Xpj [X
T
pj

Xpj ]
−1XT

pj
y

= 2y∗Xpj (Xpj )
+y,

where (Xpj )
+ denotes the Moore-Penrose inverse of Xpj . Further, since XpjX

+
pj

only
possesses the eigenvalues 0 and 1 it follows that

2y∗XpjX
+
pj

y ≤ 2‖y‖22 <∞.

Thus, the sequence (F (pj ,pj+1))∞j=0 is bounded from above. Further, the sequence
is monotonically decreasing since by (4.8)

F (pj ,pj+1) ≤ F (pj ,pj−1) = F (pj−1,pj).

Therefore, this sequence converges to a limit F ∗ = limj→∞ F (pj ,pj+1).
2. We show now that p̃ in (4.13) is indeed a fixed point of the iteration (4.8). By

definition, p̃ satisfies the the necessary condition (4.3) that takes here the form(
H∗y(XT

p̃Xp̃)−1Hy −XT
ṽXṽ

)
p̃ = 0
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with ṽ = X
+
p̃y, since

H∗r(p̃)[X
T
p̃Xp̃]−1Hr(p̃)p̃ = H∗r(p̃)[X

T
p̃Xp̃]−1XT

p̃ r(p̃) = H∗r(p̃)X
+
p̃ Xp̃ X

+
p̃ y

= H∗r(p̃) X
+
p̃ y = H∗r(p̃) ṽ = XT

ṽ r(p̃) = XT
ṽ Xp̃ X+

p̃ y

= XT
ṽ Xp̃ v = XT

ṽ Xṽ p̃. (4.14)

Thus, taking pj = p̃ in (4.10), it follows that pj+1 = p̃, i.e., ∇pF (p, p̃) = 0 for
p = p̃.

In the following we want to propose two different iteration schemes that both
approximate the iteration (4.8) to solve the nonlinear problem (3.4), where we suc-
cessively update the vector p. We start with p0 in (4.4).
First iteration scheme (SIMI-1).
We recall that

y∗A(pj ,p)y = (pj)
∗H∗y[XT

pXp]−1 Hypj

= (pj)
∗H∗y[XT

pXp]−1 [XT
pXp] [XT

pXp]−1 Hypj . (4.15)

Approximating [XT
pXp]−1 by [XT

pj
Xpj ]

−1 in (4.15), we obtain

y∗Ã(pj ,p)y = (pj)
∗H∗y[XT

pj
Xpj ]

−1 [XT
pXp] [XT

pj
Xpj ]

−1 Hypj

= v∗j [X
T
p Xp]vj

with vj := [XT
pj

Xpj ]
−1 Hypj = X

+
pj

y. Using this approximation we arrive at the
first iteration scheme

pj+1 := argmin
p∈CM+1

‖p‖2=1

(
y∗A(p,pj)y + y∗Ã(pj ,p)y

)
= argmin

p∈CM+1

‖p‖2=1

(
p∗H∗y [XT

pj
Xpj ]

−1 Hy p + v∗j [X
T
p Xp] vj

)
,

= argmin
p∈CM+1

‖p‖2=1

(
p∗H∗y [XT

pj
Xpj ]

−1 Hy p + p∗[XT
vj

Xvj ] p
)
. (4.16)

In the last equation, we have used that Xpvj = Xvjp holds. Now each iteration
step breaks down to finding the eigenvector to the smallest eigenvalue of the positive
semidefinite matrix H∗y [XT

pj
Xpj ]

−1 Hy + XT
vj

Xvj .

Remark 4.8 The proposed iteration scheme in (4.16) is close to the GRA iteration
in nature. The GRA algorithm employs the matrix H∗y−r(pj)(X

T
pj

Xpj )
−1Hy in (4.6).

But we have

H∗r(p)(X
T
pXp)−1Hyp = H∗r(p)(X

T
pXp)−1Hr(p)p = XT

vXvp

similarly as in (4.14). Thus, for both iterations, the iteration matrix is composed of
the two positive definite matrices H∗y[XT

pj
Xpj ]

−1Hy and XT
vj

Xvj . But while (4.16)
employs the sum of these matrices, GRA considers the matrix difference and searches
for its eigenvector to the eigenvalue closest to zero. For small noise the vector vj
has a small norm and the second matrix becomes negligible. As we will see in the
numerical experiments, the new iteration scheme is more robust with regard to the
initial vector p0 than GRA.
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The first iteration scheme above has similar computation costs as GRA and can
be quite time-consuming since we need to compute the iteration matrix and to apply
for example inverse iteration to compute the desired smallest eigenvalue and the
corresponding eigenvector. Therefore, we derive a further scheme that directly applies
the shorter pre-smoothed vector ỹ from (2.13) or (2.14) and completely avoids inverse
covariance matrices in the iteration scheme.

Second iteration scheme (SIMI-2).
We start with ỹ from (2.13) or (2.14) such that Hỹ ∈ C(M+1)×(M+1) is a square
matrix. We employ now a different approximation of the term ỹ∗A(pj ,p)ỹ. With
qj := Hỹpj we conclude that

argmin
p∈CM+1

‖p‖2=1

ỹ∗A(pj ,p)ỹ = argmin
p∈CM+1

‖p‖2=1

p∗jH
∗
ỹ [XT

p Xp]−1Hỹ pj

= argmin
p∈CM+1

‖p‖2=1

q∗j [XT
p Xp]−1 qj

= argmax
p∈CM+1

‖p‖2=1

q∗j [XT
p Xp] qj

= argmax
p∈CM+1

‖p‖2=1

p∗[XT
qj

Xqj ] p. (4.17)

On the other hand we get,

argmin
p∈CM+1

‖p‖2=1

ỹ∗A(p,pj)ỹ = argmin
p∈CM+1

‖p‖2=1

p∗H∗ỹ [XT
pj

Xpj ]
−1 Hỹ p

= argmax
p∈CM+1

‖p‖2=1

p∗H−1
ỹ [XT

pj
Xpj ] (H∗ỹ)−1 p.

Therefore, we suggest the second iteration scheme

pj+1 := argmax
p∈CM+1

‖p‖2=1

p∗
[
H−1

ỹ [XT
pj

Xpj ](H
∗
ỹ)−1 + [XT

qj
Xqj ]

]
p. (4.18)

Here, each new iteration matrix can be obtained without determining inverses of
covariance matrices. The inverse H−1

ỹ needs to be calculated only once in a pre-

processing step, while we need only O(M2) arithmetical operations to compute the
iteration matrix

B(pj) :=
[
(H∗ỹ)−1[XT

pj
Xpj ]H

−1
ỹ + XT

qj
Xqj

]
.

We summarize the procedure with one of the two iteration schemes in Algorithm 4.9.

Algorithm 4.9 (SIMI)
Input: M , x0, h, yk, k = 0, . . . , L, with L+ 1 = (2M + 1)K.

1. Initialization

• (Optional for the iteration (4.16)): Compute ỹ in (2.13) or (2.14) and re-
place in all further steps y by ỹ.
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• Compute p0 in (4.4).

• If the iteration (4.18) is applied then pre-compute H−1
y with high precision.

2. Iteration: For j = 0 . . . till convergence

• Compute pj+1 according to (4.16) or (4.18).

3. Denote by p̃ the vector obtained by that iteration and compute the vector z of
zeros zj, j = 1, . . . ,M , of the Prony polynomial p̃(z) =

∑M
k=0 p̃kz

k by solving an
eigenvalue problem for the corresponding companion matrix.

4. Compute the coefficients dj, j = 1, . . . ,M by solving the least squares problem

V(z)d = y

and derive cj := e−Tjx0dj = z
x0/h
j dj.

Output: Parameter vectors z, c.

In Algorithm 4.9, convergence is achieved if ‖pj −pj+1‖2 < ε for some predefined
positive value ε. In our numerical results, we have employed ε = 10−8. Concerning the
convergence properties of the two proposed iteration schemes we observe the follow-
ing. Similarly as in the proof of Theorem 4.7 the achieved functional values in the two
iterations are bounded from below and from above. Therefore the sequence of func-
tional values possesses accumulation points. Since the functional values continuously
depend on the iteration vectors, there can be only finitely many accumulation points
and the Česaro mean of the sequence of functional values as well as the corresponding
mean of the iteration vectors always converges.

5 Numerical examples

We want to compare the different iteration methods and show that they all converge
in practice. We will consider the results of the least squares Prony method (Pis-
arenko method) (PM), the approximate Prony (APM) in [36], the GRA iteration in
Algorithm 4.3, the IQML iteration in Algorithm 4.4, the VARPRO method based on
Levenberg-Marquardt iteration using the software package of [27], and the two new
SIMI-iterations (4.16) and (4.18) in Algorithm 4.9. For all algorithms we will also
will use the smoothed data ỹ alongside the original data vector y. The new scheme
(4.18) is only applied to smoothed data ỹ. Besides achieving a much smaller error
variance already in the initialization, a further advantage is that the obtained Hermi-
tian Toeplitz matrix XT

pj
Xpj is only of size (M + 1)× (M + 1) at each iteration step

in GRA, IQML and (4.16). Taking our proposed iteration scheme (4.18), we even
completely circumvent the computation of the inverse (XT

pj
Xpj )

−1, and instead need

to compute the (M + 1)× (M + 1) matrix H−1
ỹ only once in a preprocessing step.

For the first and second example we employ the right singular vector to the smallest
singular value of Hy or of Hỹ as initial vectors, respectively. Only in the last example
we test different initial vectors. Noticing that all the methods used for computing the
coefficients dj (or cj) are the same, we will only present the estimates of parameters
Tj , the number of the iterations (NoI) and the relative error of the exponential sum,

e(f) =

max
k=0,...,L

|f(xk)− f̂(xk)|

max
k=0,...L

|f(xk)|
,
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PM APM GRA IQML VARPRO SIMI-1
(4.16)

SIMI-2
(4.18)

L = 11 NoI \ \ 6 5 4 5

T̂ -4.6939 -4.1239 -4.0941 -3.3699 -4.0068 -4.0089

rel. error 0.0955 0.0844 0.0742 0.0733 0.0815 0.0729

2-error 0.0266 0.0259 0.0249 0.0249 0.0262 0.0249

with filter NoI \ \ 7 6 3 4 6

T̂ -3.9933 -3.9765 -4.0136 -4.2473 -3.9966 -4.0324 -4.0226

rel. error 0.0914 0.0918 0.0900 0.0899 0.0929 0.0897 0.0899

2-error 0.0262 0.0228 0.0262 0.0262 0.0277 0.0262 0.0262

L = 29 NoI \ \ 5 4 4 4

T̂ -6.0093 -4.0506 -4.0260 -3.9002 -4.0675 -3.9684

rel. error 0.1689 0.0758 0.0534 0.0531 0.0608 0.0531

2-error 0.0220 0.0183 0.0175 0.0175 0.0172 0.0175

with filter NoI \ \ 6 6 3 4 6

T̂ -4.0366 -4.0298 -4.0396 -3.8199 -4.0446 -4.0474 -4.0434

rel. error 0.0632 0.0632 0.0624 0.0625 0.0790 0.0626 0.0625

2-error 0.0177 0.0188 0.0177 0.0177 0.0176 0.0177 0.0177

Table 5.1. Simulation results for perturbed signal values yk = exp(−4xk) + εk,
k = 0, 1, . . . , L and the low-pass filtered data ỹk, k = 0, 1, 2 in Example 5.1.

where f̂(x) =
∑M

j=1 ĉje
T̂jx is the signal recovered by the corresponding algorithms.

Further, we consider the normalized 2-error

1

L+ 1

( L∑
k=0

|yk − f̂(xk)|2
)1/2

that measures the distance of the recovered signal to the measured signal y.
In the first and the second example, we present the mean values T̂j for Tj , the

mean relative error e(f) and the mean 2-error obtained from 100 simulated data sets.
In the third example, we have considered single data vectors y.

Example 5.1 In a first small example from [18] we consider the data

yk = exp(−4xk) + εk, k = 0, 1, . . . , L

where xk = k
L and εk ∼ N(0, 0.01), i.e. the deviation is σ = 0.1. We use either the

full data vector y with L = 11 or L = 29 or the filtered data ỹ in (2.13). The bound
for the highest number of iterations is set to 10. We compare the results for these
two data sets for each algorithm in Table 5.1. The mean values of the normalized 2-

error 1
L+1

(∑L
k=0 |f(xk)− yk)|2

)1/2
for the measured samples are 0.0291 and 0.0181

for L = 11 or L = 29, respectively.
Comparing the iterative algorithms, we see that for filtered data IQML works

slightly worse than the others. Comparing the mean 2-error, we observe that all
iterative schemes achieve a better 2-error than the Pisarenko method and also a better
2-error than obtained using the correct parameters. This means, that all iterative al-
gorithms provide parameters T̂ and ĉ that approximate the the measured values better
than the original sum with T = −4 and c = 1.
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PM APM GRA IQML VARPRO SIMI-1
(4.16)

SIMI-2
(4.18)

σ = 0.001 NoI \ \ 5 4 3 4

T̂ -3.5191
-8.2169

-4.0239
-6.9441

-3.9947
-7.0152

-3.9954
-7.0147

-4.0028
-6.9932

-3.9951
-7.0139

rel. error 0.0130 0.0054 0.0013 0.0013 0.0013 0.0013

2-error 7.48e− 04 3.31e− 04 1.33e− 04 1.33e− 04 1.34e− 04 1.33e− 04

with filter NoI \ \ 4 3 4 3 3

T̂ -3.9958
-7.0113

-3.9960
-7.0107

-3.9964
-7.0092

-4.0351
-6.8632

-4.0128
-6.9619

-3.9963
-7.0094

-3.9964
-7.0093

rel. error 0.0028 0.0028 0.0027 0.0027 0.0015 0.0027 0.0027

2-error 1.49e− 04 1.29e− 04 1.48e− 04 1.48e− 04 1.40e− 04 1.48e− 04 1.48e− 04

σ = 0.01 NoI \ \ 7 5 5 6

T̂ -1.5027
-86.868

-3.9500
-7.1545

-3.9677
-7.0955

-3.9077
-7.4468

-4.0217
-6.9288

-4.0159
-6.9478

rel. error 0.1716 0.0671 0.0122 0.0121 0.0126 0.0121

2-error 0.0110 0.0037 0.0014 0.0014 0.0014 0.0014

with filter NoI \ \ 6 5 6 5 5

T̂ -3.9214
-7.2888

-3.9365
-7.2275

-3.9442
-7.2016

-4.1387
-6.4836

-3.9509
-7.2284

-3.9375
-7.2298

-3.9408
-7.2158

rel. error 0.0323 0.0321 0.0297 0.0298 0.0201 0.0298 0.0298

2-error 0.0016 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015

σ = 0.05 NoI \ \ 10 6 10 10

T̂ -1.7073
-41+154i

-1.3131
-83.2645

-2.2585
98.3110

-5.025
± 0.82i

-2.7758
-19.0629

-4.676
± 1.40i

rel. error 0.2021 0.3576 0.5998 0.0571 0.0859 0.0626

2-error 0.0117 0.0192 0.0279 0.0069 0.0071 0.0069

with filter NoI \ \ 6 5 6 6 5

T̂ -3.7450
-7.8443

-4.832
±0.80i

-3.7361
-8.3108

-4.322
±1.42i

-3.353
±2.14i

-4.0268
-6.8894

-2.543
±2.20i

rel. error 0.1502 0.1558 0.1490 0.1460 0.1362 0.1473 0.1460

2-error 0.0080 0.0074 0.0078 0.0078 0.0076 0.0078 0.0078

Table 5.2. Simulation results for perturbed signal values yk = 2 exp(−4xk)− exp(−7xk) + εk,
k = 0, 1, . . . , L and the low-pass filtered data ỹk, k = 0, 1, 2, 3, 4 in Example 5.2.

Example 5.2 We consider the example in [31] with M = 2 of the form

yk = 2 exp(−4xk)− 1.5 exp(−7xk) + εk, k = 0, 1, . . . , L

where xk = k
L and εk ∼ N(0, σ2). We fix the length L of given values to L = 49 and

consider different variances of noise, σ = 0.001, σ = 0.01, and σ = 0.05. The bound
for the highest number of iterations is set to 10. The mean values of the normed
2-error for the measured samples are 1.39e − 04, 0.0014 and 0.0071 for σ = 0.001,
0.01 and 0.05, respectively. As it can be seen for strong noise, all algorithms give
parameters being completely different from the original parameter set when applying
a larger data vector, but the preprocessing step can strongly help to obtain reasonable
results for parameter estimation, see Table 5.2. However, we observe that the algo-
rithms achieve a 2-error being in the same range as the 2-error for the given data.
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Example 5.3 Finally, we investigate a three-term model of the form

yk = exp(0.95xk) + exp(0.5xk) + exp(0.2xk) + εk, k = 0, 1, . . . , L

where xk = 5k
L , and εk ∼ N(0, σ2) with σ ∈ {0.0001, 0.001, 0.01}. Observe that in this

case the exponentials exp(0.95), exp(0.5) and exp(0.2) are larger than 1 such that the
sequence exponentially increases for xk > 1. Again, the filtered data ỹk, k = 0, . . . , 6 is
also considered. We employed a fixed number of L = 69 samples. We have computed
here only the the parameters of one noisy measured vector y (without any averaging of
results). The values of the normed 2-error for the measured samples are 1.3371e−05,
1.0789e− 04 and 0.0014 for σ = 0.0001, 0.001 and 0.01, respectively.

In this example we further investigated the influence of the initial vector p0 and
replaced it by the singular vectors of H∗yHy (and H∗ỹHỹ, respectively) to the second
or third smallest singular value. The bound for the highest number of iterations has
been set to 20. The results are given in Table 5.3. As one can see, the GRA iteration
depends more strongly on the starting vector than the other algorithms. Further,
for strong noise all algorithms provide in the last part of the table parameters for
the frequencies Tj that are completely different from the original parameter vector
(0.95, 0.5, 0.2)T . But the 2-error shows that the found parameters indeed admit an
approximation of the noisy data vector by a three-term exponential sum being equally
good as the original parameter vector. Thus, from approximation point of view all
algorithms work well.

Remark 5.4 All considered iterations usually converge very quickly. However, for
stronger noise the GRA iteration as well as VARPRO and the iteration (4.16) have
used the full number of iterations up to the bound. Considering the computational
costs, we can say that GRA and iteration (4.16) require a similar computational
effort. The corresponding iteration matrices are composed by the same two positive
definite matrices. The computation of one new iteration vector requires for GRA the
computation of the eigenvector with eigenvalue closest to zero while for the iteration
(4.16) we need to find the singular vector/eigenvector to the smallest eigenvalue. GRA
and the iteration (4.16) are much more expensive than IQML and the iteration (4.18),
which are close in spirit especially for the case of filtered vectors. In this case the
second matrix in the iteration (4.18) is very small for small error. The iteration
(4.18) is by far the fastest algorithm taking only about 1/20 of the computation time
of the GRA algorithm and 1/3 of the computation time for the IQML iteration and
1/10 of the computation time for the VARPRO in the third example.
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APM GRA IQML VARPRO SIMI-1
(4.16)

SIMI-2
(4.18)

σ = 0.0001 NoI \ 20 4 3 20

p0 is last
singular
vector

T̂ 2.3767
0.9347
0.3230

0.9492
0.4797
0.1808

0.9497
0.4930
0.1939

0.9496
0.4919
0.1938

0.9495
0.4879
0.1891

rel. error 5.36e− 05 8.11e− 07 4.17e− 07 4.97e− 07 5.42e− 07

2-error 5.58e− 04 1.33e− 05 1.29e− 05 1.28e− 05 1.29e− 05

with filter NoI \ 20 3 1 9 3

T̂ 0.9500
0.4993
0.1991

0.9501
0.5002
0.1994

0.9501
0.5002
0.1994

0.9504
0.5085
0.2063

0.9501
0.5002
0.1994

0.9501
0.5002
0.1994

rel. error 7.60e− 07 1.07e− 06 1.07e− 06 1.57e− 06 1.07e− 06 1.07e− 06

2-error 1.31e− 05 1.34e− 05 1.34e− 05 1.18e− 05 1.34e− 05 1.34e− 05

σ = 0.001 NoI \ 20 6 18 20

p0 is
third last
singular
vector

T̂ 7.9810
0.9368
0.3288

0.9474
0.4406
0.1295

0.9475
0.4433
0.1345

0.9503
0.5108
0.2084

0.9474
0.4417
0.1315

rel. error 0.6449 4.39e− 06 4.30e− 06 3.28e− 06 4.36e− 06

2-error 4.3245 1.05e− 04 1.05e− 04 1.40e− 04 1.05e− 04

with filter NoI \ 12 4 20 20 4

T̂ 0.9480
0.4476
0.1351

0.8412
-0.12+3.6i
-0.12-3.6i

0.9476
0.4439
0.1330

0.9510
0.5220
0.2146

0.9476
0.4440
0.1330

0.9476
0.4439
0.1330

rel. error 4.04e− 06 0.0158 3.82e− 06 2.44e− 06 3.82e− 06 3.82e− 06

2-error 1.07e− 04 0.1008 1.06e− 04 1.41e− 04 1.06e− 04 1.06e− 04

σ = 0.01 NoI \ 20 7 8 20

p0 is sec-
ond last
singular
vector

T̂ 1.36+43i
0.9421
0.3569

0.9408
0.3477
-1.6154

0.9415
0.3526
-1.0412

0.9386
0.3358
-0.65+43i

0.9420
0.3561
-0.8045

rel. error 3.71e− 04 7.90e− 05 6.19e− 05 8.49e− 05 5.39e− 05

2-error 0.0026 0.0013 0.0013 0.0013 0.0013

with filter NoI \ 20 9 6 20 9

T̂ 2.2492
0.9299
0.3165

0.9381
0.3340
-0.51+4.3i

2.9715
0.9310
0.3167

0.9355
0.3266
1.70+4.3i

3.1895
0.9313
0.3173

2.9715
0.9310
0.3167

rel. error 9.25e− 05 1.22e− 04 1.14e− 04 1.87e− 04 1.18e− 04 1.14e− 04

2-error 0.0015 0.0014 0.0016 0.0015 0.0016 0.0016

Table 5.3. Simulation results for perturbed signal values yk = exp(0.95xk) + exp(0.5xk)+
exp(0.2xk) + εk, k = 0, 1, . . . , L and the low-pass filtered data ỹk, k = 0, . . . , 6 in Example 5.3.
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