
Combined Curvelet Shrinkage and Nonlinear Anisotropic

Diffusion

Jianwei Ma1 and Gerlind Plonka2

1 Laboratoire LMC-IMAG, University Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France

jianwei.ma@imag.fr

2 Department of Mathematics, University of Duisburg-Essen, Campus Duisburg, 47048

Duisburg, Germany

plonka@math.uni-duisburg.de

Abstract

In this paper, a diffusion-based curvelet shrinkage is proposed for discontinuity-preserving de-

noising using a combination of a new tight frame of curvelets with a nonlinear diffusion scheme.

In order to suppress the pseudo-Gibbs and curvelet-like artifacts, the conventional shrinkage

results are further processed by a projected total variation diffusion, in which only the in-

significant curvelet coefficients or high-frequency part of the signal are changed by use of a

constrained projection. Numerical experiments from piecewise-smooth to textured images show

good performances of the proposed method to recover the shape of edges and important detailed

components, in comparison to some existing methods.

Mathematics Subject Classification 2000. 65T60, 65M06, 65M12, 94A12.

Key words. Curvelets, nonlinear diffusion, regularization, discontinuity-preserving, denoising.

1



1 Introduction

Image denoising is one important operation in image processing. The tools for attaching this

problem come from very different fields like Computational Harmonic Analysis (CHA) and

partial differential equations (PDEs). They serve the same denoising purpose; removing the

noise from the observed signal without sacrificing important discontinuity structures such as

edges. Generally, tools from the CHA such as wavelets have promising properties for singular-

ity analysis and efficient computational complexity, but suffer from the pseudo-Gibbs artifacts

and shift/rotation variance. New approaches like complex wavelets and curvelets attempt to

overcome these problems at least partially.

Application of PDEs such as nonlinear diffusion, variational methods and level sets are almost

free from the above lacks of CHA, but cost heavy computational burden that is not suitable for

time-critical application. The two directions have been opposed for long time, but recent research

is increasingly focusing on combinations of both. Total variation (TV) regularization has been

combined with wavelets to reduce the pseudo-Gibbs artifacts resulted from wavelet shrinkage

[4, 6, 9, 13]. The relations between wavelet shrinkage, nonlinear diffusion, and regularization

have been explored [19, 21, 27]. This connection provides a fruitful exchange of ideas between the

two directions. Recently, diffusion-inspired wavelet shrinkage with improved rotation invariance

has been considered [14]. On the other hand, a new wavelet-inspired explicit scheme that permits

larger time steps while preserving convergence has been also proposed for nonlinear diffusion

[18].

Within the last years, Candès and Donoho [1, 2, 3] developed a new geometric multiscale trans-

form, the so-called curvelet transform, which allows an optimal sparse representation of objects

with C2-singularities. The needle-shape elements of this transform own very high directional

sensitivity and anisotropy. The transform represents edges and singularities along curves much

more efficiently than traditional wavelet transforms. For a smooth object f with discontinuities

along smooth curves, the best m-term approximation f̃m by curvelet thresholding obeys

‖f − f̃m‖2
2 ≤ Cm−2 (log m)3,
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while for wavelets the decay rate is only m−1. It has been shown that the new transform is

superior to tensor-product wavelet transforms in fields of image processing [12, 20].

The idea of image smoothing by nonlinear diffusion can be explained as follows. Let u0 be an

observed noisy image which is known to be the sum of the original image f and some Gaussian

noise n,

u0(x) = f(x) + n(x), x = (x1, x2) ∈ Ω.

Here Ω ⊂ R2 denotes a rectangle. We consider the diffusion process (see [16])

∂u

∂t
= ∇ · (g(|∇u|)∇u) (1.1)

with the given noisy signal u0 as initial condition

u(x, 0) = u0(x), x ∈ Ω (1.2)

and periodic boundary conditions. Here the time t acts as a scale parameter for filtering. The

choice of the diffusion function g(x) = const corresponds to linear diffusion which is known to

lead to a strong smoothing of u with increasing t. Typically, g(x) is a non-negative decreasing

function with limx→∞ g(x) = 0. The diffusivity g controls the smoothing process by admitting

strong diffusion if the gradient ∇u is small (possibly caused by noise) and by slowing down (or

even stop) the smoothing for large gradients.

Frequently applied diffusivities in (1.1) are Perona-Malik diffusivity g(x) := 1/(1 + x2/γ2),

Charbonnier diffusivity g(x) := 1/
√

1 + x2/γ2, and TV diffusivity g(x) := 1/x with suitable

chosen contrast parameter γ (see [25]). In spite of having many desirable theoretical and com-

putational properties, one serious problem of the diffusion model is that it is very sensitive to

noise (see [28]). The noise often introduces very large oscillations of the gradient ∇u, therefore

the gradient-based model in (1.1) possibly misconstrues the true edges and heavy noise, which

leads to undesirable diffusion in regions where there is no true edge. Another problem is that

staircasing effects arise around smooth edges [25]. A remedy to the deficiencies is suggested by

introducing a regularization of the model (see [5, 23]). A typical improved model is based on

Gaussian regularization

∂u

∂t
= ∇ · (g(|∇(Gσ ? u)|)∇u) (1.3)
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where Gσ is a Gaussian kernel with variance σ. The Gaussian filtering acts as a pre-processing

to reduce the influence of noise during the diffusion process. Other possibilities, e.g., wavelet

regularization [24], time-delay regularization [7], nonlinear perception regularization [11], and

regularization using special numerical schemes [10, 22, 27], will not be considered here.

The goal of this paper is to propose a model which is a hybrid method using curvelet shrink-

age and nonlinear diffusion for discontinuity-preserving denoising. In section 2, we introduce

the curvelet transform and derive an algorithm for the efficient computation of the discrete

curvelet coefficients in the periodic case. In section 3, we propose the new hybrid model for

image smoothing. In this model we first apply a curvelet shrinkage method and afterwards a

diffusion process in order to reduce the pseudo-Gibbs phenomenon. This idea is closely related

to approaches in [9, 13]. We also compare our approach with the model obtained by curvelet

shrinkage followed by a projected regularization method. Section 4 is devoted to numerical

results for image denoising obtained with the new model.

2 Curvelet transform

The first generation of curvelets is based on block ridgelets [1]. Apart from the blocking effects,

however, the application is limited, because the geometry of ridgelets is itself unclear as they

are not true ridge functions in digital images. In this paper, we apply the second-generation

Discrete Curvelet Transform DCuT [2, 3], which is considerably simpler to use.

Let V (t) and W (r) be a pair of smooth, non-negative real-valued window functions, such that V

is supported on [−1, 1] and W on [12 , 2]. The windows need to satisfy the admissibility conditions
∞∑

l=−∞
V 2(t− l) = 1, t ∈ R,

∞∑
j=−∞

W 2(2−jr) = 1, r > 0.

These conditions are satisfied taking e.g. the scaled Meyer windows (see [8], p. 137)

V (t) =


1 |t| ≤ 1/3

cos[π2 ν(3|t| − 1)] 1/3 ≤ |t| ≤ 2/3
0 else

, W (r) =


1 5/6 ≤ r ≤ 4/3

cos[π2 ν(5− 6r)] 2/3 ≤ r ≤ 5/6
cos[π2 ν(3r − 4)] 4/3 ≤ r ≤ 5/3

0 else

,

where ν is a smooth function satisfying

ν(x) =
{

0 x ≤ 0
1 x ≥ 1

, ν(x) + ν(1− x) = 1, x ∈ R.
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For the simple case ν(t) = t the window functions V (t) and W (r) are plotted in Figure 1.
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Figure 1: Plot of the windows V (t) (left) and W (r) (right).

Let the Fourier transform of f ∈ L2(R2) be defined by f̂(ξ) := 1
2π

∫
R2 f(x)e−i〈x,ξ〉dx. Now, for

j ≥ 0 let the window Uj(ξ), ξ = (ξ1, ξ2) ∈ R2 in frequency domain be given by

Uj(ξ) = 2−3j/4 W (2−j |ξ|) V (2bj/2cθ), ξ ∈ R2,

where (|ξ|, θ) denotes the polar coordinates corresponding to ξ. The support of Uj is a polar

’wedge’ determined by suppW (2−j ·) = [2j−1, 2j+1] and suppV (2bj/2c·) = [−2−bj/2c, 2−bj/2c] (see

Figure 2 for an example of the window U0 and its support).
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Figure 2: Window U0(ξ) (left) and its support (right).

The system of curvelets is now indexed by three parameters; a scale 2−j , j ∈ N0; an equispaced

sequence of rotation angles θj,l = 2πl · 2−bj/2c, 0 ≤ l ≤ 2bj/2c − 1, and a position x
(j,l)
k =

R−1
θj,l

(k1 2−j , k2 2−bj/2c)T , (k1, k2) ∈ Z2, where Rθj,l
denotes the rotation matrix with angle θj,l.

The curvelets are defined by

ϕj,l,k(x) := ϕj(Rθj,l
(x− x

(j,l)
k )), x = (x1, x2) ∈ R2,

where ϕ̂j(ξ) := Uj(ξ), i.e., Uj is the Fourier transform of ϕj . Observe that in spatial domain,

ϕj,l,k is of rapid decay away from a 2−j by 2−j/2 rectangle with center x
(j,l)
k and orientation
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θj,l with respect to the vertical axis in x. Further, introducing the real-valued, non-negative

low-pass window W0 by

W0(r)2 +
∑
j≥0

W (2−jr)2 = 1,

let the coarse scale curvelet be given by

ϕ−1,0,k(x) := ϕ−1(x− k), ϕ̂−1(ξ) := W0(|ξ|),

being nondirectional. For simplification, let µ = (j, l, k) be the collection of the triple index.

The system of curvelets (ϕµ) forms a tight frame in L2(R2), i.e., each function f ∈ L2(R2) can

be represented by

f =
∑

µ

cµ(f) ϕµ.

Using Parseval‘s identity, the curvelet coefficients are given by

cµ(f) := 〈f, ϕµ〉 =
∫

R2
f̂(ξ) ϕ̂µ(ξ)dξ =

∫
R2

f̂(ξ) Uj(Rθj,l
ξ) ei〈x(j,l)

k ,ξ〉dξ. (2.1)

In practical implementations one would like to have Cartesian arrays instead of the polar tiling

of frequency plane. Cartesian coronae are based on concentric squares (instead of circles) and

shears. Candès at al. [3] applied a pseudo-polar grid by replacing the window Wj(ξ) := W (2−jξ)

by a window of the form

W̃j(ξ) = χ[0,∞)(ξ1)
√

φ2(2−j−1ξ1)− φ2(2−jξ1), j ≥ 0,

where the one-dimensional window φ satisfies 0 ≤ φ ≤ 1, supp φ ⊂ [−2, 2] and φ(r) = 1 for

r ∈ [−1/2, 1/2]. (Here, χ[0,∞)(ξ1) denotes the characteristic function of [0,∞).) As before, φ

can be taken to be a scaled Meyer window.

With Vj(ξ) := V (2bj/2c ξ2/ξ1) the Cartesian window,

Ũj(ξ) := 2−3j/4 W̃j(ξ) Vj(ξ)

can be determined, being analogous to Uj and determining the frequencies near the wedge

{(ξ1, ξ2) : 2j ≤ ξ1 ≤ 2j+1, −2bj/2c ≤ ξ2/ξ1 ≤ 2bj/2c}.
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Figure 3: Window Ũ0(ξ) (left) and its support (right).

See Figure 3 for an example of Ũ0. Let tan θj,l := l 2−bj/2c, l = −2bj/2c, . . . , 2bj/2c − 1 be the set

of equispaced slopes and put

ϕ̃µ(x) = ϕ̃j,l,k(x) := ϕ̃j(ST
θj,l

(x− x̃
(j,l)
k )), x = (x1, x2) ∈ R2, ̂̃ϕj(ξ) := Ũj(ξ)

as the cartesian counterpart of ϕj,l,k, where x̃
(j,l)
k := S−T

θj,l
(k1 2−j , k2 2−bj/2c) =: S−T

θj,l
kj , and with

the shear matrix

Sθ =
(

1 0
− tan θ 1

)
.

Observe that the angles θj,l range between −π/4 and π/4 are not equispaced here, but the slopes.

The set of curvelets ϕ̃µ needs to be completed by symmetry and by rotation by ±π/2 radians in

order to obtain the whole family. We find the cartesian counterpart of the coefficients in (2.1)

by

c̃µ(f) = 〈f, ϕ̃µ〉 =
∫

R2
f̂(ξ) Ũj(S−1

θj,l
ξ) ei〈x̃(j,l)

k ,ξ〉dξ =
∫

R2
f̂(Sθj,l

ξ) Ũj(ξ) ei〈kj ,ξ〉dξ.

For our application, we need the curvelet transform for functions (images) on the square. For

that purpose we consider the N -periodization of ϕ̃µ,

ϕ̃p
µ(x) :=

∑
n∈Z2

ϕ̃µ(x−N n), x ∈ R2, n = (n1, n2),

where N ∈ N is fixed. The N -periodic function f ∈ L2(Ω), Ω = [0, N ]2, can now be written in

the form

f =
∑
µ∈M

c̃D
µ (f) ϕ̃p

µ,

with a certain index set M which we will define below, and with

c̃D
µ (f) :=

∫
Ω

f(x) ϕ̃p
µ(x) dx =

∫
R2

f(x) ϕ̃µ(x) dx. (2.2)
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Observe that in the periodic case we have

ϕ̃p
j,l,(k1,k2)(x) = ϕ̃p

j,l,(k1+2jN,k2)
(x).

Further, assuming that l is of the form l = ±2t(2r + 1) with r, t ∈ N0, it follows

ϕ̃p
j,l,(k1,k2)(x) = ϕ̃p

j,l,(k1,k2+22bj/2c−tN)
(x).

Hence, in the N -periodic case the index set M is of the form

M = {(−1, 0, (k1, k2)) : k1, k2 = 0, . . . , N − 1} ∪ {(j, l, (k1, k2)) : j ∈ N0, (2.3)

l = −2bj/2c, . . . , 2bj/2c − 1, k1 = 0, . . . , 2jN − 1, k2 = 0, . . . , 22bj/2c−tN − 1}.

Using the Fourier series of f ,

f(x) =
∑

m∈Z2

dm(f) e2πi〈m,x〉/N , dm(f) :=
1

N2

∫
Ω

f(x) e−2πi〈m,x〉/N dx,

it follows with kj := (k12−j , k22−j/2)

c̃D
µ (f) =

∑
m∈Z2

dm(f)
∫

R2
e2πi〈m,x〉/N ϕ̃µ(x) dx

= N
∑

m∈Z2

dm(f) ̂̃ϕµ(
2πm

N
)

= N
∑

m∈Z2

dm(f) Ũj(
2π

N
ST

θj,l
m) e

− 2πi
N
〈ST

θj,l
m,kj〉

.

The numerical computation has been extensively described in [3]. However, the periodization of

the curvelet system explained above has not been considered there. One can apply the following

procedure for numerical evaluation of c̃D
µ (f). Fix a j0 ∈ N and compute c̃D

µ (f) for µ ∈ Mj0 ,

where Mj0 = {µ ∈ M : j ≤ j0}. Analogously, compute c̃D
µ (f) in the other three quadrants, if

ϕ̃µ(x1, x2) is replaced by ϕ̃µ(−x1,−x2), ϕ̃µ(x2, x1), and ϕ̃µ(−x2,−x1), respectively.

Algorithm.

1. Apply 2D FFT to compute the Fourier coefficients dm(f) of f .

2. For all m with ST
θj,l

m ∈ supp Ũj compute the product

dm(f) Ũj(
2π

N
ST

θj,l
m).

8



3. Apply the inverse 2D FFT to obtain the discrete coefficients c̃D
µ (f).

In the application, f is usually given as a discrete set, i.e. f = (fi,j)N−1
i,j=0. For computing dm(f),

one can interpolate the f by piecewise linear spline functions whose Fourier transform is known.

In the last step, an unequispaced FFT can be used. The forward and inverse DCuT have the

same computational cost of O(N2 log N) for an (N ×N) image (see e.g. [3]).

3 Combination of curvelets with nonlinear diffusion

3.1 Description of the proposed model

Let u0 = (u0,i,j)N−1
i,j=0 be an observed discrete noisy signal on the square Ω = [0, N ]×[0, N ] which

is known to be the sum of the original image f and some Gaussian noise. We first apply curvelet

shrinkage to the noisy signal u0, and then apply a projected nonlinear diffusion to reduce the

pseudo-Gibbs and curvelet-like artifacts.

Let S be a hard thresholding function defined by a fixed threshold λ

S(x) =
{

x, x ≥ λ,
0, x < λ.

After applying the periodic curvelet transform and shrinkage to u0 and simultaneously retaining

the low-frequency components we obtain

uc =
∑

µ∈M ′

S(c̃D
µ (u0)) ϕ̃p

µ +
∑

µ∈M\M ′

c̃D
µ (u0) ϕ̃p

µ, (3.1)

where c̃D
µ (u0) are the curvelet coefficients of u0 as in (2.2) and with the index set

M ′ = M \ {(−1, 0, (k1, k2) : k1, k2 = 0, . . . N − 1},

where M is given in (2.3). We collect all indices of the curvelet coefficients in the coarsest level

and of those retained after hard thresholding in Λ, i.e.,

Λ := {µ ∈ M : |c̃D
µ (u0)| ≥ λ} ∪M \M ′.

Now the following idea is applied. We want to keep the low frequency coefficients and the

important curvelet coefficients (being greater than a threshold λ) almost untouched, but we
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want to slightly change the curvelet coefficients which have been set to zero by the shrinkage

procedure in such a way, that the image is smoothed. Therefore, we will not apply the nonlinear

diffusion process directly to uc but only to the difference image u0 − uc. After some iteration

steps of the diffusion scheme, the smoothed difference image is then added to uc in order to

obtain the final result.

For that purpose, let the linear subspace V ⊂ L2(Ω) be given by

V = V (u0) := {v : c̃D
µ (v) = 0, ∀µ ∈ Λ}. (3.2)

Then a function of the form u = uc + vc with uc in (3.1) and vc ∈ V leaves the important

coefficients c̃D
µ (u0) untouched, i.e.,

c̃D
µ (u) = c̃D

µ (u0) = c̃D
µ (uc) µ ∈ Λ.

Our model can be formulated as follows. We consider the diffusion process

∂u

∂t
= ∇ · (g(|∇PV (u)|)∇PV (u)) (3.3)

with the noisy signal u0 as initial condition

u(x, 0) = u0(x), x ∈ Ω,

and with periodic boundary conditions. Here PV (u) denotes the projection of u onto V deter-

mined by curvelet shrinkage. More precisely, let T be the periodic curvelet transform and T−1

be the inverse transform, then we can write PV (u) = T−1 S−1 T (u), where the S−1 denotes a

so-called inverse thresholding function, which only takes the coefficients outside Λ, i.e.,

S−1(x) :=
{

0, x ≥ λ
x, x < λ.

Discretization of (3.3) in time leads to

uj+1 − uj

τ
= ∇ · (g(∇PV (uj))∇PV (uj)

with u0 = u0, where u0 = uc + vc with some vc ∈ V . The time step τ is a scale parameter.

Observe that this iteration process leads to a sequence of images {uj}, which can be also found

by uj = uc + vj , where {vj} is obtained using the iteration scheme

vj+1 − vj

τ
= ∇ · (g(|∇(PV (vj))|)∇PV (vj)) (3.4)
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with v0 := vc = u0 − uc denoting the difference image after discrete curvelet transform and

thresholding, and where we again use periodic boundary conditions.

This observation can be simply shown by induction. For j = 0 we have by PV (u0) = PV (uc +

vc) = PV (vc) = vc that

u1 − u0 = v1 − v0

and the assertion follows. Now, assuming that uj = vc + vj for some j ∈ N, it follows by

PV (uj) = PV (uc + vj) = PV (vj) that

uj+1 − uj = vj+1 − vj ,

i.e., uj+1 = vj+1 − vj + uj = vj+1 − vj + (uc + vj) = vj+1 + uc.

The idea behind this approach is the following.

While uc contains the important features of the image to be reconstructed, the difference image vc

particularly contains high-frequency components which mainly correspond to noise. The strategy

to apply the diffusion process only to vc avoids that the narrow peaks/textures are smoothed

too much as in conventional diffusion. It can better remain the signal amplitude of detailed

components while reducing the pseudo-Gibbs oscillations at the same time, in comparison to

those methods directly using curvelet shrinkage or diffusion.

3.2 Numerical procedure

From numerical point of view, the treatment of the diffusion process can be strongly simplified

by considering just

vj+1 − vj

τ
= ∇ · (g(∇(vj))∇(vj) (3.5)

with initial condition v0 = vc instead of equation (3.4). Indeed, since v0 = vc ∈ V , the difference

PV vj − vj will be small.

We apply a few steps of the diffusion process to vc using a suitable Euler-forward scheme for

the discretization of (3.5) and then add the obtained smoothed difference image to uc in order

to get the desired reconstruction.

Let us describe the numerical procedure more explicitly.
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In the first step we apply the periodic curvelet transform (as described in Section 2) to the

noisy image u0, then perform the shrinkage procedure with a suitable threshold λ and apply the

inverse curvelet transform to obtain uc and the collection of indices Λ.

In the second step we apply the diffusion process (3.3) resp. (3.4) or (3.5) to suppress the pseudo-

Gibbs and curvelet-like artifacts. In practical implementation, the low frequency coefficients,

i.e., the smooth components in the coarsest scale are always kept untouched. In the diffusion

equation the time t is a scale parameter. Increasing t corresponds to stronger filtering. The

divergence expression in (3.5) can be decomposed by means of two orthonormal basis vectors

x1, x2,

∇ · (g(|∇v|)∇v) = ∂x1(g(|∇v|) ∂x1v) + ∂x2(g(|∇v|) ∂x2v).

We slightly change the diffusion equation (3.5), as it is done also by Perona and Malik [16] and

consider a discretization of

vt = ∂x1(g(|∂x1v|) ∂x1v) + ∂x2(g(|∂x2v|) ∂x2v) on Ω× (0,∞).

Choosing x1 = (1, 0), x2 = (0, 1), and replacing the derivatives by finite differences, we obtain

the discrete scheme

vk+1
i,j −vk

i,j

τ = g(|vk
i+1,j − vk

i,j |) (vk
i+1,j − vk

i,j)− g(|vk
i,j − vk

i−1,j |) (vk
i,j − vk

i−1,j)

+g(|vk
i,j+1 − vk

i,j |) (vk
i,j+1 − vk

i,j)− g(|vk
i,j − vk

i,j−1|) (vk
i,j − vk

i,j−1).

Here, vk
i,j denotes the sampled values of vk, i.e., vk

i,j = vk(i, j) for the suitable scaled image and

v0 = vc. Analogously, choosing the diagonal directions x1 = 1√
2
(1, 1), x2 = 1√

2
(1,−1) we find

vk+1
i,j −vk

i,j

τ = 1
2

(
g

(
|vk

i+1,j+1−vk
i,j |√

2

)
(vk

i+1,j+1 − vk
i,j)− g

(
|vk

i,j−vk
i−1,j−1|√
2

)
(vk

i,j − vk
i−1,j−1)

+g

(
|vk

i+1,j−1−vk
i,j |√

2

)
(vk

i+1,j−1 − vk
i,j)− g

(
|vk

i−1,j+1−vk
i,j |√

2

)
(vk

i−1,j+1 − vk
i,j)

)
.

Averaging the two equations leads to

vk+1
i,j = vk

i,j + τ

1∑
r,s=−1

(r,s) 6=(0,0)

g(
√

2
1−|r|−|s|

(|vi+r,j+s − vi,j |)) (vi+r,j+s − vi,j)
r2 + s2

. (3.6)

As diffusivity function g we propose to take the Perona-Malik diffusivity g(|x|) = 1/(1+x2/γ2).

Other diffusivities (see e.g. [15]) can be used similarly. Concerning the convergence of the above
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diffusion scheme we can apply ideas of Weickert [25, 26] and ideas similar to convergence results

in [17].

Taking our original model using equation (3.3) resp. (3.4) (with a suitable spatial discretization

by finite differences) or the simplified model (3.5) resp. (3.6), one only needs a few iterations

of diffusion to get a satisfying result. Observe that for equation (3.5) the resulting smoothed

difference image vk is usually not longer completely in the subspace V such that in the final

reconstruction result u = uc + vk the significant curvelet coefficients (being greater than λ)

can change slightly. However, since vc ∈ V contains no low frequency components, we have

vT1 = µ = 0 such that during the diffusion process, vk converges to zero. In order to keep

the significant coefficients of uc resp. u0 completely untouched, one can again apply a curvelet

transform to vk in order to compute the projection PV vk of vk with respect to the space V in

(3.2) and take the reconstruction result u = uc + PV vk. However, to prove the properties of

prime model (3.3) resp. (3.4) is still a room for substantial progress in future research.

3.3 Convergence analysis of the numerical scheme

Let us have a closer look at the convergence of the simplified diffusion scheme (3.6). We choose

one index pixel numbering of the difference images vk. Put N1 = N2 and

n = i + Nj, i = 0, . . . , N − 1, j = 0, . . . , N − 1,

such that the pixel n (0 ≤ n ≤ N1) corresponds to (i, j). Further, let

gk
p,n := g(|vk

n − vk
p |) = g(|vk

i,j − vk
i′,j′ |),

where n = i + Nj, p = i′ + Nj′.

Then the iteration scheme (3.6) can be written in matrix-vector form as

vk+1 = Ak vk, (3.7)

where vk = (vk
0 , . . . , vk

N1−1)
T and where Ak = (Ak

n,p)
N1−1
n,p=0 ∈ RN1×N1 is a sparse matrix with

entries

Ak
n,n := 1− τ(gk

n,n−1 + gk
n,n+1 + gk

n,n−N + gk
n,n+N )

13



−τ

2
(gk

n,n−1+N + gk
n,n−1−N + gk

n,n+1+N + gk
n,n+1−N ) for n = 0, . . . , N1 − 1,

Ak
n,p := τ gk

n,p for p ∈ {n− 1, n + 1, n−N,n + N} (modN) n = 0, . . . , N1 − 1,

Ak
n,p :=

τ

2
gk
n,p for p ∈ {n− 1−N,n− 1 + N,n + 1−N,n + 1 + N} (modN),

n = 0, . . . , N1 − 1.

Then we obtain

Theorem 3.1 The iteration scheme (3.7) with a diffusivity g(x) satisfying 0 < g(x) ≤ 1 for

x ∈ R converges for every v0 = (v0
0, . . . , v

0
N1−1)

T to the spatial average

lim
k→∞

vk = µ1,

if the time step τ satisfies 0 < τ < 1/6. Here µ := 1
N1

∑N1−1
n=0 v0

n is the average value of the

difference image vc.

Proof. Since 0 < τ < 1/6 and 0 < g(x) ≤ 1 for all x ∈ R, we find that all entries of Ak are

non-negative, i.e. Ak ≥ 0, and moreover, all entries in the main diagonal are strictly positive.

Further, the structure of A directly implies that Ak1 = 1 where 1 = (1, . . . , 1)T ∈ RN1 , i.e., the

sum of elements in each row of Ak is equal to 1. Hence, by symmetry of Ak one simply derives

that the spectral norm of A is equal to 1. Consequently, following the proof of Weickert (see

[25]), it follows that the eigenvalue 1 of Ak is simple. Observing that

N1−1∑
n=0

vk+1
n = 1T vk+1 = 1TAkvk = 1Tvk =

N1−1∑
n=0

vk
n,

the assertions of the theorem follow. q.e.d.

3.4 Comparison to TV-Minimization

It should be noted that a similar strategy has been used in TV-minimization based wavelet/ridgelet

transform [9, 13]. In that work, the TV minimization does not set the insignificant wavelet/ridgelet

coefficients to zero, but typically inputs optimal small values to cancel the pseudo-Gibbs oscil-

lations.

14



Let us briefly compare TV-minimization with our model proposed above. We can formulate the

TV-minimization for curvelet transform as follows. For a function u with |∇u| ∈ L1(Ω), the

total variation functional is defined by

TV (u) =
∫

Ω
|∇u(x)| dx,

where Ω is a rectangle (or square) in R2 in our application. The idea of TV-minimization (see

[9]) is to remove the pseudo Gibbs oscillations by minimizing the functional

F (u) =
∫

Ω
|u− u0|2 dx + λ TV (u)

for u ∈ {uc + v, v ∈ V }, where u0 is the initial noisy signal and uc is the reconstructed function

after curvelet thresholding in (3.1), and where the space V is given in (3.2).

Using uc as initial guess, i.e., u0 := uc, the constrained TV-minimization can be computed by a

projected gradient descent scheme (see [9])

ul+1 = ul − tl PV (gTV (ul)), (3.8)

where gTV (u) denotes the subgradient of TV at u and PV again denotes the projection of

gTV (ul) on V given in (3.2). The step size tl > 0 can be taken in the form tl = t0/
√

l in order

to ensure convergence. It has been demonstrated that in the 1D case that space discrete TV

diffusion and TV regularization/minimization are identical if we identify the diffusion time with

the regularization parameter, see [21]. However, the constrained minimization scheme (3.8) is

not equivalent to our model in (3.3). We can deduce the gradient of total variation functional

as in [28],

gTV (ul) = −∇ · (g(|∇ul|)∇ul), g(x) =
1
x

.

So (3.8) can be rewritten as

ul+1 = ul + tlPV ∇ · (g(|∇ul|)∇ul)

which can be seen as discretization of

∂u

∂t
= PV ∇ · (g(|∇u|)∇u).

This equation clearly shows the difference to our model in (3.3), in which the diffusion is directly

applied to the projected image PV u.
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4 Numerical experiments

In the first test, we show performances of the proposed method for denoising an piecewise-smooth

image with line singularities, in comparison to conventional hard shrinkage. Fig. 4(a) shows the

image contaminated with heavy noise. Fig. 4(b) is obtained using ’Db6’ wavelet shrinkage.

Nonsmoothness oscillations along the edges can be seen obviously due to the poor ability of

wavelets at presenting line singularities. Fig. 4(c) is found using DCuT shrinkage. Although the

DCuT is effective in recovering edges, it suffers from the pseudo-Gibbs and curvelet-like artifacts

yet. Fig. 4(d) is the result obtained using the proposed curvelet-diffusion hybrid method with

15 iterations where the TV diffusivity is considered in this diffusion. The edges are preserved

well while the artifacts are suppressed. The applied numerical scheme (see (3.6)) for nonlinear

diffusion is similar to the four-pixel scheme of Welk, Steidl and Weickert in [27]. Repeatedly, Fig.

4(e) is obtained using DCuT but with a smaller threshold, and (f) is the improved result using

our proposed method with 25 iterations. We can see that the embedded nonlinear diffusion

synthesis really improved the performance of original DCuT. It is also relatively robust for

different thresholds.

Our next test shows denoising results for a magnetic resonance image of a human head. Fig. 5(a)

is a measured image. Fig. 5(b) represents the noisy image. Fig. 5(c) is obtained using DCuT.

Fig. 5(d) is found using classical TV diffusion with 20 iterations. Fig. 5(e) is obtained using

Gaussian-regularized PM diffusion with 50 iterations, Fig. 5(f) is the result using our proposed

method. Fig. 6 shows the large close-up of hindbrain taken from Fig. 5 (c)-(f). It is clearly to

see that the shape of edges is recovered well using our proposed method.

As one can see from the last example shown in Fig. 7, our method is especially very promising

for textured images. Fig. 7(a) represents the noisy Barbara image. Fig. 7(b) is a denoised result

obtained using Weickert’s coherence-enhancing diffusion with coherence parameter 3, step size

0.1, iteration 20 times, and a Gaussian filtering (Sigma=0.5) is used before the gradient is

calculated. Fig. 7(c) and (d) are obtained using TV diffusion with 0.0005 step size and 60

iterations, and the proposed curvelet-diffusion method with 0.0005 step size and 11 iterations,

respectively. In the later two tests, the gray value of input image have been normalized. Fig.
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7(e) and (f) show the removed components by (c) and (d). The parameters that we used for each

method have been taken to optimize the SNR and visual quality of each method independently.

The proposed method shows good performance for the texture-preserving denoising.

5 Conclusions

After considering the discrete curvelet transform by means of a special Meyer window functions,

we proposed a hybrid method for image denoising by combining the curvelet shrinkage with a

nonlinear diffusion, two quite different techniques at the first blush. The edges/textures can

be preserved well taking advantage of the fact that the two techniques benefit from each other.

This model can be interpreted as a diffusion-based curvelet synthesis. The signal is used as an

initial value to complete a projected diffusion, in which only the insignificant curvelet coefficients

(high-frequency part) of the signal are changed by use of a projection PV . Diffusion here is used

to suppress the pseudo-Gibbs oscillations.

As mentioned in section I, another important issue is to improve the ill-posed problem of PM

diffusion. This motivates us to consider a curvelet-regularized nonlinear diffusion in future

research. Essentially, we want to study

∂u

∂t
= ∇ · (g(|∇(Pλ ? u)|)∇u) ,

where, compared with formula (1.3), the Gaussian kernel Gσ is replaced by a curvelet shrinkage

operator. Such a model will be addressed in our coming paper, as a part II of the combination

of curvelets and nonlinear diffusion.
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Figure 4: Denoising of a piecewise-smooth image. (a) Noisy image. (b) Denoised result by Db6

wavelet shrinkage. (c) DCuT shrinkage. (d) The proposed curvelet-diffusion method with 15

iterations. (e) DCuT with a small threshold. (f) Curvelet-diffusion method with 25 iterations.

21



(a) (b) (c)

(d) (e) (f)

Figure 5: Denoising of a magnetic resonance image. (a) Measured image. (b) Noisy image. (c)

Denoised result by DCuT shrinkage. (d) TV diffusion. (e) Gaussian-regularized PM diffusion.

(f) The proposed curvelet-diffusion method.

(c) (d) (e) (f)

Figure 6: From left to right: Close-up of hindbrain taken from Fig. ?? (c)–(f)
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Figure 7: Denoising of an image with textures using the proposed method in comparison to

nonlinear diffusion. (a) Noisy Barbara image. (b) Coherence-enhancing diffusion with 20 itera-

tions. (c) TV diffusion with 60 iterations. (d) Our method with 11 iterations. (e) and (f) are

the removed components by (c) and (d) respectively.
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