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In this survey, we describe the classical Prony method and whose relatives. We sketch a fre-
quently used Prony-like method for equispaced sampled data, namely the ESPRIT method.
The case of non-equispaced sampled data is discussed too. For the reconstruction of a sparse
eigenfunction expansion, a generalized Prony method is presented. The Prony methods are
applied to the recovery of structured functions (such as exponential sums and extended ex-
ponential sums) and of sparse vectors. The recovery of spline functions with arbitrary knots
from Fourier data is also based on Prony methods.

Copyright line will be provided by the publisher

1 Introduction

The recovery of a structured function from noisy sampled data is a fundamental problem in
applied mathematics and signal processing. In this survey, we describe the Prony methods
and present the numerical solution of three recovery problems. The first problem arises in
electrical engineering, signal processing, and mathematical physics and is known as frequency
analysis problem (see [5, 24]):

(i) Recover the positive integer M, distinct numbers f; € [—a, 0] +i[—m, 7) with o > 0,

and complex coefficients ¢; # 0, j = 1,..., M, in the exponential sum of order M
M
h(x) :chjeij, x>0, @)
j=1

if noisy sampled data hy := h(k) + e (k = 0,...,2N — 1) with N > M are given,
where e, are small error terms. Note that the real part of f; is the damping factor and that
the imaginary part of f; is the angular frequency of the exponential efi®. Supposed that a
function s(x) is a priori known to be a sparse linear combination of exponentials from the set
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2 G. Plonka and M. Tasche: Prony Methods

{efi®: f; € [~a, 0] +i[—m, )}, the problem (i) can be seen as a non-linear approximation
problem to recover the best M —term approximation of h.

The reconstruction of a compactly supported, structured function from the knowledge of
samples of its Fourier transform is a common problem in several scientific areas such as radio
astronomy, computerized tomography, and magnetic resonance imaging. If the structured
function is a piecewise polynomial, then the second problem appears (see [1, 2, 29]):

(ii) Determine the breakpoints and the associated jump magnitudes of a compactly sup-
ported, piecewise polynomial, if finitely many values of its Fourier transform are given.

In different applications as e.g. seismic exploration and non-destructive testing of materials,
one is concerned with the problem whether a signal vector x can be completely reconstructed
from a small amount of suitable linear measurements if it satisfies the a priori assumption to
be sparse. This problem is of special interest if the measurements are time—consuming or very
expensive. This approach can be seen as a new paradigm, called compressive sensing (see
[9]), and has been extensively investigated within the last years. A vector x € CP is called
M—sparse, if M < D and if only M components of x are different from zero. Then the third
problem reads as follows (see [25]):

(iii) Recover an M—sparse vector x € CP with M < D, if only few scalar products al x
with suitable chosen vectors a;, € CP are given.

In this paper, we will show that all three problems can be solved by deterministic Prony
methods. The outline of this paper is as follows. In Section 2, we describe the classical
Prony method and some equivalent procedures. In Section 3, we sketch a frequently used
stable Prony-like method, namely the ESPRIT method [31] (ESPRIT = Estimation of Signal
Parameters via Rotational Invariance Technique). The standard application of this Prony—like
method is the solution of the problem (i) with equispaced sampled data. The case of non-
equispaced sampled data is discussed in Section 4. The reconstruction of a sparse sum of
eigenfunctions of a linear operator is solved by a generalized Prony method in Section 5. For
noisy sampled data, we propose a preprocessing of the data (such as filtering or forming of
covariance) in Section 6. A solution of problem (ii) is presented in Section 7, where a spline
is recovered from given Fourier data. Section 8 is devoted to the solution of problem (iii).

In the following we use standard notations. By R resp. C, we denote the set of all real
resp. complex numbers. The set of all integers is Z. By Ny resp. N we denote the set of all
nonnegative resp. positive integers. The linear space of all column vectors with N complex
components is denoted by CV, where o is the corresponding zero vector. The linear space
of all complex M-by-N matrices is denoted by CM*¥ | where 0, v is the corresponding
zero matrix. A superscript “T” denotes transpose. For a matrix A y; v € CM*V_its Moore—
Penrose pseudoinverse is denoted by A}LVL ~- A square matrix A s ps is abbreviated by A ;.
By I we denote the M -by-M identity matrix. Further we use the known submatrix notation.
For example, Az apr11(1: M, 2 : M + 1) is the quadratic M-by-M submatrix of Aps ar41
obtained by extracting rows 1 through M and columns 2 through M 4 1. Note that the first
row or column of A 57, i can be indexed by zero. Other notations are introduced when needed.
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2 C(lassical Prony method

The classical Prony method works with exactly sampled data of the exponential sum (1) in the
case of known order M. Following an idea of G.R. de Prony from 1795 (see [8]), we recover
all parameters of the exponential sum (1), if sampled data

M M
k)= ciefib="c;2F k=0, 2M-1 )
j=1 j=1
are given, where z; := efi are distinct values in D. Here D := {z € C: e™® < 2| < 1}

denotes a circular ring. We introduce the Prony polynomial

M
p(z)::HzfzJ Zpkz +:M  zecC 3)
j=1 k=0

with corresponding coefficients py. Further we define the companion matrix Cp(p) €

CMxM of the Prony polynomial p(z) by
00 ... 0 —Po
1 0 ... 0 —D1
00 ... 1 —pma

It is known that the companion matrix Cp;(p) has the property
det (2Ip — Cp(p)) =p(z), ze€C.

Hence the zeros of the Prony polynomial (3) coincide with the eigenvalues of the companion
matrix Cp/(p). Setting pys := 1, we observe the following relation for all m € N,

M

Y opih(k+m) = Zm(Zc] ’“*m)
k=0
ch (Zpkz) chszzj 5)

Using the known values h(k), k = 0,...,2M —1, this assertion implies that the homogeneous
linear difference equation

M-1
> pehlk+m)=—h(M+m), m=0,...,M-1 (6)
k=0

is fulfilled. In matrix—vector notation, we obtain the linear system

Hy(0) (o) 2" = = (h(M +m)) ) @
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4 G. Plonka and M. Tasche: Prony Methods

with the square Hankel matrix

ho)  h(1) h(M — 1)
h1)  h(2 h(M
WM —1) h(M) ... h(2M —?2)

The matrix Hj,(0) is invertible, since using the structure of h(k) we have

H1\4(0) = V]w(Z) (diagc) VM(Z)T,

where the diagonal matrix diagc with ¢ = (c¢;) ;Vil contains the non-zero coefficients of the
. i1\ M .
exponential sum (1), and where V/(z) = (z 1)j 1, denotes the Vandermonde matrix

generated by z := (zj)jle. We summarize:
Algorithm 2.1 (Classical Prony method)
Input: M € N, sampled values h(k), k = 0,...,2M — 1, of the exponential sum (1).

1. Solve the linear system (7).

2. Compute all zeros z; € D, j = 1,..., M, of the Prony polynomial (3), i.e., calculate all
eigenvalues of the associated companion matrix (4), and form f; :=log z; forj =1,..., M,
where log is the principal value of the complex logarithm.

3. Solve the Vandermonde system

Var(2) (e)My = (h(k)t

Output: f; € [—a, 0] +i[—m, 7),¢; €C j=1,..., M.

As shown, Prony’s idea is mainly based on the separation of the unknown exponents f;
from the unknown coefficients c;.

Remark 2.2 The Prony method can be also applied to the recovery of an extended expo-
nential sum

M
h(zx) := ch(x) efit x>0,
j=1

where ¢; () are polynomials of low degree. For simplicity, we sketch only the case of linear
polynomials ¢;(z) = ¢;0 + ¢;j,12. With distinct 2; = efi, j = 1,..., M, the corresponding
Prony polynomial reads as follows

2M—1

M
p(2) = [[( =2 = 3 st 422
j=1 k=0

Assuming that the sampled values h(k), k = 0,...,4M — 1 are given, one has to solve the
linear system (6) (where M is replaced by 2M) and to compute all double zeros z; € I of
the above Prony polynomial (resp. all double eigenvalues of the corresponding companion
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matrix (4)). Introducing the confluent Vandermonde matrix

1 0 1 0
z1 1 ZM 1
2 2
VSM(Zl,...,Z]\/{) = <1 22 2\ 2z2m ,
szfl (2M — 1)Z%M72 zﬁMfl (2M — 1)2%”72

one has to solve finally the confluent Vandermonde system

2M—1
V21, 2m) (o, 210115 -+ -5 eanos z1emn)” = (B(k)),_,

Remark 2.3 The Prony method is closely related to Padé approximation (see [35]). Let
(fx)ren, be a complex sequence with p := lim sup,_, . |fx|'/* < co. The z-transform
of such a sequence is the Laurent series >, o fx 27" which converges in the neighborhood
{z € C: |z| > p} of z = co. Observe that the z-transform of each sequence (z%)en, With
z; € D is equal to 7 =1,..., M. Since the z-transform is linear, the z-transform maps

the data sequence (h(k)) keNy = ( Zﬁl cjzf)keNO

z
— .
zZ—Zzj5

into the rational function

o] M

kL oz a(z)
Zh(k)z _chz—zv_p(z)’ )
k=0 j=1 J

1
z for z~1 in (9) and form the reverse Prony polynomial rev p(z) := 2™ p(z~1) of degree M
with rev p(0) = 1 as well as the reverse polynomial rev a(z) := 2™ a(z7!) of degree at least
M — 1. Then we obtain that

where p(z) is the Prony polynomial (3) and a(z) := axs 2™ + ...+ a; z. Now we substitute
M

ih(k) b reva(z)
k=0

rev p(z)

in a certain neighborhood of z = 0. In other words, the rational function = Zgg isan (M —

1, M) Padé approximant of the power series Y- h(k) z¥ (with vanishing O(22") term)
and it holds

(i h(k) z—k> rev p(z) = reva(z)
k=0

in a neighborhood of z = 0. Equating the coefficients of like powers of z yields

M
Z prh(k+m—-M) = ap—m, m=0,...,M—1,
k=M—m
M
> prh(k+m) = 0, meN,. (10)
k=0

Now the equations (10) for m = 0,..., M — 1 coincide with (6). Hence the Prony method
may also be regarded as a Padé approximation.
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6 G. Plonka and M. Tasche: Prony Methods

Remark 2.4 In signal processing, the Prony method is also known as the annihilating filter
method, see e.g. [10, 34]. For distinct z; € D and complex coefficientsc; #0,j =1,..., M,
we consider the discrete signal h = (hy,),¢cz with

h., ;:chzy, ner. an

For simplicity, we assume that M/ is known. Then a discrete signal a = (a,, )nez is called an
annihilating filter of the signal h, if the discrete convolution of the signals a and h vanishes,
ie.

(axh), := Z aghpn_s =0, nez.
l=—o0
For the construction of a we consider
M M
a(z) := H(l —zj2 ) = Zan 27" (e C\{0}),
j=1 n=0

then a = (an)nez wWith a, := 0 (n € Z\ {0, ..., M}) is an annihilating filter of h in (11).
Note that a(z) is the z—transform of the annihilating filter a. Furthermore, a(z) and the Prony
polynomial p(z) in (3) have the same zeros z; € D, j = 1,..., M, since zM a(z) = p(z) for
all z € C\ {0}. Hence the Prony method and the method of annihilating filters are equivalent.
For details see e.g. [10, 34].

Remark 2.5 Prony methods arise also from problems of science and engineering, where
one is interested in predicting future information from previous ones using a linear model. Let
h = (hy)nen, be a discrete signal. The linear prediction method, see e.g. [4, 22], aims at
finding suitable predictor parameters p; € C so that the signal value hgy s can be expressed

as a linear combination of the previous signal values hj, j =¢,..., 0+ M —1,i.e.
M-1
heym = Y (=pj) heyj, £ € No.
j=0
Therefore these equations are also called linear prediction equations. Setting pps := 1, we

observe that this representation is equivalent to the homogeneous linear difference equation
(6). Assuming that

hk:ZCijk, k € Ny,

we obtain the problem (i), i.e., the Prony polynomial (3) coincides with the negative value of
the forward predictor polynomial. The associated companion matrix Cp;(p) in (4) is hence
equal to the forward predictor matrix. Thus the linear prediction method can also be consid-
ered as a Prony method.

Unfortunately, the classical Prony method has some numerical drawbacks. Often the order
M of the exponential sum (1) is unknown. Further the classical Prony method is known to
perform poorly when noisy sampled data are given, since the Hankel matrix Hj;(0) as well
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as the Vandermonde matrix V /(z) are usually badly conditioned. We will show in Section 3
that one can attenuate these problems by using more sampled data. But then one has to deal
with rectangular matrices.

3 Prony-like method for equispaced sampling

In practice, the order M of the exponential sum (1) is often unknown and only noisy sampled
data hy, = h(k)+er, k=0,...,2N —1 are given. Let L € N be a convenient upper bound of
M and M < L < N. In applications, such an upper bound L of M is often known a priori.
With the 2N sampled data hy, € C, k = 0,...,2N — 1, we form the rectangular Hankel
matrix

N-L-1,L _
Hon_ 1,041 := (h“m)zm:o b e c@N-DX(EAD) (12)

For exactly sampled data, it follows from (5) that Han_ 1, 1,41 is rank deficient with rank M,
see [30].

In the following, we sketch a frequently used Prony-like method, namely the ESPRIT
method (see [31]), based on the singular value decomposition (SVD) of the rectangular Hankel
matrix (12). For a detailed description of this method see Section 3 in [30].

Going back to the case of exactly sampled data for a moment, we can observe the following
relations. Using the common submatrix notation, let us also consider the matrix

Hon 1 r41(1) == (Hon ££41(0:2N = L—1, 1: L),0) € CON=ExUE4D

where, compared with Hoxn_ 1, 1,41, the first column is removed and a zero vector o is added
as a last column. According to (5), we have for exact data hy, = h(k)

Hon-_r111D = —(hesyns) 2 271, (13)

where p = (po, p1s ---,Prm—-1,0,...,0)T € CEF! contains the coefficients of the Prony
polynomial (3). We introduce the modified companion matrix

_ . Cu(p)  Ompyi-m
Cri1=Crnlp) = ( Oryi-mmv Vipi-m )

with V; := (0) and

T
o 0
Viji-m = ( I,y o )

for L > M. Then Cp,1 possesses the zeros of p(z) as eigenvalues and L + 1 — M additional
eigenvalues zero. By (13) we observe that

Hon-1,141Cr41 = Hon_r,041(1). (14)

Now equation (14) leads us to the following procedure. We consider the singular value
factorization

Hon_rr+1 =Usn_rDon_r 41 Wri1,
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8 G. Plonka and M. Tasche: Prony Methods

where Uy _ 1, and W, are unitary matrices and where Doy _1, 1,1 is a rectangular diag-
onal matrix. Observe that this decomposition also implies

Hon—r,04+1(1) = Uan_r. Don—r, 141 W41 (1)

for the modified matrix Hon_ 1, 1,41(1), where W41 (1) :== (Wi (1: L+1,2: L+1),0).
Let the diagonal entries of Doy _p, 141, 1.6. the singular values of Hon_1, 1,41, be ar-
ranged in nonincreasing order

01>2092>...20y >0p41=...=04+1 =0.

Thus one can determine the rank M of the Hankel matrix (12) which coincides with the order
of the exponential sum (1). For noisy sampled data, we arrange the singular values of (12) in
the form

012022 ...20 20041 2>...20541 20,

Then we determine the approximative rank M of Hon_7, 141 by fixing the largest M with
om/o1 > €. Depending on the noise level, there is usually an obvious gap in the singular
value distribution such that € can be suitably chosen.

Introducing the submatrices

diag (o)
Doy-rv = Doy_prt1(1:2N—-L,1: M) = ( 0 8 (3)j=1 ) ;
ON—L—M,M
WM,L—H = WL+1(1:M,1:L+1),
W]\J)L+1(1) = VVL+1(1)(1:]\47 1:L—‘r1),

we replace the original matrices Hon_ 1 141 and Hoy_ 1, 141(1) above by I:IQN,L,LH resp.
Hyn_1,1+1(1) with exact rank M,

Hon 111 = Usn_rDonv v Warzii,
Honv_r1+1(1) = Uan_rDon_rp.m Warp+1(1).
Hence (14) implies

Donv—r,m Wiarr41Cri1 = Donv—r,m War,n4+1(1).
Multiplying the transposed equation with (D2 L 1)1, it follows that
CliiWhri=Wura)?'
Setting
War(s):=Wpypy1(1: M, 1+s:L+s), s=0,1, (15)
we remove the zero columns in the last equation and arrive at

CI Wy (0)F =Wy (1)?F
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with Cp, := Cp41(1 : L,1 : L). Since rank(Cr) = M, the nonzero eigenvalues of the
modified companion matrix Cy, are now equal to the eigenvalues of the square matrix

F]\4 = (VV]\LL(O)T)TL WM7L(1)T, (16)

where (W, L(O)T)T denotes the Moore-Penrose pseudoinverse of Wy, 1,(0)™. Thus we
can determine the wanted nodes z; € D, j = 1,..., M, as eigenvalues of the matrix F ;.
The ESPRIT algorithm reads in double precision arithmetic as follows:

Algorithm 3.1 (ESPRIT method for equispaced sampling)

Input: L, N e N, N > 1, 3 < L < N, L is upper bound of the order M of the exponential
sum (1), noisy sampled values hy, k = 0,...,2N — 1, of the exponential sum (1).

1. Compute the SVD of the rectangular Hankel matrix (12). Determine the approximate rank
M of (12) so that oy /o1 > € (e.g. withe = 10~8) and form the matrices (15).

2. Compute all eigenvalues z; € D, j = 1,..., M, of the square matrix (16) and evaluate
fj ::log Zj,j = 17...7M.
3. Compute the coefficients c; € C, j = 1,..., M, as least squares solution of the overdeter-

mined linear Vandermonde—like system
M 2N—
Vo (2) (¢;) 1 = (hi)io "

with the rectangular Vandermonde matrix Van pf(2) := (zf_l)ilj:]y

Output: M €N, f; € [, 0] +i[-m, 7),¢; €C j=1,...,M.

Remark 3.2 For various numerical examples as well as for a comparison between Algo-
rithm 3.1 and another Prony-like method see [27]. The Algorithm 3.1 is very similar to the
Algorithm 3.2 in [30]. Note that one can also use the QR decomposition of the rectangular
Hankel matrix (12) instead of the SVD. In that case one obtains an algorithm that is similar to
the matrix pencil method [18, 33], see also Algorithm 3.1 in [30]. The matrix pencil method
has been also applied to reconstruction of shapes from moments, see e.g. [13].

In [3], the condition number of a rectangular Vandermonde matrix is estimated. It is shown
that this matrix is well conditioned, provided the nodes z; are close to the unit circle, but not
extremely close to each other and provided NV is large enough.

Remark 3.3 The given data hj, can be also interpreted as time series. A powerful tool of
time series analysis is the singular spectrum analysis (see [14, 15]). Similarly as step 1 of the
Algorithm 3.1, this technique is based on the singular value decomposition of a rectangular
Hankel matrix constructed upon the given time series hy. By this method, the original time
series can be decomposed into a sum of interpretable components such as trend, oscillatory
components, and noise. For further details and numerous applications see [14, 15].

Remark 3.4 The considered Prony-like method can also be interpreted as a model reduc-
tion based on low—rank approximation of Hankel matrices, see [23]. The structured low—rank
approximation problem reads as follows: For a given structure specification S : R¥ — RI*N
with L < N, a parameter vector h € RX and an integer M with 0 < M < L, find a vector

h* = argmin |h — h| subject to rank(S(h)) < M,
h
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10 G. Plonka and M. Tasche: Prony Methods

where || -|| denotes a suitable norm in R¥. In the special case of a Hankel matrix structure, the

Hankel matrix S(h) = (he4 k),%;ol ’k]igl is rank—deficient of order M if there exists a nonzero

vector p = (pg)py" so that

M-1
Z prh(m+ k) = —h(M +m)
k=0

forallm =0,..., N+ L— M —1. Equivalently, the values h(k) can be interpreted as function
values of an exponential sum of order M in (1). The special kernel structure of rank—deficient
Hankel matrices can already be found in [17].

4 Prony-like method for non-equispaced sampling

In the following we generalize the Prony-like method to the case of nonequispaced sampled
data. More precisely, as in Sections 2 and 3 we recover all parameters of the exponential sum
(1) of order M, but now we assume that the sampled data h(zy) are given at non-equispaced
distinct nodes

0<zg<z1 < - <N 9<TonN_1=2L—-1, MZLZN. 17

While the Prony method is reliant on equispaced data, and sensitive to data errors, this problem
is quite delicate. Fortunately, the exponential sum (1) is a smooth function with a moderate
oscillatory part with bounded frequency. Note that a Prony-like method for non-equispaced
sampling was already proposed in [6]. There the unknown parameters of the exponential sum
(1) were estimated by a linear regression equation using filtered signals.

Assuming that the given data are (almost) exact, we can apply another technique based
on interpolation and we compute approximate values h; of h(j), j = 0,...,2L — 1ina
preprocessing step. This can be done by one of the following procedures.

The first method is based on interpolation with integer translates of a window function. Let
M, be the centered cardinal B-spline of order 2m with support [—m, m|, where m € N and
1 <m < N — L+ 1. Then we approximate the exponential sum (1) by a linear combination
of integer translates of Mo,,,

2L+m—2

g(z) = Z ge Moy, (x —0).

{=1—m

For this purpose, we compute the coefficients g, as (least squares) solution of the (overdeter-
mined) sparse linear system

2L4+m—2
Z ge Mo (1, — €) = h(xg), k=0,...,2N—1.
l=—m+1

We assume here that the coefficient matrix (Mo, (z) — z))iﬁo— l}ff:ﬁ; ? has full rank 2(L +

m — 1). By the Schoenberg-—Whitney theorem on spline interpolation this is true if there is
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a subsequence {xy, };2 7% of {x} Yo" so that Moy, (z, — £) # 0 forall £ = —m +
1,...,2L +m — 2, see [7]. Then we set hy, := g(k),k=0,...,2L — 1.

The second method is based on piecewise cubic polynomial interpolation. Let py, k =
1,...,2N — 3 be cubic interpolation polynomials being uniquely determined by

pr(xj) =hz;), j=k—-1,...,k+2.
Then each polynomial p; has the form
pe(x) = h(xp) + ag (x — x1) + by, (v — 21) + ¢ (x — 21)3,

where the coefficients ay, by, cx solve the linear system

h(zi—1) — h(z
ar + b (Th—1 — x) + ek (o1 —21)? = M,

Th—1 — Tk,
h(x — h(z
aj + bk ($k+1 — xk) + (ka — xk)2 = M s
Tyl — T
h(x — h(z
ar + by ($k+2 — xk) + ¢k ($k+2 — :L‘k)2 = M .
Tk+2 — Tk
We set foreach j =0,...,2L — 1,
p1(J) j €10, z2),
hj = ¢ pr(j) J € [xk, Tpq1) for k € {2,...,2N — 4},
pan—3(j) J € [ran—_3, 2L —1].

Observe that in this way not each polynomial py will be used. For N > L one may therefore
replace the procedure by a local cubic polynomial approximation that involves more than four
data points.

Algorithm 4.1 (ESPRIT method for non-equispaced sampling)

Input: L, N e N, N > 1, 3 < L <N, L is an upper bound of the order M of the exponen-
tial sum (1), non-equispaced sampling nodes (17), sampled data h(xy), k = 0,...,2N — 1
of the exponential sum (1).

1. Precompute the approximate values hy, of h(k) for k = 0,...,2L — 1 by one of the above
methods.

2. Use the Algorithm 3.1 (with L = N) in order to determine the order M, all exponents f;
and all coefficients ¢;, j = 1,..., M, of the exponential sum (1).

Output: M €N, f; € [-a, 0] +i[-7, 7),¢; €C, j=1,...,M.

S Generalized Prony method

The Prony method can be simply transferred to a more general setting, namely to recover
an element f of a given complex vector space V, if f can be represented as an M -sparse
expansion of eigenfunctions of a linear operator A : V — V. More precisely, let W = {v; :
J € I} be a given set of eigenfunctions (resp. eigenvectors) of A to distinct eigenvalues A;,
ie.,

.A’Uj = Aj 'Uj

Copyright line will be provided by the publisher



12 G. Plonka and M. Tasche: Prony Methods

for all j € I. Further, let F' : V — C be a linear functional with F'v; # 0 for all j € I. Then,
according to [25], an M -sparse representation

h=>Y cjv; withJCIand|J|=M (18)
jeJ

can be uniquely reconstructed from the values F(A*h), k = 0,...,2M — 1, i.e., the active
eigenfunctions v; as well as the coefficients ¢; € C, j € J in (18) can be uniquely determined,
see [25]. Similarly as in Section 2 this can be seen as follows.

We define the Prony polynomial

M—-1

p(z) == H(z—)\j): Zpkzk—i—zM, z2eC, (19)
k=0

jeJ

where the roots \;, j € J, are the (unknown) eigenvalues corresponding to the active eigen-
functions v; in the representation of h. With p;s := 1, we observe for m € Ny that

M M
Zpk F(AM™p) = Zka ZCJAIHW’ ch Zpk)\f) Fuv;
k=0 jeJ JjeJ k=0
= chx\j p(A;) Fv; =0,
JjeJ

yielding the linear system
M—1

> e F(AM™h) = —F(AM*™h) . m=0,... .M —1.
k=0

Ml]LIl

0,m=0 is an invert-

As for the classical case, the coefficient matrix Gy = (F(A*™h)),_
ible Hankel matrix, since

G]M = VA[(A) diag (Cj)jej diag (F?)j)jej V]W(A)T

with Vi (A) = ()\k)£4 olge ;- Hence the algorithm for the generalized Prony method can be
summarized as follows.

Algorithm 5.1 (Generalized Prony method)
Input: M € N, values F(A*h), k = 0,...,2M — 1, of the sparse eigenfunction expansion
(18).

1. Solve the linear system G (pk)M V= —(F(AMAm)MZL

2. Compute all zeros \j, j = 1,...,M, of the Prony polynomial (19), i.e., calculate all
eigenvalues of the associated compani(m matrix (4).

3. Solve the generalized Vandermonde system

(NP e diag (Fv;)jer (cj)jer = (F(APR))RY
Output: v; € W, ¢c; €C, j e J.
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Assume now that the number of terms M in the eigenfunction representation of £ is not
known a priori and can only be bounded by L while the data F(A¥h) € C,k =0,...,2N—1
are given with M < L < N. Then we can follow the lines of Section 3 to derive an ESPRIT
algorithm for the generalized Prony method by replacing Hon_1, 1,+1 by Gon—1,1+1 =
(F (A“mh))?]:\loffl;é’j‘ and regarding its singular value decomposition. The matrix F,; as
in (16) has to be computed similarly as before. The last step in Algorithm 3.1 needs to be
replaced by solving the overdetermined linear system

F(A¥R) =Y ;M F(v;), k=0,...,2N 1.
JjeJ

Remark 5.2 The classical Prony method in Section 2 follows from the generalized Prony
method for example by taking V' = C(R), the vector space of continuous functions, and with
the shift operator A = S : C(R) — C(R), given by Sh := h(- + 1). Then the circular ring D
defined in Section 2 is a set of distinct eigenvalues of S. Indeed, for f € [—a,0] +i[—m, 7)
with o > 0 we have e/ € D and

Sef? = f@t) —ofofe 2 e R.

Thus we can choose W = {ef* : e/ € D} as the set of corresponding eigenfunctions. Hence
the exponential sum (1) with unknowns efi € D and ¢;j € C can be completely recovered
using F(S¥h) = F(h(-+k)),k =0, ...,2M — 1. Taking the point functional F'(h) := h(0),
we obtain the classical Prony method, where the unknowns f; and ¢;, j = 1,..., M, can be
reconstructed from given equispaced sampled data h(k), k =0,...,2M — 1.

Remark 5.3 As shown in [25], the generalized Prony method can be applied to a lot of
eigenfunction systems as e.g. to monomials being eigenfunctions of the dilatation operator
A = D, with D h(z) := h(azx) thereby generalizing the sparse interpolation of polynomi-
als (see [19]), and to orthogonal polynomials that are eigenfunctions of the Sturm—Liouville
operator or of special difference operators (see also [26]). The approach also applies to finite
dimensional vector spaces, where one can derive a deterministic reconstruction method for
M -sparse vectors from only 2M “measurements”, see Section 8. The required measurements
are generally of the form F'(A*h) and hence depend strongly on the used operator A as well
as on the used functional F'. Particularly, the freedom in choosing F' enables us to solve the
reconstruction with different input data.

6 Preprocessing of noisy sampled data

The accuracy of Prony methods can be considerably improved, if we apply preprocessing
of the noisy sampled data. Here we propose two methods. The first method is prefiltering
by moving average (see [20]). Let w : R — [0, 1] be a sufficiently smooth nonnegative
window function supported on [—1, 1]. For fixed T' € N\ {1}, we introduce the sequence
W = (w(%))jez. Obviously, we have

T-1

lwrls= Y w(%) <oT 1.

j=1-T
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14 G. Plonka and M. Tasche: Prony Methods

Assume that noisy sampled data hy, = h(k) + e, fork=1—-1T, ..., 2N + T — 2 are given,
where h is the exponential sum (1) and e, are small error terms. Then the moving average of
these data is defined by the convolution

1 T-1

J
B = IV i keN. 20
k HWT”l _1ZT (T) k—j € Ny (20)

We know that the exact data hy, = h(k) fulfill the homogeneous linear difference equation
(5),i.e,, wehave form =0,...,2N —landj=1-T,...,T — 1,

> Pk higm— =0. 1)
k=0
Multiplying this equation with ”w m w(%) we obtain by summationover j = 1-T,...,T—
1 that
T—1 . M
||W H Zpk Z ) h/k—‘,—'m -J = Zpk hk+7n = 0 :
T 2o j=1-T1 k=0

Thus the prefiltered data (20) fulfill the same homogeneous linear difference equation (6).
Using suitable low—pass filters that may be adapted to a priori knowledge on the data or on
the noise distribution, we obtain prefiltered data (20) with lower error and can compute f; and
c; with higher accuracy by Algorithm 3.1 using h{ instead of hy.

In terms of the generalized Prony method, the above prefiltering can be simply regarded as
a functional F' with

T-1

1 1 j
F(hian) = —— (W s h) gy = ——— CAY T
(it 1= [y (v e W = [y 2 wlip) hess

where h denotes the sequence (hy)rcz with by, ;== 0forallk € Z\{1-T,...,2N+T —2}.

A similar preprocessing technique is based on weighted covariance (see e.g. [28, 12])
defined by

1 T-1

c._ J 2
h’k = m Z 'LU(f) hk_j h_j, k S NO, (22)
j=1-T

where B,j means the complex conjugate of h_;. In case of exact data hk = h(k), k=
1-T,...,2N +T — 2, we have (21). Multlplymg the equation (21) with ”W B (%) —j

we obtaln by summationover j =1 —T,...,T — 1 that
T—1 j M
Zpk Z w( )hk+m—j h_j = Zpk hiim =0
|WT||1 j=1-T k=0

Thus the covariance data (22) fulfill the same homogeneous linear difference equation (6). For
noisy sampled data hy, the covariance data (22) have lower error terms (see [12]) so that one
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can compute z; and f;, j = 1,..., M, with higher accuracy by steps 1 and 2 of Algorithm 3.1
with h{ instead of hy. The coefficients c; can be determined again as in step 3 of Algorithm
3.1 (without use of hf).

Remark 6.1 Besides using a simple low—pass filtering or the weighted covariance filter,
one may also apply an iterative prefiltering method, where the filter wp is computed adap-
tively, see [20]. For the first iteration step, assume that w(%) = 0,0, 1.€., we take the unfiltered
data hy. Using the first two steps of Algorithm 3.1, we obtain the eigenvalues z; as approxi-
mations of the active exponentials in the exponential sum (1). Now we determine w for the
next iteration so that w(z) := ZJT;I?T w(%) 2J approximates the inverse Prony polynomial
p(2)7L. Setting p := (pg)rez With p := 0 forall k € Z\ {0,..., M}, we hence have to
minimize

T—14+M T—1+M M n—»t
Z 80,0 — (P Wr)|” = Z [ —Zpew(T)F
n=1-T n=1-T £=0

with respect to wr. Afterwards, we apply the obtained filter wr to the data hj, and again use
the first two steps of Algorithm 3.1 to obtain now improved approximate values of z;. The
procedure can be iterated till the values z; do not change appreciably, and the coefficients c;
are computed at last by the third step of Algorithm 3.1.

7 Recovery of splines from Fourier data

The reconstruction of a compactly supported, structured function from the knowledge of sam-
ples of its Fourier transform is a common problem in several scientific areas such as radio
astronomy, computerized tomography, and magnetic resonance imaging. Here we determine
the breakpoints and the jump magnitudes of a spline s from few equidistant samples of the
Fourier transform 5. Let —oco < ¢ < 2 < ... < t,,4+1 < oo be given. A function s : R — R
is a spline of degree d € Ny with the support [t1, t,,,11] and breakpoints ¢;, j = 1,...,m+1,
if s(z) = 0forall z € (—o0, t1) U (tm+1, 00) and if on each interval (¢;, t;41) it is a poly-
nomial of degree < d and at least on one of them of degree d. Thus, splines of degree 0 are
step functions, those of degree 1 are piecewise linear.

First we consider the step function (see [29])

s(x) == Zs(tﬁ—) 1,0, (@), zeR, (23)

m
j=1

where 1, ;. ,)() is the characteristic function of the interval [t;, ;1) and where s(t;+) —
s(tj—) #0,7=1,...,m+ 1. Here s(t;+) and s(¢;—) denote the one—sided limits of s(x)
at the breakpoint ¢;. Forming the Fourier transform

$(v) == / s(r)e” ™ dx, wveER,

we obtain that
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16 G. Plonka and M. Tasche: Prony Methods

with s(tm41+) := 0, s(t1—) := 0, and s(¢t;—) := s(tj_1+) for j = 2,...,m + 1. Hence
iv §(v) is an exponential sum of order m + 1. Now we choose 7 > 0 so that z;7 € [—7,7)
for j = 1,...,m + 1. For given Fourier samples §(¢7), ¢ =1,...,N with N > m + 1, we
can determine the breakpoints t; and the associated jump magnitudes c; = s(t;+) — s(t;—)
by Algorithm 3.1. Observe that here indeed m + 1 Fourier samples corresponding to the
m + 1 unknown knots are sufficient for complete recovery since the function s is real. By
$(v) = §(—v), the values (if7) §(¢7) are available for ¢ = —N, ..., N, and Algorithm 3.1 can
be simply adapted to this case. Hence, the step function (23) can be completely reconstructed
(see [29)).

Now we consider the (not necessarily continuous) spline of degree 1,

s(@) = (s(ty+) + ' (t;4) (@ = ;) 1, 0, (2), z€R. (24)

j=1
Applying Fourier transform, we obtain that

(iv)? 5(v) = [iv (s(t;+)—s(t;—)) +(s'(tj+)—s'(t;—))] e ™, veER.
j=1

3
+

Hence (iv)? 3(v) is an extended exponential sum with linear polynomials as coefficients. Now
we choose 7 > 0 so that z;7 € [—m,7) for j = 1,...,m + 1. For given Fourier samples
$(r),£=1,...,2N with N > m+1, we can determine the breakpoints t; and the associated
jump magnitudes of s(x) and s’(z) by the method explained in Remark 2.2. Hence, the spline
of degree 1 in (24) can also be reconstructed by a Prony method.

In [29], the above approach is transferred to the reconstruction of a linear combination

s(x) :chB?(x), reR,
j=1

of B—splines B}»j(w) of degree d — 1, d € N, where the coefficients ¢; € R and the knots
tjs- s tjpa With —oo <t <ty < ... < tyya < 00 are unknown. Note that Bj(z) =
1(t,.¢,,,)(z). In this case, the reconstruction is based on the idea that the (d — 1)-th derivative
of B;l is a linear combination of step functions of the form (23), and the m +d Fourier samples
(1), £ =1,...,m+ d are sufficient for complete reconstruction.

Remark 7.1 A similar technique can be applied, if the support [t1, ¢,,+1] of the spline
s(z) is contained in [—, 7] and some Fourier coefficients

cr(s) : ! )

= o s(x)ye ™ dr, keZ

—Tr
are given. For a step function (23) we obtain

m—+1
27k cp(s) = (s(t;+) —s(t;—)) e i ke,
1

+

<.
Il
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Thus one can determine the breakpoints ¢; and the associated jump magnitudes by the Al-
gorithm 3.1 and reconstruct the step function (23) using only the Fourier coefficients cg(s),
k=1,....m+ 1

Remark 7.2 The method of Remark 7.1 is closely related to the Krylov—Lanczos method
of accelerating convergence of Fourier expansions [21] and to the reconstruction of a 27-
periodic, piecewise C'%-smooth function from given Fourier data (see [11, 1, 2]). A 27-
periodic function f () is called piecewise C%-smooth with d € N, if there exist finitely many
points t;, j = 1,...,m, with —m < t; <ty < ... < tpp, < wand typq1 = t1 + 27
so that f(z) restricted to (¢, t;41) belongs to C%([t;, t;4+1]) for each j = 1,...,m. By
C%([t;, t;+1]) we mean the set of all functions g(x) whose derivatives up to the order d are
continuous on (;, t;11) and have continuous extensions on [¢;, ¢;11], i.e., there exist all
one-sided limits g(*) (¢;+) and g9 (t; 1, —) for £ = 0,...,d.

If the 2-periodic, piecewise C'%-smooth function f(x) possesses only one breakpoint ¢; =
0 within [—7r, 7), i.e. m = 1, then by the Krylov—Lanczos method f(x) is split into the sum

f@) = s(@) +r(@), z€R, 25)
where 4
)¢
Z FO0-) - FO0+)) (ﬁ_ )1)! bzﬂ(%) , TER,
=0

is a 2m-periodic sphne of degree d + 1 and r(z) is a 27-periodic, d-times continuously
differentiable function with a rapidly convergent Fourier expansion (see [21]). Note that
fO0-) = fO(2r-), £ =0,...,d, by periodicity. By by (x) with £ € N, we denote the
1-periodic continuation of the Bernoulli polynomial By (z) restricted to the interval [0, 1],
where By1(x) is recursively defined by By () = (¢ +1)B fo Biyi(z)de = 0,
¢ € Ny, with Bg(x) := 1. Note that by (x) is the 1-periodic contlnuatlon of Bi(z) =z —
restricted on (0, 1) with b1 (0) = b1(1) := 0.

If the 27-periodic, piecewise C%-smooth function f(x) possesses some breakpoints t;,
j = 1,...,m, within [—m, 7), then f(z) can be represented analogously in the form (25)
with the 27-periodic spline of degree d + 1

i o)t T —t;
-z; Y o =) = f(E)(tj_F)) (é—l-)l)' be+1( 27rt]) » TER,
j: =

and a 27-periodic, d-times continuously differentiable function r () with a rapidly convergent
Fourier expansion (see [11, 1, 2]). If () is sufficiently smooth, then the contribution of ¢ (1)
to cx(f) is negligible for large |k|. The reconstruction of f(x) from given Fourier coefficients
¢k (f) is based on the fact that ¢, (f) = ci(s) for large |k| and that the Fourier coefficients
¢k (s) can be computed using

— Dk, e 70 (o
e (ber1 (7)) = { 0 @nik) T © € z\{0},

27 k=0
so that
m d
m (k) er(s) = e H Y (1k) T (O (t4) - FOt-), ke
j=1 =0
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Hence the points ¢; and the associated jump magnitudes can be determined by Prony methods.
For details see [11, 1, 2].

8 Recovery of sparse vectors

Finally we consider the recovery problem of M -sparse vectors. Let x € CP be M-sparse, i.e.,
only M components of x = (x;) ngol are different from zero. We want to reconstruct x from
only 2N measurements, where L with L < N is a known upper bound of the sparsity M. For
this purpose we apply the generalized Prony method introduced in Section 5. Let A : CP —
CP be a linear operator that can be represented by a diagonal matrix A = diag (d;) ]D:_ol with
distinct entries d;, j = 0, ..., D —1. Then the unit vectors e; = (53-7@)?:_01,j =0,....,D-1,
form a system of eigenvectors of A with A e; = d; e;. Further, let F : C” — C be a linear
functional given by

D-1

FX:bTXSI Z bjIj,
j=0

where b = (bj)]D:_O1 satisfies b; # 0 for j = 0,..., D — 1. Hence, the condition F'e; # 0
holds forall j =0,...,D — 1.
In order to reconstruct a sparse vector x of the form

M

X = § :C"j €n;

j=1

with unknown support indices 0 < n; < ng < ... <ny < D — 1 and unknown coefficients
cn,; € C, we require by Algorithm 5.1 at least the values

yr = F(A*x) =bTA*x =alx, k=0,...,2M -1, (26)

where ay, := (b; dé?)JD:_Ol.
For noisy measurements, the reconstruction is more stable, if we adapt the ESPRIT method
also here. This is particularly necessary if the exact sparsity M is unknown and we know only

an upper bound L > M.
Algorithm 8.1 (ESPRIT method for recovery of a sparse vector)

Input: L, N € N, L < N, L is an upper bound of the sparsity M of x, (noisy) sampled values
Y k=0,...,2N — 1 as in (26).

1. Compute the SVD of the rectangular Hankel matrix Hon_p, 141 = (ngrm)zJX;%_l’L.

Determine the approximate rank M of Hon_1, 141 so that o /o1 > € and form the matri-
ces Wy .(0) and Wy (1) as in (15).
2. Compute all eigenvalues X\j, j = 1,..., M, of the square matrix F y; in (16). The set of

eigenvalues {\1, ...,y } is a subset of the set of eigenvalues {dy, . ..,dp_1} of A. Deter-
mine the corresponding eigenvectors ey, j = 1,..., M, resp. the indices n; that correspond
to the eigenvalues \1, ..., \py.
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3. Compute the coefficients c,; € C, j = 1,..., M, as least squares solution of the overde-
termined linear system

M
chjbnjdfijzym kE=0,...,2N —1.

Output: M € N, x = Zju 1 Cn; €n;-

For example, the linear operator A can be chosen as
A = diag (wp);%,'

where wp := e’zﬂi/ D denotes the D-th root of unity. Further, taking the functional F of the
form Fx = Zz o ¢, the needed vector of input values y = (yx);~, " for Algorithm 8.1 is
given by

y=Fanpx,

where Foy p = (wif)7y 3"~ € C?¥*P contains the first 2V rows of the Fourier matrix

of order D, where N > M. In other words, the knowledge of the first 2M/ DFT coefficients
of x is sufficient to recover the M -sparse vector X.

Remark 8.2 In contrast to /;-recovery algorithms in compressed sensing [9] based on
structured matrices, where the measurements are obtained using scalar products of x with
at least O(M log D) random rows of the Fourier matrix [32], we have just taken here the
measurements gy, arising from the first 2NV rows of the Fourier matrix. As proposed in [16],
it might be advantageous to use slightly different measurements instead. Obviously, we can
also choose the operator A of the form

A = diag (W} )f 01 ,
where o € N is invertible modulo D so that all eigenvalues of A are indeed distinct. Fur-

ther, we can define the functional F’ using the 7-th row of the Fourier matrix, i.e., F'x =

(Wh,wT), .. wg(D 1))x = 501 Wi x7, where T € {0, — 1}. Then the input val-

ues for Algomthm 8.1 are of the form
Yk = Toktr = Zw W k=0, 2N —1,

and the reconstruction of x from yi, k = 0,...,2N — 1 is ensured for N > M.
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