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Abstract

In this paper the convergence of the cascade algorithm in a Sobolev space is con-
sidered if the refinement mask is perturbed. It is proved that the cascade algorithm
corresponding to a slightly perturbed mask converges. Moreover, the perturbation
of the resulting limit function is estimated in terms of that of the masks.
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§1. INTRODUCTION

In this paper we are concerned with the following problem: Given a compactly
supported multivariate refinable function ¢, how does perturbation of its finite
refinement mask affect the convergence of the cascade algorithm? Further, if the
cascade algorithm for the perturbed mask also converges, how the resulting limit
function is related with ¢?

We say that a compactly supported function ¢ is M-refinable if it satisfies a
refinement equation

¢= Y ala)$(M-—a), (1.1)

1=y Ad

where the finitely supported sequence a = (a(a))qcz: is called the refinement mask.
The s x s matrix M is called a dilation matriz. We suppose that its entries are
integers and that lim M~* = 0. Throughout the paper we assume that M is

k—o0
1sotropic. This means that there is an invertible matrix A such that

AMA™! = diag(oy,...,0,)
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with |oy| = -+ = |os| = m'/® = o(M), where m := |det M| and where o(M) is the
spectral radius of M.
Let the Fourier transform f of a function f € Li(IR?) be defined by

J/C\(w) = /]RS f(z)e ™ de, we R’

where x - w denotes the inner product of two vectors x and w in IR*. The Fourier
transform is naturally extended to the space of all compactly supported distribu-
tions. We can rewrite the equation (1.1) as

HMTw) = Hy(w)p(w), weIR’, (1.2)

where the refinement mask symbol

1 .
H,(w)=— Z ala)e™ "™, welR?
aEZ®

is a (multivariate) trigonometric polynomial.

Looking at the refinement equation (1.1) as a functional equation, one can give
necessary and sufficient conditions for the mask a to ensure existence, uniqueness
and regularity of the solution ¢, (see e.g. [1] for M = 2I). Provided that

> ala) =m, (1.3)

aEZ*®

there exists a unique compactly supported distribution ¢, with q/b\a(O) = 1 satisfying
(1.1) (see e.g. [1,22]). Throughout the paper we assume that the condition (1.3)
holds for the refinement masks considered.

Before posing the problem more explicitly, we need to review some notations.
For 1 < p < oo, the norm of L,(IR®) is denoted by || - ||,. Let

LP(IRS)v 1 S P < 0,

W,(IR?) := {
P C.(IR?), p = 00,
where C,(IR?) is the space of uniformly continuous and bounded functions on R*
equipped with norm || - ||c. Further, we use the convention 1/oc = 0.
Let Z . be the set of nonnegative integers and

/A ::{(Ml,...,us)EZS i 20 Vizl,...,s}.

For any multi-integer pt = (p1, ..., 1) € Z3, let |p] := pn - ps, pl i=pg - - pu!
and x# := x{" -+ x¥. Further,

I,
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denotes the linear span of {a# : |u| < n}. For two multi-integers pt = (p1, ..., pts)
and v = (v1,...,vs), wesay v < pifv; <p; foralli=1,...,s. For v < p, we use
(#) to denote ﬁ

For n € Z, the Sobolev space Wp"(IRS) is the set of all tempered distributions

f such that D*f € W,(IR®) for |u| < n, where D* = D{* ... D#s and D; := %

(j =1,...,s) denote the partial derivatives. Clearly, W (IR?) is a Banach space
with the norm

A lwr ey = S ID*fll,,  1<p< e

|u|<n

Let E be a complete set of representatives of distinct cosets of the quotient
group Z°/MZ*. Thus, each element o € Z® can be uniquely represented as o =
e+ M~,e € E and v € Z*. It is known that the cardinality of E is equal to
m = |det M|. Without loss of generality we can assume that 0 € E.

Denote by ((Z*) the space of all complex-valued sequences. Let (,(Z°) be the
space of complex-valued sequences A = (A(a))aeze such that ||A||, < oo, where

t/p
e | (Seez @) 1< p <

supoez- Ma)l, p=oo.

(Observe that the norms for W,(IR®) and (,(Z") both are abbreviated by || - ||,
the particular interpretation will always follow from the context.)

Denote by (o(Z?) the space of sequences of finite support. For A\ € [o(Z*) let
supp A :={a € Z°: N a) # 0}.

Given a compactly supported initial function ¢o € L,(IR®) we define a sequence
(@r)k>1 by iteration ¢ := Qadr—1,k =1,2,..., where Q4 : L,(IR*) — L,(IR?) is

the cascade operator associated with the finite mask a,

Quf =Y a(B)f(M - —3). (14)

pgez®

We say that the cascade algorithm converges for ¢o in W'(IR”)-norm (1 < p < o0)
if the sequence (Q%¢o)r>1 converges in W (IR®)-norm. In this case, it has been
proved in [3] that ¢g is necessarily contained in the space
Wy = {f € W}(IR*) compactly supp. : D“f(Zﬂ'oz) =0 VYa € Z°\{0}, |p| <n}
(1.5)
The cascade operator @), is closely connected with the subdivision operator S, :
CUo(Z7) — lo(Z7) associated with the mask a,

Sev(a) = Z alo — MB)v(p), ae”Z’.

pgez®
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Denoting aj, := S¥§, where § is the impulse sequence given by §(a) = 0 for a €
Z°\ {0} and 6(0) = 1, we have a; = a and

ar(@) = > ar1(Bla(a = MB), o €Z’, k=2 (1.6)
pez®

It can easily be verified by induction (see [11]) that for f € L,(IR®)

Qbf =Y ar(a)f(M*-—a), k=12 (1.7)

aEZ*®

The cascade algorithm plays an important role in computer graphics and wavelet
analysis. The convergence of the cascade algorithm has been studied by many au-
thors. Cavaretta, Dahmen and Micchelli [1] already found necessary and sufficient
conditions ensuring that the subdivision scheme related to a finitely supported re-
finement mask with dilation matrix M = 2I uniformly converges to a continuous
limit function. In the Ly-norm the convergence of the cascade algorithm has been
shown by Strang [28] in the univariate case, by Lawton, Lee and Shen [23] in the
multivariate case and by Shen [27] in the general multivariate vector case. Jia [15]
considered the convergence of subdivision schemes in the univariate setting for gen-
eral L,-spaces; the multivariate L,-case is completely settled in Han and Jia [11].
For the univariate vector case we refer to Jia, Riemenschneider and Zhou [21] and
to Micchelli and Sauer [24,25]. Convergence in WJ'(IR®) has firstly been discussed
by Jia, Jiang and Lee [19]. For scalar subdivision schemes in Sobolev spaces we also
refer to Goodman and Lee and to Micchelli and Sauer [6,26]. The cascade algorithm
in Besov spaces has been considered by Sun [29]. Chen, Jia and Riemenschneider
[3] and Zhou [31] have studied this problem in W (IR*) for 1 < p < oo.

In practice, one often has to handle perturbed refinement masks. In fact, coet-
ficients are generally irrational or rational numbers which need to be truncated in
floating point arithmetics. Heil and Collela [12] were the first, who studied how such
truncation affects the refinable function in the univariate L..-case (see also [13]).
Further discussions on the effect of perturbed scaling coefficients in the univariate
case can be found in Villemoes [30] and in Daubechies and Huang [4]. Villemoes
even showed that, under certain conditions, membership of a refinable function in
a Besov class is stable under perturbations.

More recently, Han [7,8] provided a sharp error estimate for multivariate refinable
functions in any L,-norm. His idea has been adopted to perturbed matrix masks
in the univariate L,-case by Han and Hogan (see [10]).

In particular, Han could show the following result in [7,8]: If the cascade algo-
rithm related to a mask a converges for ¢¢ in L,-norm, and if b is an only slightly
perturbed mask, i.e., ||a — b||; < n for a sufficiently small 7 > 0, and b satisfies the
sum rules of order 1 (see Section 2 for the notion of sum rules of order n), then the
cascade algorithm associated with b also converges for ¢g in L,-norm and we have

1Qad0 — Qsdolly < Clla—0blly, k=1 (1.8)
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Here the constant C' depends on the refinement mask a under consideration as well
ason p,1 < p < oo. However, it is independent of the perturbed mask b and of k.

In this paper we want to generalize the above result to cascade algorithms con-
verging in Sobolev spaces.

Compared with the L,-case, we have to overcome some difficulties due to the
handling with function derivatives requiring another approach. In fact the proof of
the main result is based on two new key ingredients.

The first basic idea to obtain the wanted estimate is the observation, that for
some suitable initial function ¢g the following inequality holds: There exists a
positive constant ¢ with

Y 1D Qudoll, < emTUPE N ARGy,

l|=n lu|=n

forall k =1,2,... (see Theorem 3.2). Here A" denotes the puth difference operator
(see Section 2) and ay, is the iterated subdivision operator applied to ¢ in (1.6).
The second key ingredient for the wanted estimate is the inequality

A ay, — APb||, < cla— bl m /TRy = n k= 1,2,

(see Lemma 4.3). The proof of this inequality requires exact analysis of the connec-
tion between convergence and boundedness of (Q’;qbo)kzo (resp. (qubo)kzo) and
the behavior of ||A*ag]|, (resp. ||[A*by]|,) with || = n, even slightly extending the
known results on convergence of cascade algorithms in Sobolev spaces (see [3]).

In Section 2, we recall some important definitions and results from [3,11]. In par-
ticular, two equivalent characterizations of the convergence of cascade algorithms
in Wp"(IRS) are given in terms of the joint spectral radius and of the subdivision
operator. In Section 3 we construct a special initial function satisfying the above
useful inequality. Further, an implicit relation between the boundedness and con-
vergence of a cascade algorithm in different Sobolev spaces is established. Section
4 is devoted to the generalization of (1.8) to Sobolev spaces.

§2. JOINT SPECTRAL RADII

In the study of convergence of the cascade algorithm, the joint spectral radius
of linear operators is a useful tool. The uniform joint spectral radius was employed
in [5] to investigate the regularity of refinable functions. For 1 < p < oo, the
p-joint spectral radius was introduced and applied to the study of L,-convergence
of cascade algorithms by Jia [15]. We cite from [15] the definition of p-norm joint
spectral radius for the convenience of the reader.

Let V be a finite-dimensional space with norm || - ||. For a linear operator A on

V define
|A|] := max{||Av|| : [[o]| =1}.

Let A be a finite collection of linear operators on a finite-dimensional vector
space V. For a positive integer k we denote by A* the Cartesian power of A:

AR ={(Ay,. AR s Ay, A € AL
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Now let

t/p
||Ak||P = (E(Ah...,Ak)EAk ||A1 e Ak“p) > 1< p < oo,
max{ |41 Al s (Ar,.. A € A}, p=oco.
The p-norm joint spectral radius of A is defined to be

pplA) = lim || AH][L/*. (2.1)

This limit indeed exists and does not depend on the choice of norm on V. Moreover,
we have

kj\1/k _ : kj1/k
LAM|I37% = nf [LA%}/" 22)

lim
k—oc0

Further, let for v € V
t/p
| A o]l == <Z<A1~~7Ak>eAk || A1 - Ag U||p> , 1<p<oo,
max{ ||A1 - Ag ol (A1, Ap) € AP}, p=oo.

Let us come back to our problem. For a finite refinement mask a, we consider
m operators A.,e € E, on (o(Z?*) defined by the biinfinite matrices

Ao, B)=ale + Ma — ), a,BeZ’. (2.3)
Hence
Awv(a)= Y ale+Ma—pB)v(B),  vel(Z. (2.4)
pezs

Let now A be the finite collection of A., ¢ € E. There is a simple relation between
ar in (1.6) and the matrices A.,e € E in (2.3). Let o € Z° and k be a positive
number. Then there are (uniquely defined) ey,...,6x € E and v € Z® such that
a=cy1+ Meg+ -+ M1, 4+ Mk’y and we have (see [11], Lemma 2.1)

ar(o =)= Ao, - A (1,8)  VAeZ". (2.5)

For two sequences u € (,(Z°) and v € (o(Z"), the discrete convolution uxv € €,(Z”)
is defined by

(wev)a)= S u(a—gu@), acZ

gez®

It follows from equality (2.5) that, for any v € (o(Z"),

(ar ¥ v)(@) = Ay -+ Acy0(7), (2.6)
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with o = g1 + Mey + ...+ M* 12 + M*~ and consequently for 1 < p < oo,

lagxollf = S |[As, o Aeoll2 = [| AR o]2.
€1,.-, e ER

Let e¢; be the jth coordinate unit vector of R?, 5 = 1,2,...,s. Recall that, for
any j = 1,2,...,s and a function f defined on IR® the difference operator A; is
given by

Ajf = F0) = f( =€)

Analogously, let the difference operator A; be defined for sequences A € ((Z?), by
AjA = A(-) = A(- — €;). Further, for any o = (pt1,...,ps) € Z3, denote A{™* - Al=
by A*.

In order to give a characterization for convergence of the cascade algorithm in
W (IR®)-norm we introduce the subspace

Vi, 1= {v = (v(a))acz: € lo(Z7) : Z afv(a) =0, |p| < n} (2.7)

Observe that V,, = span {A*6(- — ) : 0 € Z°, |u| = n+ 1}, where ¢ is the impulse
sequence. Furthermore, one can construct a finite set X' C Z* such that ((K) is
a finite subspace of (o(Z”®) consisting of all sequences with support on I with the
following properties:

1. ((K) is an invariant subspace under A. for any ¢ € E;

2. ((K) contains A*d, |u| =n + 1.
To this end, let supp a := {a : a(a) # 0} and Q be a finite set of Z* such that supp
aU{0} € Q. Put H:=Q—-E+MZ,_,, where Z, | :={(pt1,... ,p1s) € Z°,0 <
i <n+1,1<i<s}.( Here, the set A+ B (or A — B) consists of all points « + y
(or # —y) with € A and y € B.) Now let

K:=7°n) M™"H (2.8)
k=1

In particular, we have M~ (K + Q — E)NZ° C K. Tt is not difficult to see that
((K) is invariant under A.,e € E, i.e. for v € {(K) we have A.v € ((K) (see [11],
Lemma 2.3).

Then in [3] the following has been shown

Result 2.1. ([3]) Let a € (o(Z?) satisfy (1.3) and let W,, be given in (1.5). The
cascade algorithm associated with a converges for all functions ¢ in W, in Wp"(ZRS)-
norm (1 < p < 00) of and only if the following conditions are satisfied:

(1) Vi is mnvariant under A.Ve € E, i.e. for v €V, it follows that A.v € V,;

(2) pp <{A€|Vnmg(K) e € R }) < m ™SR where K is given in (2.8).



8 D.R. CHEN AND G. PLONKA

Remarks. 1. The condition (1) in Result 2.1 is a necessary condition on the mask
a, 1t needs to be satisfied if the limit function of cascade algorithm is wanted to be
in Wj*(IR”). Moreover, (1) is equivalent with the sum rules of order n + 1, saying
that for any p € I,

Y p(Ma+e)a(Ma+e)= > p(Ma)a(Ma) Vec€E. (2.9)

This equivalence has already been shown in [18], Theorem 5.2 (see also [14], The-
orem 3.4.12.). We want to remark that the condition (1), or equivalently, the sum
rules of order n + 1 are also necessary for reproduction of polynomials up to total
degree n in the shift-invariant space S(¢) generated by the integer translates of the
M-refinable function ¢ (see [17]).

2. The condition (2) in Result 2.1 can be seen as a generalization of the result
in [11], where the convergence of cascade algorithms in L,-spaces is shown.

Since K is a finite set, the p-norm joint spectral radius needs to be determined
only in the finite dimensional space V;, N {(K).

The following lemma justifies the definition of the set K in (2.8). Here we
consider the action of operators A., ¢ € E, on the sequences with supports contained
in any fixed finite set K1 C Z°.

Lemma 2.2. Let K be defined by (2.8). Then for any finite set Ky C Z*, there is
a positive integer j such that

Ae, - A v € ((K) Vo € ((Ky) and eq,...,¢5 € E. (2.10)
Consequently, for any integer k >

Ao A v €U(K) Vo e ((Ky) and eq,...,e € E. (2.11)

Proof. For any v € ((K7) we have supp Acv C M~ (K, + Q- E)NZ" ¢ € E.
Iterative application yields for any integer j > 0
supp Ae; -+ Ao v C (M_j(Kl +Q-E)N ZS>—|—
(M=t Q-E)nZ°)+-+ (MY (Q—-E)nZ%),

where €2 contains the support of a.
Since M is isotropic, there is a constant ¢ being independent of j such that

|IM7w|| < em™/%|lw|| VweR® and j=1,2,.... (2.12)

with m = |det M| > 1 (see e.g. [17], Lemma 6.1). Therefore we can find an
integer j such that such that, for all @ € K; +Q — E, M~7a € (—1,1)%, ie.
M= (K, +Q—E)nZ° ¢ {0,{0}} and (2.10) holds. Since ((K) is an invariant
subspace under A, for any ¢ € E, (2.11) follows for any k > j. O

There is a second way to characterize the convergence of the cascade algorithm
using the subdivision operator S,.
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Theorem 2.3. Let a € (o(Z?) satisfy (1.3). Then the cascade algorithm associated
with a converges for all functions in Wy, in W (IR®)-norm (1 < p < oo) if and only
of

lim mF/s=1/P) || Ak, =0 Vipl=n+1, (2.13)

k—o0
where ay, = Sk§.

The proof of this theorem will be given in the next section.

§3. DIFFERENTIAL AND DIFFERENCE OPERATOR

We now turn our attention to the norms ||Q§¢O||W;(Rs). The goal is to estimate
them in terms of sequence norms deduced from aj. In particular, we shall show
in this section, that boundedness of (Q’;gbom)ky (where ¢g ,, is a suitably chosen
initial function in W, ) implies convergence of the cascade algorithm on W,_; in

Wp"_l(IRS)—norm.

Let f be a differentiable function on IR* and let ® := (D, ... ,D;)T with D; =
el
Ers

Then the chain rule for differentiation gives

D(F(M*))(x) = (M) Df(M*2),  zeR",

where M7 is the transpose of M. Since M is isotropic, there exists an invertible
matrix A such that AMTA™! = diag (04,... ,0,). Hence we have

AD(F(M*))(z) = diag (oF,... ,c")ADF(M ).

Let ¢;(®) := A;®, where A; denotes the jth row of A (j =1,...,s), and for any
= (g1, ps)T € ZY, let qu(D) = (D) - ...+ go(D)*+. Considering the last
equation componentwisely, we have for any f € W'(IR”)

G(D)F(ME)) () =0} (¢;(D) /)M z),  j=1.....5,

and hence

(@) (M) () = (0" ol F) (qu(D) ) (MFe), 2 e R? (3.1)

(see also [19,22,31]).

It is easily seen that the operators ¢,(®) may be expressed as
wW®@)= Y cuuD”,
lvl=|nl

where ¢, , are determined by A and DY = D{* ... D%:. Since A is invertible, there
exists a positive number « satisfying, for any f € W (IR%),

Y ADEA@IS Y lauD) (@)l <5 Y (D)), e R

lul=n lul=n lu|=n
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Applying this equivalence and (3.1), we find for any f € W (IR”)

RN (Dr (MR < Y [DE(F(ME)) ()]

lul=n lu|=n
<wm"™ N |(DHf)(MFr),  w€R® and k=1,2,...,
lul=n
where we have used that |oy| = --- = |o,| = m!'/*. The second inequality has been

also proved in [17]. Hence we obtain:

Lemma 3.1. There is a positive number ¢ such that for any nontrivial f € Wp"(ZRS)

Iz k.
c_lm(n/s_l/p)k < E|u|:n ||D (f(M ))HP < cm(n/s_l/p)k, L— 1,2,....
E|u|:n ||Duf||p

In these inequalities, the factor m~*/P is due to the change of variables M*2 —
in the norms.

For our considerations, we want to use a special initial function ¢g which is
a tensor product of univariate B-splines. For k € Z, let N; be the univariate
forward B-spline of degree k with the knots 0,1,...,k 4+ 1, recursively given by

1
Nk:Nk_l*NOZ/ Nk_l(—t)dt, tEIR,
0

where Ny := X[o,1) is the characteristic function of [0,1). Furthermore, for v =
(7/17 ceey 7/3) - Zj_7 let Ny(x) = NVl(:El) ce e NVs (x8)7 where r = (1’17 . 7x8)T c RS,
Observe that for any pair of i and v € Z3 with p <wv

D'N, = A'N,_,. (3.2)

A second important property of N, in this context is the stability of its shifts.
This means that, for any v € Z7 , there is a positive number &, which is independent
of A, satisfying

R < D IIM@ON = a)ll, < s, VA€ 6(Z°). (3:3)
1=y Ad

The functions N, are appropriate candidates for the initial function in the cas-
cade algorithm. In fact,

QbO,n = N(n—l—l,...,n—l—l) (34)

is in W, for any 1 < p < oo (with W, in (1.5)).
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Theorem 3.2. Let \ € (x(Z?) and let g be associated with A by
g = Z /\ QbO n . —Oé).
aEZ®

Then there exists a constant k > 0 which is independent of A € {o(Z°) and k € Z7,
such that

i
(n/s l/p)k E|u| n||D g||P < Hm(n/s—l/p)k EF=1.2.. ... (35)
T D= A 7 o

In particular, if the sequence (Q¥¢o n)k>1 is bounded in W (IR?), then there is a
constant ¢ being independent of k such that

mFO TP Ak, <e Vul=n, k=1,2,.... (3.6)
Further, if the sequence (Q¥¢o ,)k>1 converges in WH(IR?) then (2.13) holds.

Proof. For A\ = aj, = Sk§, the function ¢ associated with \ equals to Q¥ ¢q ,, by (1.7).
If the sequence (Q% g ,)k>1 is bounded in W (IR?)-norm, then (3.6) follows from
the first inequality in (3.5). If the sequence (Q%¢g ,)k>1 converges in WHIR?),
then there exists a compactly supported limit function ¢, € Wp"(IRS) such that
1Q% b0 — QbaHW;(]RS) — 0 for k — oco. Further, from

1Q%bo.n — Qhido.n(- — M~ e))llwr (re
<[ ba = al- = M~ ej)llwp rey + 2|0 — Qh b0l wr (me)
for all unit vectors e¢;, j =1,... ,s we obtain that
> IAD*Qkdonlly =0 for k—oo,j=1,...,s
lul=n

Now again, for A = a; we have ¢ = Q%¢¢ , and (2.13) follows from the first
inequality of (3.5) as before.
Let’s now prove (3.5). Putting f = g(M_k-) we obtain by (3.2)

DM f =" Aa)A*N,( =) A¥)a) a),
aEZ® aEZ®
where v =(n+1—p1,...,n+ 1 — us). Consequently,
D'g=(D"f)(M*) = Y A'MNa)N,(M" - —a).
aEZ®

Therefore the inequalities in (3.5) are true by Lemma 3.1 and the stability property
(3.3) of N,. O

Remark. The necessity of (2.13) for the convergence of the cascade algorithm in
W, (IR?) has also been shown in [3], Lemma 4.3.

Now we are able to show the following relation.
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Lemma 3.3. Assume that (2.13) is true for a given refinement mask a. Then V,
in (2.7) s an invariant subspace under A. for all ¢ € E.

Proof. For e € E and ;1 € Z%, we define a polynomial p. , € I}, by

peg(r) =Y alMp+e) (M (z—c)— ).

pgez®

The space V,, is invariant under A, for all ¢ € E if and only if the mask a satisfies
the sum rules of order n + 1 in (2.9). Hence we have to show

Perop = Peo,p Vey, e € E and YV with |u| < n. (3.7)

For |p| = 0, (3.7) has been proved in [11], Theorem 3.1. We shall prove (3.7) by
induction on ng with 0 < ng < n. Assume that (3.7) holds for ng < n. If it is not
true for ng + 1, then there are e1,e € E and p € Z3 with || = ng + 1 such that
Pey,p F Deo,u- We shall show that this contradicts (2.13).

For any p € Z, and k =1,2,..., let hy , € {o(Z”) be defined by

hipla) = ) ap(a—MB)B*,  aeZ’,
pBezs

where ay, are given in (1.6). Observe that for any ¢ € E
hiu(Ma+¢e)=pe y(Ma +¢) VaeZ’.
Thus, the induction assumption (3.7) for ng implies that
hi u(@) = pe ula) Vi, |lp| <ng, Ve€ E and o € Z°.

Consequently, since p. , € II},| we have AVh; ,, = A¥p. , = 0 for |y| = |u[ + 1 and
|| < ng, i.e. by, (|| < no) is a polynomial sequence of degree |
Let now || = ng + 1. Since by assumption p., , # pe,,, for some ey,e2 € E
and some |p| = ng + 1 we have hy (Mo +¢1) = pey u(Ma + 1) Yo € Z° but
hiy(Mo + e2) # pey p(Ma 4 ¢3) for some o« € Z°. Hence hq ,(c) can not be a
polynomial sequence of degree ng + 1, i.e., there exist vo € Z°, |vo| = no + 2 and
a € Z° such that
A’YOhLN(Oé) 7£ 0. (38)

On the other hand, relation (1.6) tells us that for o € Z*

(o) =Y > ala— MB— M&)ar_1(5)(B + 6 — 8)"

Bezs sez*
—Z() W=ty () 3 g ()5
v<p 0€Z*

=2 ( > Dby y(@) Y ak—1(8)8" 7 + haula) Y ar-1(8).

v<p 6€Z* 6€Z*
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Since > a(d) = m (see (1.3)), a simple induction argument gives >  ar_1(d) =
6625 6625
m*~1. Thus,

Ahy (o) = mFTTAYRy (o) VYa € Z°. (3.9)
It is easily seen by induction that supp AVay C {a € Z° : ||a||se < km*/*} for some
constant x independent of k = 1,2,.... For any fixed o € Z*, let T}, = I'y(a) :=
Z° N M~ (o —suppATay), i.e., Ty denotes the support of A%ag(a — M-). Then
the cardinality of I'; satisfies

AT < k'mF, k=1,2,...

Y

where ' is a constant. For |u| = ng + 1 and |y| = ng + 2 it follows from Holder’s
inequality that

‘Ayhk,u(oz)‘ = ‘ Z B AVay (o — Mﬁ)‘

Bely

(3 i) (3 1avanda - ayp)

BEly pel'y

<eymFnot /s k/q |AYag ]|,

for some constant ¢; dependent of o but not of £ = 1,2,..., where ¢ satisfies
1/p+1/q = 1. This together with (2.13) and (3.9) gives us that ‘Awhl’u(a)‘ tends
to zero for k — oo, in contradiction with (3.8). This completes the induction
process, thereby proving the assertion. O

Proof of Theorem 2.3. The necessity of (2.13) for convergence of the cascade algo-
rithm has already been shown in Theorem 3.2. In order to show sufficiency, we need
to prove that conditions (1) and (2) of Result 2.1 follow from (2.13). By Lemma
3.3, the sum rules of order n 4 1 are satisfied. Further, by (2.6) and the definition
of Vi, in (2.7) we have for |u| =n+1

lim [ Atag|}/* = T [JASASLE = o, ({Acly, e, € € BY)

(see [11], Theorem 2.5). Hence, the assertion follows. O

Finally we obtain

Corollary 3.4. Assume that the sequence (Q%¢o n)k>1 18 bounded in WH(IR?)-
norm. Then the cascade algorithm corresponding to mask a converges for every

o€ Wp_1 in Wp"_l(ZRS)-norm.

Proof. Comparing (3.6) with (2.13) (for n — 1 instead of n), the assertion directly
follows from Theorem 2.3. g
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§4. PERTURBATIONS OF REFINEMENT MASKS

In this section we shall show the convergence of the cascade algorithm corre-
sponding to a slightly perturbed refinement mask. Moreover, the perturbation
of the refinable limit function affected by the perturbation of refinement mask is
studied.

Theorem 4.1. Let ) be a finite set of Z°. Assume that the cascade algorithm
corresponding to a € ((S2) converges for every ¢ € Wy in WJ(IR?)-norm. Then
there is a positive number n such that, for any b € () satisfying (1.3), sum rules
of order n + 1 and ||a — b||y < n, the cascade algorithm corresponding to b also
converges for every ¢ € Wy, in W (IR”)-norm.

Proof. Recall that K is defined in (2.8). By assumption on a, it follows from Result
2.1, that

- K 1k _ K Uk _  —njst1
Jim [l A lv,meci " = Igf;HA v mecy 1/ < mm /et

Hence, there exists an integer & > 1 and some positive t such that
P (=n/s+1/p—t)kp
max Y lAe o Acul|P <om :
lvl=1  e1,...ex€EF
Clearly, for this k, there is an n > 0 satisfying that for any b € ((Q2) with

lla —b||1 < n we have

Z ||A€k U A€1 - Bak o B€1||p < m(_n/8+1/p_t)kp.
517...7€k€E

Note that V;,N ¢(K) is an invariant subspace of any A. and B, ¢ € E. Consequently,

P p(mnls+1/p=t)kp

max A - A Jo—(B., ---B.. v
> (e Ao (B, B

vEVRNL(K)
lv|l=1 €1,..,eREE

It follows from the triangle inequality that

max Z |B., - B, v||P < m(—n/st1/p—ti)kp (4.1)
W EVpNE(K)
Jlv][=1 61,...,€k€E

where the positive number t1 is defined by 2m(=n/s+1/p=0kp — pp(=n/s+1/p=t1)kp

Equality (2.2) tells us now
IOP({B€|Vnrw(K) te € E}) < m(—n/s+1/p—t1) 7n—n/s—|—1/p7

and the assertion follows from Result 2.1. O

So, in fact, the convergence of (qub)kzo follows readily from the continuity of
the joint spectral radius p,.
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Our goal is now, to estimate the perturbation of the limit function in terms of
the perturbation of the mask, i.e., we want to show that

HqubO - QfﬁbOHW;(]RS) < CHG - bH1, E=1,2,...,

where a,b meet the assumptions of Theorem 4.1. We use the initial function ¢g
defined in (3.4). Then, choosing ¢ = Q¥¢g.,, — Q¥ dg n, the second inequality in
(3.5) implies that

Y D" Qo — D' Qio,nlly < crn/STVPRN | Atay — Al

lul=n |i|=n

Hence we have to estimate the norm ||[A*a, — AFb||, for |u] = n.
In order to obtain this estimate we first need

Lemma 4.2. Assume that the masks a,b € (o(Z*) satisfy (1.3) and the sum rules
of order n 4+ 1 in (2.9). Then for any v € V,,_1 we have

(B. — A )v €'V, Ve € E.

Proof. We claim that, for any a satisfying sum rules of order n+ 1 and any p € II,,,
there is a polynomial ¢ € II,,_; such that

Z p(—a)a(e + Ma — 3) = p(M (e = 8)) + q(¢ — 3) Vee E and V3 € Z°.
aE”Z® (42)

In fact, it follows from Taylor’s formula that

pi-ay= 30 DM EZ N g g

!
lul<n H

Therefore

> p(=a)a(e +Ma =)

S D“P(M:!(5 —0) ST (MY (Ma — 5+ ) a(e + Ma — f).
lu|<n acl

Note that a satisfies (1.3) and (2.9), i.e., we have ) 5. a(e + Ma — ) = 1 and

Y (M7 (Ma - B+e)ale+ Ma—8)= Y (—a)a(Ma), |ul<n,

1=y Ad acZ:
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forall e € E and 8 € Z*®. Hence, we obtain

S p(—ajals + Ma — §)

aEZ*®

St Y Y PR EE Caaora)

0<|pu|<n a€Z®

This proves (4.2). Using (4.2) for b instead of @ we get a polynomial ¢ € II,,_; such
that

> p(—a)(ble + Ma = 8) —a(e + Ma - 8)) =g(c—3) Ve€ E and V3 € Z°".
1=y Ad

For any v € V,,_1 and for any p € II,, it follows by (2.4) that

> p(—a)(B. = AJo(a) = > gle = B)(f)=0 Ve€E.

a€Z® Bez:

The proof is complete. O

Lemma 4.3. Suppose that @ C Z* is a finite set and that the cascade algorithm
corresponding to a € ((Q) converges for every ¢ € Wy, in W'(IR”)-norm. Further,
let b € (Q) satisfy (1.3), the sum rules of order n + 1 and |la —b||1 < n, where
n 1s chosen such that the assertion of Theorem 4.1 holds. Then there is a positive
number ¢ such that we have

1A ag — Albell, < clla—bllym ™ HIPE Y|y =0 and k=1,2,...,

where ¢ 1s independent of b and k.
Proof. Let K be given in (2.8). By (2.6) and the equality

Be, - Bey — Ay Aey = ZBék "'B€j+1(B€j _Aéj)Agj—1 R

1

we obtain

[1(br — ax) * vl
=( > D Ba e Be(h) — Ao - A ()
€1,.-,ex €L vEK

k
1/p

= Z( Z Z [Bey - By (Bey — Acj) Ay, - 'A€1U(7)|p> )

7=1 e1,...,ep € ~vEK

1/p

where we have used that by Lemma 2.2 there is some integer kg > 0 such that both
A. ... A vand B, ...B. v are in ((K) for all k > ko.
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Thus,

k
/
b = ar) = olly €30 D0 1Bay e Beppa (Bey = Ac Aoy, ---AslvHZ)l g

=1 e1,...,exEFE
(4.3)
Let |u| = n. Note that [|Afa;_1|[b=2"_ — [[Ae;_, -+ A, AHS|[B. Hence,

by (3.6) in Theorem 3.2, there is a constant ¢; > 0 such that for any j

€5—1

Z |Ae,_, -+ A AFS||E < ey /P G=1)p, (4.4)
817...7€j_1€E

On the other hand, from A*¢ € V,,_1 and Lemma 4.2 it follows that
(Be; — A )Ae;_, - A AMS €V, Vey,...,e; € E.

Moreover, by Theorem 4.1 we already know that the cascade algorithm correspond-
ing to b converges in W] (IR*)-norm and by (4.1) there are a positive number #;
and a constant cs such that

Z ||B€k "'B€j+1(B€j _Aéj)Aéj—1 "'A€1AH5||]];
8j+1...8k€E

§czm(_"/5+1/p_“)(k_j)p||(B€j — A )A C A ARSI Vk> .

ej1 ..

This together with (4.4) implies by || B, — A, Hg <|la —b|¥

Z Z ||B€k "'B€j+1(B€j _Aéj)Aéj—1 "'A€1AH5||]];

€1..,6;_1€E ej 1. €L
Zegm (TSPt =), (= /s 1 /) G=Dp| — p||P,

where ¢z is some constant which is independent of b and k. It follows from (4.3)
that

9 PRI

k
1(br — ax) * A#8]|, < a/||a — bl|ym—n/s+1/P)(E=1) Yo omEEh =12

=1
Hence the assertion follows. O

We are now ready to present the main theorem of this section.

Theorem 4.4. Let ) be a finite set in Z°. Assume that the cascade algorithm
corresponding to a € ((Q) converges for every ¢ € W, i WJ(IR?)-norm. Then
there exists a positive constant n such that, for any b € ((Q) satisfying (1.3) and
the sum rules of order n+1 with ||a—b|[1 < n, the cascade algorithm corresponding to
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b converges for every ¢ € W, in Wp"(ZRS)-norm. Moreover, there exists a constant
¢, which 1s independent of b and k, such that

HQsﬁbo,n - Qfﬁbo,nHW;(]RS) <clla=0| k=1,2,.... (4.5)
where ¢y, is given in (3.4). Consequently, we find for the limit functions

[éa = Pollwyr(rey < cfla = D[ (4.6)

Proof. By Theorem 4.1 we know that for b € (({2) satisfying the sum rules of order

n+ 1 and with ||a —b|| < n for some suitable n the cascade algorithm corresponding
to mask b converges for every ¢ € W, in WJ(IR”)-norm. Therefore, ¢, € W' (IR%).
Since ¢g,, € Wy, the cascade algorithm converges for ¢g ,, for a and b, i.e., we have

lim ||QF0,n — Gallwnrey = Lim [|QFdo,n — &bllwnre) = 0.
k— oo P k— oo P

The inequality (4.6) follows now from (4.5).

In order to prove (4.5) we appeal to Theorem 3.2. Put A\ = Afa; — AFby in
(3.5). This corresponds to ¢ = Q¥ég , — Q¥do n. Then the second inequality in
(3.5) yields for some constant ¢; and for k =1,2,...

> 1D (Qudon — Qrdon)lly < com™/*THPR N [ Akag — Afby|,.

lul=n |i|=n

Together with Lemma 4.3, it in turn implies

Z ||DN(QI(§¢O,TL—Q§¢O7TL>||F §02||a—b||1, k= 1727"'7 (47)

lu|=n

where ¢y is some positive number being independent of b and k.

As shown in Corollary 3.4, the cascade algorithm corresponding to a also con-
verges for every ¢ € Wy in WP"I(IRS)—norm with n’ < n. Replacing n with n’ in
(4.7) and then taking the sum of the resulting inequalities we obtain (4.5). O

We obtain the following corollary.

Corollary 4.5. Let Q be a finite set in Z°. Suppose that ¢, is a refinable function
i WJH(IR®) corresponding to mask a € ((S) and the shifts of ¢, are stable. Then
there are positive constants n and ¢ such that, for any b € ((Q) satisfying (1.3),
the sum rules of order n+ 1 and ||a — b||1 < n, the refinable distribution ¢y is in

WIR®) and satisfies (4.6).

Proof. By the stability of the shifts of ¢,, the cascade algorithm corresponding to
a converges on W, in WJ(IR)-norm. This conclusion has been established in [19]
for p = 2. The method works for general p > 1. Now, using Theorem 3.2, the proof
is analogous to that of Theorem 4.4. O
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Remark. The proof of the estimate (4.5) is strongly based on the second inequality
in (3.5). This inequality in turn has been shown for our initial function ¢ in (3.4)
using the relation (3.2). Since not every function f in W, satisfies the relation
D" f = Atg for some suitable g as in (3.2), the arguments in this paper fail to work
for a general initial function in W,,. This difficulty has been overcome recently by
Han [9]. In this paper, he established inequality (4.5) for any initial function in
Wh.
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REFERENCES

1. A. S. Cavaretta, W. Dahmen and C. A. Micchelli, Stationary subdivision, Memoirs Amer.
Math. Soc. 93 (1991), 1-186.

2. D. R. Chen, Algebraic properties of subdivision operators with matriz mask and their appli-
cations, J. Approx. Theory 97 (1999), 294-310.

3. D. R. Chen, R. Q. Jia and S. D. Riemenschneider, Convergence of vector subdivision schemes
i Sobolev spaces, Appl. Comp. Harmon. Anal., to appear.

4. 1. Daubechies and Y. Huang, How does truncation of the mask affect a refinable function?,
Constr. Approx. 11 (1995), 365-380.

5. I. Daubechies and J. Lagarias, Two-scale difference equations I. Existence and global regularity
of solutions, SIAM J. Math. Anal. 22 (1991), 1388-1410.

6. T. N. T. Goodman and S. L. Lee, Convergence of cascade algorithms, in “Mathematical
Methods for Curves and Surfaces II”, Morten Daehlen, Tom Lyche and Larry L. Schumaker
(eds), Vanderbilt University Press, Nashville, 1998, 191-212.

7. B. Han, Subdivision schemes, biorthogonal wavelets and image compression, PhD theses,
University of Alberta (1998).

8. B. Han, Error estimate of a subdivision scheme with a truncated refinement mask, manuscript
(1997).

9. B. Han, The initial functions in a subdivision scheme, in “Approximation Theory X” (St.
Louis, MO 2001), C. K. Chui, L. L. Schumaker and J. Stockler eds., Vanderbilt University
Press, to appear, 2001.

10. B. Han and T.A. Hogan, How s a vector pyramid scheme affected by perturbation in the
mask?, in “Approximation Theory IX”, Charles K. Chui, Larry, L. Schumaker (eds.), Vander-
bilt University Press, Nashville, 1998, 97-104.

11. B. Han and R. Q. Jia, Multivariate refinement equations and convergence of subdivision
schemes, STAM J. Math. Anal. (1998), 1177-1199.

12. C. Heil and D. Collela, Characterizations of scaling functions: continuous solutions, SITAM J.
Matrix Anal. Appl. 15 (1994), 496-518.

13. C. Heil, Some stability properties of wavelets and scaling functions, in “Wavelets and Their
Applications”, J. S. Byrnes et al., eds., NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 442,
Kluwer, Dordrecht, 1994, 19-38.

14. K. Jetter and G. Plonka, A survey on Lo-approzimation order from shift-invariant spaces, in
“Multivariate Approximation and Applications”, N. Dyn, D. Leviatan, D. Levin, A. Pinkus,
eds., Cambridge University Press, 2001, 73-111.

15. R. Q. Jia, Subdivision schemes in L, spaces, Advances in Comp. Math. 3 (1995), 309-341.

16. R. Q. Jia, The Toeplitz theorem and ts applications to approzimation theory and linear
PDE’s, Trans. Amer. Math. Soc. 347 (1995), 2585-2594.

17. R. Q. Jia, Approzimation properties of multivariate wavelets, Math. Comp. 67 (1998), 647—
665.

18. R. Q. Jia, Shift-invariant subspaces and linear operator equations, Israel J. of Math. 103
(1998), 259-288.



20

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

D.R. CHEN AND G. PLONKA

R. Q. Jia, Q. T. Jiang and S. L. Lee, Convergence of cascade algorithms in Sobolev spaces
and integrals of wavelets, Numer. Math., to appear.

R. Q. Jia, S. D. Riemenschneider and D. X. Zhou, Approzimation by multiple refinable func-
tions, Canadian J. Math. 49 (1998), 944-962.

R. Q. Jia, S. D. Riemenschneider and D.X. Zhou, Vector subdivision schemes and multiple
wavelets, Math. Comp. 67 (1998), 1533-1563.

Q. Jiang, Multivariate matriz refinable functions with arbitrary matriz dilation, Trans. Amer.
Math. Soc. 351 (1999), 2407-2438.

W. Lawton, S. L. Lee and Z. Shen, Convergence of multidimensional cascade algorithm,
Numer. Math. 78 (1998), 427-438.

C. A. Micchelli and T. Sauer, Regularity of multiwavelets, Advances in Comp. Math. 7 (1997),
455-545.

C. A. Micchelli and T. Sauer, On vector subdivision, Math. Z. 229 (1998), 621-674.

C. A. Micchelli and T. Sauer, Sobolev norm Convergence of stationary subdivision schemes,
in “Surface Fitting and Multiresolution Methods”, A. Le Méhauté, C. Rabut and L. L. Schu-
maker (eds), Vanderbilt University Press, Nashville, 1997, 245-260.

Z. Shen, Refinable function vectors, SIAM J. Math. Anal. 29 (1998), 35-250.

G. Strang, Figenvalues of (| 2)H and convergence of the cascade algorithm, IEEE Signal
Processing 44 (1996), 233-238.

Q. Sun, Convergence and boundedness of cascade algorithm wn Besov spaces and Triebel-
Lizorkin spaces: Part 11, Advances in Mathematics (China) 30 (2001), 22-36.

L. F. Villemoes, Wavelet analysis of refinement equations, STAM J. Math. Anal. 25 (1994),
1433-1460.

D.-X. Zhou, Norms concerning subdivision sequences and their applications in wavelets, Appl.
Comp. Hamornic Anal., to appear.



