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Abstract. In this paper, we consider Lp—approximation by integer trans-
lates of a finite set of functions ¢, (v = 0,...,r — 1) which are not nec-
essarily compactly supported, but have a suitable decay rate. Assuming
that the function vector ¢ = ((by);;(l) is refinable, necessary and sufficient
conditions for the refinement mask are derived. In particular, if algebraic
polynomials can be exactly reproduced by integer translates of ¢,, then
a factorization of the refinement mask of ¢ can be given. This result is a
natural generalization of the result for a single function ¢, where the re-
14e™iu ) m
2

finement mask of ¢ contains the factor if approximation order

m is achieved.

1. Introduction

Recently, a lot of papers have studied the so—called multiresolution analysis of
multiplicity » (r € IN, r > 1), generated by dilates and translates of a finite set
of functions ¢, (v = 0,...,r — 1), and the construction of corresponding “mul-
tiwavelets” (cf. e.g. Donovan, Geronimo, Hardin and Massopust [10]; Goodman,
Lee and Tang [12, 13]; Hervé [16]; Plonka [21]).

In Alpert [1], multiwavelets are used for sparse representation of integral op-
erators. Further applications for solving differential equations by finite element
methods seem to be possible, since scaling functions and multiwavelets with
very small support can be constructed (cf. e.g. Plonka [21]). For finite elements,
short support is crucial. In order to obtain multiwavelets with vanishing mo-
ments, the problem remains, how to choose the scaling functions ¢,, such that
algebraic polynomials of degree < m (m € IN) can be exactly reproduced by
a linear combination of integer translates of ¢, (v = 0,...,7 — 1), or, such
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2 G. Plonka

that ¢ := (¢,)"ZL provides controlled approximation order m. First ideas to
solve this problem can be found in Donovan, Geronimo, Hardin and Massopust
(DGHM) [10] and Strang and Strela [25, 26], where examples with two scaling
functions ¢q, ¢1 with very small support are treated, such that the translates
do(-=1), ¢1(- = 1) (I € Z) are orthogonal and such that ¢ provides approxima-
tion order m = 2.

In this paper, we consider a refinable vector ¢ of r functions with suitable decay
providing controlled approximation order m. We will study the consequences for
the refinement mask of ¢ in some detail.

Let us introduce some notations. Consider the Hilbert space L? = L?(IR) of
all square integrable functions on IR. The Fourier transform of f € L*(IR) is
defined by f := ffooo f(z)e~® dz. Let BV (IR) be the set of all functions which
are of bounded variation over IR and normalized by

lim f(z) =0,

|#]—= o0

F(&) = 3 lim(F(e 4+ )+ Jle — ) (=50 <2 < o0).

If f € L*(IR) N BV (IR), then the Poisson summation formula
(1) S0 = S fut o))
lezz jez

is satisfied (cf. Butzer and Nessel [4]). By C'(IR), we denote the set of continuous
functions on IR. For a measurable function f on /R and m € IN let

HM:QﬁmwwW

— 00

[l = 1D s (Ml = D ID*Fllp-
k=0

Here and in the following, D denotes the differential operator D := d/ d-. Let
W (IR) be the usual Sobolev space with the norm || - [/, p. The [P-norm of a

sequence ¢ = {¢ihiez is defined by ||c||ir 1= (3 1c 4 |a |p)1/p.
For m € IN, let E,,(IR) be the space of all functions f € C'(IR) for which

sup {[f(2)] (1+ [2) "} < oo (e>0).
z€IR

Let 12, :={c:=(cx) : Yore_ (14 |k[*)™™ |ex|? < oo} be a weighted sequence

k=—oc
with the corresponding norm

o 1/2
llellz, = ( > A+ |c,|2) :

l=—0
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Considering the functions ¢, € E,(IR) (v = 0,...,7r — 1), we call the set
B(gp) :={¢(-—1): l€ Z,v=0,...,r—1} L% —stable if there exist constants
0 < A< B < oo with

AZIICulllz <|IZchz¢>y (=Dllz2 <BZ|ICVI|12

v=0leZ

for any sequences ¢, = {c, hez € 12,, (v =0,...,7—1). Here L%, denotes
the weighted Hilbert space L%, = {f : WAl =1+ 12)=™/2 f||2 < oo}
Note that, if the functions ¢, are compactly supported, then the (algebraic)
linear independence of the integer translates of ¢, (v = 0,...,r — 1) yields the
L2, —stability of B(¢). For m = 0, the L?  -stability coincides with the well-
known Riesz basis property in L%(IR). For f € En,(IR), the Fourier transform
f is contained in the Sobolev space Wi (IR).

We want to give an example for a function ¢y with infinite support yielding an
L2, —stable set B(¢g) for all m € IN: Let M,, be the cardinal symmetric B—
spline of order n defined by M (x) := (x[-1/2,1/2) + X(=1/2,1/2])/2 and for n > 1
by convolution M, (%) := Mp_1(x) x My (x). Further, let

Z M zul Z wn zul

l=—cc l=—cc

Observe that @, (u) is a positive, real cosine polynomial for all real «. Then, the
spline function

Zwl n(x—1)

l=—cc

is the fundamental function of the cardinal spline interpolation satisfying
L,(k) = dox (k € Z). Observe that L, has for n > 2 a noncompact sup-
port but exponential decay for |#| — oo. The translates L, (- —{) (I € ZZ) form
an L2, —stable set for m € INy. This immediately follows from the results in
Schoenberg [23], since the eigensplines s satisfying s(k) = 0 (k € ZZ) are not
contained 1n Lz_m

For ¢, € E,n(IR) (v = 0,...,r — 1), we say that ¢ provides the (L,)-
approximation order m ( <p § oo), if for each f € Wi (IR) there are sequences

cl = {Cﬁyl}lez (v=0,...,7=1;h > 0) such that for a constant ¢ independent

of h we have:

(1) If = b=t/ ZO > e ou(/h=Dlly < ch™ | Flomp.
v=0leZ

Recently, closed shift-invariant subspaces of L2(IR) providing a specified ap-
proximation order were characterized in de Boor, DeVore and Ron [2, 3]. In par-
ticular, in [2] it was shown that the approximation order of a finitely generated
shift-invariant subspace S(¢) of L2(IR), generated by the integer translates of
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¢ (v=20,...,7—1), can already be realized by a specifiable principal subspace
S(f) C S(¢p), where f can be represented as a finite linear combination

f= Z_: S aidu(-—1).  (au € IR).

v=0leZ

As known, the approximation order provided by a single function ¢ can be
described in terms of the Fourier transform of ¢ by the so—called Strang-Fix
conditions (cf. de Boor, DeVore and Ron [2, 3]; Dyn, Jackson, Levin and Ron
[11]; Halton and Light [14, 19]; Jia and Lei [17]; Schoenberg [22]; Strang and Fix
[24]).

Following the notations in Jia and Lei [17], ¢ provides controlled approzimation
order m, if (1) holds, and furthermore the following inequalities are satisfied:

(2) We have
el <ellfll, (v=0,...,7=1),

where ¢ 1s independent of A.
(3) There is a constant § independent of & such that for | € ZZ

dist (lh,supp f) > & = CZ,IO (v=0,...,r=1).

In Jia and Lei [17], the strong connection of controlled approximation order
provided by ¢ and the Strang—Fix conditions for ¢» was shown. Note that, instead
of using the definition of Jia and Lei [17], we also can take the definition of
local approximation order by Halton and Light [14]. For our considerations the
equivalence to the Strang—Fix conditions is important.

A function ¢ € L?(IR) is called refinable if ¢ satisfies a refinement equation of
the form

$=> mé2--l) (n€EIR),

leZz
or equivalently, if ¢ satisfies the Fourier transformed refinement equation
¢ = Ps(-/2) 4(-/2)

with the refinement mask

1 —il-
(1.2) P=P, ::521916 .
leZz

Note that Py is a 2r-periodic function. The following result holds for a single
function ¢:
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Theorem 1.1. Let ¢ € En(IR) N BV(IR) (m € IN) be a refinable function
and let B(¢) be L2, —stable. Then the ¢ provides controlled approzimation order
m if and only if the refinement mask Py satisfies the equalities

(1.3) D¥Py(m) =0 (p=0,...,m—1),
(1.4) Py(0) = 1.

The assertions (1.3), (1.4) are equivalent to the following condition:
The refinement mask Py can be factorized in the form

(15) pt = (M) s

with S(0) = 1, where S is a 2rn—periodic m-times continuously differentiable
function.

Note that, under the conditions of Theorem 1.1, controlled approximation
order m is ensured if and only if algebraic polynomials of degree < m can be
exactly reproduced by integer translates of ¢, i.e., if ¢ provides accuracy m.
For corresponding results see also Cavaretta, Dahmen and Micchelli [5]. There
is a close connection between accuracy and regularity of ¢. For |S(u)| < 1, the
condition (1.5) is equivalent to the assertion that ¢ € C™~1(IR) (cf. Daubechies
and Lagarias [7, 9]).

We want to generalize the result of Theorem 1.1 for a finite set of functions
¢, € Lo(IR) (v = 0,...,r — 1). The function vector ¢ with elements in L%(IR)
is refinable, if ¢ satisfies a refinement equation of the form

(1.6) ¢=> P p2-—1) (P €IR).

By Fourier transform we obtain

(1.7) &= Pgy(-/2) $(-/2)
with ¢ := (qu)f,;(lj and with the refinement mask
1 —il-
(1.8) P:P¢::§ZP16 .
leZz

Note that P is now an (r x r)-matrix of 2r—periodic functions. The purpose
of this paper is to find necessary and sufficient conditions for the refinement
mask P yielding approximation order m, analogously as for a single function in
Theorem 1.1. In particular, we show that the approximation order m provided by
¢ yields a certain factorization of the refinement mask P of ¢. This factorization
can be considered as a natural generalization of the factorization (1.5) of the
refinement mask of a single function. Hence, it can be conjectured, that the new
factorization property of P will play a similar role for further investigations and
for new constructions of refinable function vectors and multiwavelets as (1.5) for
the single scaling function.

The main result in this paper is the following
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Theorem1.2. Let ¢ := (¢,)"_% be a refinable vector of functions ¢, € Ep, (IR)
NBV(IR) (m € IN). Further, let B(¢) be L2, —stable. Then the following as-
sertions are equivalent:

(a) The function vector ¢ provides controlled approzimation order m.

(b) Algebraic polynomials of degree < m can be exactly reproduced by integer
translates of ¢,,.

(c) The refinement mask P of ¢ satisfies the following conditions:

The elements of P are m-times continuously differentiable functions in L3_(IR),
and there are vectors yt € IR"; yS # 0 (k = 0,...,m — 1) such that for
n=20,...,m—1 we have

Z (k) ()" (20" (D" P)(0) = 27" (y3) ",
> (k) (w§)" @) (D" P (m) = 0,

k=0
where 0 denotes the zero vector.

Furthermore, if ¢ provides controlled approrimation order m, then there are
nonzero vectors kg, ..., &m_1 such that P factorizes

1
P(u) = Q—mCm_l(Qu) .. Co(2u) S(u) Co(u)™t ... Cpyy (v) 71,
where the (r x r)-matrices C, are defined by x, (k=0,...,m—1) as in (4.1)
— (4.2) and S(u) is an (r x r)-matriz with m-times continuously differentiable

entries in L3_(IR). In particular, for the determinant of P it follows

det P(u) = (H—Qii) det S(u).

Note that the assertions of Theorem 1.1 follow from Theorem 1.2 in the special
case r = 1.

The paper is organized as follows.
In Section 2 we will show that, under mild conditions on the scaling functions
¢ (v = 0,...,7 — 1), the function vector ¢ provides controlled approximation
order m (m € IN) if and only if algebraic polynomials of degree < m can be
exactly reproduced by integer translates of ¢,. In Section 3, we introduce the
doubly infinite matrix L containing the coefficient matrices P; which occur in the
refinement mask (1.8). Assuming that algebraic polynomials of degree < m can
be reproduced, we derive some consequences for the eigenvalues and eigenvectors
of L. Similar results can also be found in Strang and Strela [25]. Further, we
give necessary and sufficient conditions for the refinement mask P of ¢ yielding
controlled approximation order m (cf. Theorem 3.2). These conditions use values
of the refinement mask and its derivatives at the points © = 0 and u = =, only.
Finally, in Section 4, we show that, assuming controlled approximation order m,
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the refinement mask P can be factorized. As already pointed out in Theorem
1.2, it follows that the determinant of P(u) contains the factor (1 + e~")™.
While working on this paper, the author has obtained a new preprint of Heil,
Strang and Strela [15] which contains the result of Theorem 3.2, but with another
proof.

2. Approximation order and accuracy

In this section, we shall investigate the connections between approximation order
provided by ¢ and reproduction of algebraic polynomials by integer translates
of ¢y (v=0,...,7—1). Let » € IN and m € IN be fixed. The following assump-
tions for the scaling functions ¢, (v = 0,...,r — 1) will often be needed in our
further considerations:

(i) ¢ € Em(IR).

(il) ¢, € BV(IR).

(iii) The set B(¢) is L%, —stable.

The assumption (i) ensures that the Fourier transforms qgl, are m—times con-

tinuously differentiable. If the assumption (ii) is also satisfied, then the Poisson
summation formula (1.1) holds for ¢,. We observe the following

Lemma 2.1. Let (i) and (iii) be satisfied for ¢, (v = 0,...,r — 1). Assume
that algebraic polynomaals of degree < m can be exactly reproduced by integer
translates of ¢, i.e., there are vectors y* € IR" (1 € Z;n=0,...,m— 1) such
that the series Zlez(yf)T¢(~ — 1) are absolutely and uniformly convergent on
any compact interval of IR and

(2.1) ) gz —1)=2"  (x€IR;n=0,...,m—1).
leZz
Then the vectors y' can be written in the form
n . n n—
(2.2) yr=> (k) "Fyp.
k=0

Proof. First, observe that the sequences {y, }iez forming the vectors yj :=
(y7,)I—4 are contained in [2 . The assertion (2.2) will be proved by induction.

For n = 0, there are vectors y! (I € ZZ) with
S W) e —1)=1.
leZz

Replacing = by « + 1, we find

S e +1-0 = () bla—1) = 1.

lezz lezz
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Thus, by (iii), y? = y?_l_l (I € ZZ), and the assertion follows. Let now
> (whT ol —1) = 2¢
leZz
with yi of the form (2.2) be true for d = 0,...,n < m — 1. We show that
y?"’l € IR" (I € ZZ) satisfying
(2) S (W) g — 1) = e (o€ IR)
leZz
is of the form
n+1
n n+1 n+l—
=Y (et
k=0

Replacing by x + 1 in (2.3) we obtain

nt1
Z (y7+‘|'11)T dx—1)=(@x+1)"" = (n + 1) e

leZZ s=0
o+l
=S (") S,
s=0 leZZ

Using the induction hypothesis and the L2 —stability of the integer translates
of ¢, (v =10,...,7—1), this yields

n+1_n+1 n+1 s _ .n+1 ¢ n+1 - s s—k .k
vz =S ("= S () S (D)

s=0 s=0 k=0
n s l
" n+1 s s
=it e (M) (3) e
5s=0 k=0 d=0
n l
a1 n+1 n—k+1 ek k
= () () e
k=0 s=k d=0
n l n—*k
n n+1 n—k+1\
S () (S ()
k=0 d=0 5s=0
n l
_ ..n+l n+1 n+l-k _ m+l-k k
=y +Z( k) ((d+1) "y
k=0 d=0
L /n+1 s n+1
— n+1 l 1n+1—k k: i 1n+1—k k.
yo+;(k)uw . ;(k)uw b

Thus, the assertion follows. a

Now we can show:
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Theorem 2.2. Assume that the functions ¢, (v = 0,...,r — 1) satisfy the
assumptions (i) — (iii). Then the following conditions are equivalent:

(a) The function vector ¢ provides controlled approximation order m (m € IN).
(b) Algebraic polynomials of degree < m can be exactly reproduced by integer
translates of ¢,,.

(c) The function vector ¢ satisfies the Strang-Fir conditions of order m, i.e.,
there is a finitely supported sequence of vectors {a;}ticzz, such that

= Z alT¢(' —1)

leZz

satisfies

f(0)£0; D"f@rl)=0 (leZ\{0};n=0,...,m—1).

Proof. The equivalence of (a) and (c) is already shown in Jia and Lei [17],
Theorem 1.1.

1. Let f be a finite linear combination of integer translates of ¢, satisfying
the Strang—Fix conditions of order m. Then by Corollary 2.3 in Jia and Lei
[17], algebraic polynomials of degree < m can be exactly reproduced by integer
translates of f, i.e, (b) follows from (c).

2. By (i) and (ii), the Poisson summation formula can be applied to ¢, and we
have

ST @ —De™ =D (o + 2)] (u+ 27))

lezZz jezZ

= iuT Z e?mije (}S(u + 27j).

JjEZ
Repeated differentiation of this equation by u yields for g =0,...,m — 1:
(24) > @l —1) (il)* e = ZM: (“) ()" e " ™I (DR ) (u + 2mj).
lezz k=0 k jez

By (i), the series in (2.4) are absolutely and uniformly convergent for # on any
compact interval of IR.

3. We show that (c) follows from (b): Assume that algebraic polynomials of
degree < m can be exactly reproduced by integer translates of ¢,, i.e., there
are vectors y7' (y§ # 0), such that (2.1) with (2.2) is satisfied. Here and in the
following, 0 denotes the zero vector of length r. Let f be defined by

(25) Fo= S al g+ k),

where the coefficient vectors ay are determined by

(26) (a0,~~~aam—1) = (yg’”.’ygn—l)v—l
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with the Vandermonde matrix V' := (k")7"~1,. Hence we have

m—1
(2.7) yg:Zk"ak (n=20,...,m—1).
k=0

By Fourier transform of (2.5) we obtain

with
m—1
A(u) = Z ay ek
k=0
Observe that by (2.7)
m—1
(2.8) (D" A)(0) = (ik)"ap =i"yy (n=0,....,m—1).
k=0

4. We show by induction, that f satisfies the Strang—Fix conditions of order m.
For n = 0, we have by (2.1) and (2.2)

W)T Y - =1 (v IR)
leZz
Using formula (2.4) for g = 0 and « = 0 this yields
W)" D T p2m)) =1 (x € IR),
JjEZ
and so, by continuity of (}S(u) and (2.8),
F(0) = A(0)T ¢(0) = (y3)" $(0) = 1,
Ferl) = A(0)" ¢2xl) = ()" p27l) =0 (1€ 2\ {0}).

Hence, f satisfies the Strang—Fix conditions of order 1.
5. To show the Strang—Fix conditions of order 2, observe that

Df(27l) = DA(0)T ¢(271) + A(0)T D (2n1)
= i(ys)" B(27l) + (y3)" D(2nl).
By (2.1) and (2.2),

1

S (L) wnt S et - =

v=0 leZZ
Inserting (2.4) with « = 0 and g = 1 — v, we obtain
> e ((yh)T (2m) + (=) (u)) " D))+ Y ()" dl2r)) =«

JE€EZ JEZ
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and hence,
> *mT De(2mj) = 0.
JjEZ

It follows that D(}S(?ﬂ'l) =0forje Z.

6. Now, assume that f satisfies for 0 < p < n —1 with 2 < n < m — 1 the
conditions

04 f)(eat) = Y- (1) (0747 (0) (04 2

(2.9) > (“) ()™ (D" ) (2L) = do.1 .5

where § denotes the Kronecker symbol. These conditions are even a little bit
stronger than the Strang-Fix conditions of order n, since we even have that
D* f(O) = 0for 1 < p < n—1. But the conditions are justified by the observations
in part 5 of the proof. We show that also (D”f)(?ﬂ'l) =0 (l € Z), yielding the
Strang—Fix conditions of order n + 1.

By (2.1) and (2.2) we have

> (C)on® Srvee-n=a"  ©snsm-1),

v=0 leZZ
Using (2.4) with ¢ =n — v and u = 0 we obtain

n

S (1) )" Z (") o X e o om) = o7

v=0 jez
Hence,

" /n R .

$° (1)t s 52 e §E (R it ki = 2
k=0 i€z v=0

By (2.9), the sum on the left-hand side is zero for k = 1,...,n — 1. Thus, since
f satisfies the Strang—Fix conditions of order 1,

AN wijx - n v v n—v . n n
(=) D e (Z ( ) ()" (D ¢><2m>) +a =2,
JEZ v=0 v

ie., by (2.9),

> e (D" f)(27)) = 0.

JjEZ
It follows that f satisfies the Strang—Fix conditions of order n + 1, so that the
proof by induction is complete. a

Remark. Observe that the equivalence of (a) and (b) can be shown without
use of the L2 -stability of the integer translates of ¢, (v =0,...,r—1) (cf. Jia
and Lei [17]).
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3. Conditions for the refinement mask

In this section, we shall derive necessary and sufficient conditions for the refine-
ment mask P yielding a function vector ¢ which provides controlled approxi-
mation order m. Let now ¢ = (¢,)/Z5 be refinable in the sense of (1.6). The
decay property (i) implies that the elements of P(u) are m-times continuously
differentiable functions in L2_(IR). Following the ideas in Strang and Strela [25],
we introduce the doubly infinite matrix

L = ...P_2P_1 Po P1 P2P3...
.P_4P 3P P, Py P, ...

containing the (r x r)—coefficient matrices P; occuring in the refinement equation
(1.6). Now, with the infinite vector ¢ := (..., ¢(-+ 1)1, &1, ¢(-—1)T,.. )7 the

refinement equation (1.6) can formally be written in vector form

(3.1) Lo2')=¢.

First we recall the following Lemma, which can also be found in Strang and
Strela [25] for compactly supported functions.

Lemma 3.1.  Let the assumptions (i) and (iii) be satisfied for ¢, (v =0,...,r—
1). Assume that algebraic polynomials of degree < m can be exactly reproduced
by integer translates of ¢,, i.e., there are vectors y € IR" (I € Z;n =
0,...,m—1) such that (2.1) is satisfied. Then the matriz L has the eigenvalues
1, 1/2,...,(1/2)"=1 with corresponding left eigenvectors

y =) ) )T
r.€.
(y")TLZQ_"(y")T (n=0,...,m—1).

Proof. From (2.1) it follows by (3.1) forn =0,...,m—1

2" = (y") " ple) = (y")" Lp(22)
=27"(22)" = 27" (y")T ¢(22) (x € IR).

The L2,_-stability of the translates ¢, (- —1) ( € Z;v =0,...,7r— 1) gives

(y)"L=2"(y")" (n=0,....m—1).

Now we can prove:
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Theorem 3.2. Letr € IN, and let ¢, (v =0,...,r—1) be functions satisfying
the assumptions (i) - (iii). Further, let ¢ be refinable. Then the function vector
¢ provides controlled approzimation order m if and only if the refinement mask
P of ¢ in (1.8) satisfies the following conditions:

There are vectors y& € IR"; y3 # 0 (k = 0,...,m — 1) such that for n =
0,...,m—1 we have

n

(3.2 5 ()™ = ko) = 2 ()

(3.3 5 () ™ 2 () ) = 0,

k=0
where 0 denotes the zero vector.
Proof. 1. Assume that ¢ provides controlled approximation order m. Since all
assumptions for Theorem 2.2 are satisfied, it follows that algebraic polynomials
of degree < m can be exactly reproduced by integer translates of ¢,,.

Thus, applying Lemmata 2.1 and 3.1, there are vectors y} € IR" (l € ZZ; n=
0,...,m— 1) such that we have with y* = (..., (y?)*, (w})*,.. )T

(3.4) (YHV'L=2""(y")" (n=0,...,m—1),

where the vectors y?* are of the form (2.2). In particular, there is a vector y§ €
IR" (y$ # 0) such that by the Poisson summation formula it follows that

W) S dle—1) = W)T S pl2mj) e i = 1,

lezz jez

i, ()T (0) = 1.

Using the structure of the matrix L, (3.4) is equivalent to the equations

(3.5) S T Pu=2"(y5)" (n=0,...,m—1),
(3.6) S W) Py =27 (y)" (n=0,...,m—1).

Note that by (i), the series in (3.5) — (3.6) are well-defined. Putting (2.2) in
(3.5), we find forn=0,...,m—1

bl

n

) = 3 (3 () ot e

leZZ k=0

= (1) o et e

0 lezz

(3.7) -
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Analogously, from (3.6) it follows by (2.2) for s =0,...,m—1,

5 5

) =2 3 (1) 0 = 32 () )" 2 i P

k=0 k=0 leZz
(3.8)

Multiplying (3.8) with 27" (Z) (—1)?~#2°, summation over s = 0,...,n—1 yields

=2 WEIS (Z (1) oty 2 e sz) .
Considering the left-hand side of;quation (3.9), we find
2 Z (1) - Z (7)whr"
= o Z () :2(—1)"; I
= Z (1) (- ng<—1>s (" Yt =2 Z (1)t

The right-hand side of (3.9) yields

> (1) o (Z (7) wh (-2 > sz)
- Z () :g(—?)k-" (7w > P
- Z (1) b2 5 P Z (") e
- (3) b=z 3 Pa (@ @),

Hence, by addition of (3.8) with s = n and (3.9) we obtain

3100 30 ()b 2 ) P =2 )

k=0 leZz
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Now, for the sum and the difference of the equations (3.7) and (3.10), respec-
tively, it follows for n =0,...,m — 1:

n

D ol (L R O

n

a2 Y (1) 0 )T (Z o (1 P,) ~ ot

k=0 leZz

By (i), the series in (3.11) — (3.12) are absolutely convergent, and P is m—-times
continuously differentiable. By

_n\n—Fk .
(Dn—kP)(u) — ( Z)Q Z P, ln—k e—zul
leZZ

we have

Yok =27 D EP)(0), Y (=D TP =2 RD P (7).
lezz leZZ

Hence, (3.11) — (3.12) are equivalent to the conditions (3.2) — (3.3).

2. Assume that P is m—times continuously differentiable with elements in
L% (IR), and that there are vectors y& € IR, y3 # 0 (k = 0,...,m — 1), such
that the conditions (3.2) and (3.3) are satisfied for n = 0,...,m — 1. We show
that ¢ provides controlled approximation order m.

Let the function f be defined as in (2.5) - (2.6) by

Flu) = Au)" ¢(u),

such that the vector of 2r—periodic functions A(u) := 221:_01 ay e* € C=(IR")
satisfies the conditions

(3.13) D"A(0) ="y} (n=0,...,m—1).

We show that f satisfies the Strang—Fix conditions of order m:
For the p-th derivative of f we find

(D fy(2nl) = (‘8‘) (D A)T(0) (D*p)(2nl) (1€ Z; u=0,...,m—1).

s=0
From (3.13) and the refinement equation (1.7), it follows for [ € Z

5

wepyemty = 30 (1) i 3 (3) 0Pyt (99 1)

5=0 d=0

- (1) Z (O T e G SEGRAIEY
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s=0

- (4 (

s=0

:Z( ) ("7 d) 5= (=T 94D P) (1) (D) ()

yy)t 2D SP)(FI)) (D )(nl).

Using the relation (3.3) with n = g — d, we obtain for odd !
(D“f)(?ﬂ'l):O (p=0,...,m—=1).
For even [, we find by (3.2) withn=p—d

1

(0 emt) =273 (B) =4~ (0 am

9= H (D*f)(Ir) (u=0,...,m—1).

Repeating the procedure, we obtain that
(DA =0  (eZ\{0};p=0,...,m—1).

Finally, using the Poisson summation formula, we have

F0) = ()T b(0) = (w)" D (- —1) #0

leZz

since B(¢) is L2, —stable. Thus, by Theorem 2.2, ¢ provides controlled approx-
imation order m. a

Remark. 1. In the case r = 1, the relations (3.2) and (3.3) can strongly be
simplified, and we obtain Theorem 1.1.

Using the trigonometric polynomial vector A(u) defined in the proof of Theorem
2.2, the conditions (3.2) and (3.3) simply read

D"[A(2u)" P(u)]lu=0 = D" A(0)",
D"[A(2u)" P(u)]|u=r = 0.
2. Let ¢ satisfy the assumptions of Theorem 3.2. In order to verify controlled

approximation order m = 1, the following conditions must be true: There is a
vector y§ € IR" (y) # 0) such that

(3.14) w)TPO) =y (W) P(x) =0T

That means, yJ is the left eigenvector of P(0) for the eigenvalue 1. At the same
time y is the left eigenvector of P(r) for the eigenvalue 0.

3. In order to verify approximation order m = 2 we have to show:

a) ¢ provides controlled approximation order 1, i.e., (3.14) is true for y§ # 0.
b) There is a second vector y} € IR" such that

(20)™" (o) (DP)(0) + (y5)" P(0)

2” (yé)T,
(20)~" (y))" (DP)(7) + (yg)" P(m) =07
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4. For proving the reverse direction in Theorem 3.2, i.e., that the relations (3.2)
and (3.3) imply the controlled approximation order m, the L%, —stability (iii) is
not needed, if we assume that (y3)T (}5(0) # 0.

5. We observe that the conditions (3.2) and (3.3) use the values of the refinement
mask and its derivatives at the points 4 = 0 and v = «, only.

Example 3.1. We want to consider the example of quadratic B—splines with
double knots. Let N2 and N be the B-splines defined by the knots 0,0, 1,1 and
0,1,1,2, respectively, 1.e., we have

z? ze[0,1)
9, v [22¢(1—=)ze][0,1], 20N )2 o
Ng(2) == { 0 otherwise, Nile):= (()2 ) itiegl\i\;ii]é

Let N := (N2, N2)T. In Plonka [20], it was shown that the Fourier transformed

vector
o 2 iu— 24 (24 du)e
N = 2 Ehy

(fu)3 1 — 2iue™™ —¢
satisfies the Fourier transformed refinement equation
N = P(-/2) N(-/2)
with the refinement mask

1 2 4 2eiu 2
P(U) B g (26—iu 4 26—2iu 1+46—iu +e—2iu) .
It is well-known that IN provides the controlled approximation order m = 3.

In fact, the conditions (3.2) and (3.3) are satisfied with g3 := (1,1)%, y{ =
(1/2, )T y2 := (0, 1)*. We find for n = 0, 1, 2
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4. Factorization of the refinement mask

As known, if a single refinable function ¢ provides controlled approximation
order m, then the refinement mask of ¢ factorizes

P(u) = (”Te_)m S(u)

(cf. Theorem 1.1). In this section, we shall find a matrix factorization of the
refinement mask in the case of a finite set of refinable functions.

Let r € IN be fixed. First, let us define the (r x r)-matrix C := (ijk)‘;;ﬁlzo by
the vector y = (yo,...,yr—1)" € IR", y # 0. Let jo := min{j; y; # 0} and j; :=
max{j;y; # 0}. Further, for all j with y; # 0 let d; := min{k : k > j, y; # 0}.
For jo < ji1, the entries of C are defined for j,k =0,...,7— 1 by

Gl oy #0 and =k,
1 yi=0 and j=4k,

(4.1) Cjk(u) = —yj_'1 y; 70 and d; =k,
—e "y, j =5 and k= jo,
0 otherwise.

For jo = j1, C is a diagonal matrix of the form

4.2 C(u) :=diag(l,...,1, (1 —e™ ™) /y;,, 1,...,1).

(4.2) (u) g ( )/ )
Jo r—1-jo

In particular, for » = 1 we have C(u) := (1 — e~%)/y. Note that C is chosen
such that

(4.3) yrC(0) =0T,
We obtain:

Theorem 4.1. Let ¢, (v = 0,...,7 — 1) be functions satisfying the assump-
tions (1) — (iil). Further, let ¢ be refinable. Then the following conditions are
equivalent:

(a) ¢ provides controlled approximation order 1, i.e., there is a vector

y= (Yo, -, yr—1)T € IR (y # 0) with

y" Y (-0 =1.

leZz
(b) The refinement mask P of ¢ satisfies
(4.4) y" P0)=y", y"P(r)=0"

with y as in (a).
(c) The refinement mask P of ¢ is of the form

P(u) = % C(2u) P(u) C(u)™t,

where C(u) is defined by (4.1) — (4.2) with y as in (a), and where 13(u) is an
(r x r)-matriz satisfying P(0)e = e with e := (sign(|yo|), . . ., sign(|y,_1])".
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Proof. 1. Without loss of generality we suppose that y # 0 is of the form

y:(yOa"'ayl—laO"'aO)T

with 1 <{ < randy # 0forv =0,...,] — 1. Introducing the direct sum
of quadratic matrices A & B := diag (A, B), the matrix C(u) reads C(u) =
Ci(u) @ I,._;, where I._; is the (r — ) x (r — {)—unit matrix and

yo_1 —yo_1 0o ... 0
0 yrl —yrt :
Ci(u) = : : ‘ 0 (I>1),
0 0 " yily —u
—e My 0 .0yl
1 — et
Ci(u) = ——.

Yo

It can be easily observed that C(u) is invertible for u # 0, and we have C(u)~! =
Cl(u)_l @® I,._; with

Yo Y1 Y2 ... Y1

Yoz Y1 Y2

Yoz Y17 - Yim2 Yio1
Yoz iz .. Yi—27 Yi-1
We introduce E(u) := (1 —e™ ™) C(u)™! = Ej(u) & (1 — e ™)1, _;.
2. The equivalence of (a) and (b) was already shown in Theorem 3.2. Assume that

(~44) holds. We show that P(u) = 2C(2u)~! P(u) C(u) satisfies the assertion
P(0)e = e withe=(1,...,1,0...,0)T. Using the rule of L'"Hospital, we obtain
—— S —

P(0) = lim _ E(2u) P(u) C(u)
-1 (2(DE)(0) P(0) €(0) + E(0) (DP)(0) C(0) + E(0) P(0) (DC)(0)) .

?

Observe that C(0)e = 0 and (DC)(0)e = (i/y;—1) e; with the [-th unit vector
e :=(0,...,0,1,0,...,0)T. Hence,
——’

-1

~ 1
P(0)e= ——E(0) P(0) e.
Yi—1
By the assumption (4.4), we have E(0) P(0) = E(0). Thus,
8 1
P(0)e= —E(0)e =€
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3. Let the refinement mask P(u) be of the form
_ 1 s -1 _ 1 T
P(u) = QC(QU)P(U)C(U) = 2(1_6_w)C(2u)P(u)E(u)

with C'(u) and E(u) defined by y # 0 as in part 1 of the proof, and with
P(0) e = e. We show that (4.4) is satisfied for P(u).
Since C(m) is regular, the second assertion in (4.4) immediately follows from

(4.3). Again, using the rule of L'Hospital, we find
P(0) = % (2(DC)(0) P(0) E(0) + €(0) (DP)(0) E(0) + €(0) P(0) (DE)(0))

By (4.3), yT P(0) simplifies to
y"P(0) = 14" (DC)(0) P(0) E(0)

Observing that y*T(DC)(0) = iel with e; := (1,0,...,0)T, and 13(0) E(0) =
E(0), we have
y'P(0)=elE(0)=y'. O
Moreover, we obtain the following

Theorem 4.2. Let m > 1 be fired. Let P be an (r x r)-matriz with m-times
continuously differentiable entries in L3 _(IR), and assume that P satisfies (3.2)
and (3.3) forn = 0,...,m — 1 with vectors y3,...,y"~" (y3 # 0). Then the
matriz 13,

(4.5) P(u) :=2C(2u)"! P(u) C(u)

with C(u) defined as in (4.1) — (4.2) by y3, satisfies the conditions (3.2) and
(3.3) forn=0,...,m — 2 with vectors §3, ...,y given by

kot
(4.6) )T = ﬁ Z (k —Ilj- 1) ¥R ()T (DEFT 0 (0)

(k= 0.....m—2). I particalar, we have 35 % 0.

Proof. 1. From 2 P(u) C(u) = C(2u) P(u) it follows by (n — k)—fold differen-
tiation for 0 <n—k <m-—1

n—k

22 ( i k) (D" P) (u)(D'C) (u)

= Z( L)) ) 0 P,

1.e.

(4.7) (D" £ P)(u) € (u) = 877" (u) — S5 ()
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with
n—k

Sk (y) = % > (“ ; k) 2D RO (2u) (D' P (u),

l:
n—k

sit =3 (")) 0 Py '),

=1

o

2. First, we observe that by (3.3) foru=7rand 1 <n<m-—1

n

S ()T eyt

(1.8 Z (7) (Z (", ) itz <D”-’—’€P><w>) (20) (D'C)(m)

- lz:; (7) 0" (2)=" (D'C)(n) = O".

Analogously, for « = 0, from (3.2) it follows for 1 < n < m — 1 by the definition
(4.6) of o1

(y6)" (20)*7"837%(0)

(i ( N l) ()" (20 <D”—’—kP><o>) (2i)7 (D'C)(0)

k=0

= () W e oo

=2 Y () )T (00 0) = 2l - 2 ) )

3. We will show the following. If P satisfies (3.2) — (3.3) for a certain n (1 <
n<m-—1) with y& (k=0,...,n) then P satisfies (3.2) - (3.3) for n — 1 with
g (k=0,...,n—1).

We multiply (3.3) with C(n) and replace (D"_kP)(ﬂ') C(r) (k=0,...,n) by
the right-hand side of (4.7) for u = m. Then, by (4.8), we have for | <n <m-—1

n

S () bt st - s34 )

k=0

= (1) whitip=r L5 (7 )it orteyo) 0By =0
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Hence, by the definition of gj~ =1

,ZE () (i (", by <D”-’“-’c><o>) (20) (0'P) ()

N | —

n—1

_ Z(“;l)(zz) Lgn=t=1 (D' P)(x) = 0.

=0

N3

The substitution I’ = n — 1 — [ yields

f(”;l)@z) P ()T (D" ) () =0,

that is, P satisfies (3.3) for 0 < n < m—2 with the vectors T (k=0,...,m=2).
4. We multiply (3.2) with C(0) and replace (D"_kP)(O) C(0) (k=0,...,n) by
the right—hand side of (4.7) for «w = 0. Then, by (4.9), we obtain for 1 < n < m—1

n

> ()b et st

=277 (yM)" C(0) +Z<) T (24)F=" §7-F(0)
=27"(y5)TC(0) +27"n(gy )T = 27" (y5)T C(0) = n27" (g5 )"

Hence, by the definitions of Srf_k(O) and g7~ it follows that

-3 (1) ( (") i <D”—k—’c><o>) (207 (0 P)(0)

=y (") )ea aT o p)o)
0 — (nl_l)(Ql) n+1+l( ) (Dn 1— lP)(O)_RQ n+1( 61 1)T’

that is, P satisfies (3.2) for 0 < n < m—2 with the vectors f/g (k=0,...,m=2).

5. Finally, we consider

()" = (=) (y5)" (DC)(0) +y5" C(0).

Computing this vector, we easily observe that the sum of the components of {/8
~0
equals 1. Consequently, g, # 0. a



Refinable Function Vectors 23

With the help of Theorem 4.2 we find the following factorization of refinement
matrices:

Corollary 4.3. Let m € IN be fized. Let P be an (v x r)—matriz with m-times
continuously differentiable entries in L3 (IR), and assume that P satisfies (3.2)
~(3.3) forn=0,...,m—1 with vectors y3, ..., y3 "' (y) # 0). Then there are
nonzero vectors &g, ..., &m,m_1, such that P factorizes
1
Q—mCm_l(Qu) . Co(2u) S(u) Co(u)™t ... Croi(w) 7,

where the matrices Cy, are defined by ®y (k=0,...,m—1) as in (4.1) - (4.2)
and S(u) is an (r X r)—matriz with m-times continuously differentiable entries
in L3_(IR). In particular, for the determinant of P it follows

P(u) =

(4.10) det P(u) = (”%)m det §(u).

Proof. The first assertion can easily be observed by repeated application of
Theorem 4.2. The formula (4.10) follows from

1— —2iu .
det (Cy(2u) Cy(u)™1) = 1% —l4e™ (k=0,...,m—1)
—e
O
Remark. The vectors @, (n =0,...,m—1) in Corollary 4.3 can be computed

by repeated application of (4.6). In particular, we obtain zd = (y9)*, =T =

BT = (=) ()T (DC)(0) + (yh)T C(0), where C is defined by o = yJ.

Example4.1. 1. Let us again consider the refinement mask of the vector of
quadratic B—splines with double knots

1 242 2
P(u) - g (26—iu +26—2iu 1+46—iu +e—2iu)

(cf. Example 3.1). By Theorem 4.2, we obtain P by (4.5) with C(u) defined by
0 T
Yo = (1’ 1) :

P L1 -1\ 242 2 1 -1
(u)_4 —z2 1 22+ 227 1+ 4z 4 22 —2z 1
_l 2+Z 1 ( o —iu)
T4 z 1422 2=e '

In particular, we have 13(0) (1) = (1) . For 9 we obtain with y§ = (1/2, )T
(cf. Example 3.4),

e = (10)+amy (L) =0z,
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Repeating this procedure, we finally obtain with z := e~ the factorization
1 1 -1 1/2 —1/2 1 0 20
P =3 (—z2 1 ) (—z2/2 1/2 ) (01—22) (01)
1o ' /1y2 —2\T o =1y
“\01—z —z/2 1/2 —z 1 '

For the determinant of P(u) we have

1 .
det P(u) = — (1 +e™"™)>.
et Plu) = = (14 ™)
2. Now we consider the example of two scaling functions ¢y and ¢; treated in
Donovan, Geronimo, Hardin, Massopust [10] and Strang and Strela [25]. The
refinement mask of ¢ := (¢g, ¢1)" is given by

(=14+924922 = 2%)/v/2 =3 + 102 — 322 - '

The translates ¢o(- — ) and ¢1(- — 1) (I € ZZ) are orthogonal. We observe that
supp ¢o = [0, 1] and supp ¢; = [0, 2]. Further, the symmetry relations ¢y =
¢o(l — ) and ¢1 = ¢1(2 — -) are satisfied. The refinement mask P satisfies
the conditions (3.2) - (3.3) with y8 := (v/2, 1)T and y} = (v/2/2, 1)T. With
Ty = (\/5, DT and =, := (1/2, 1/2)T we find the factorization

P(u)_i<ﬁ/2 —\/5/2) ( 1/2 —1/2) ( 10 0 )

P(u) := 20

T\ -2 1 —2%/2 1/2 —1420z— 22 —4—4z
() ()

A further factorization is not possible, since there is no vector @5 € IR?, which
is a right eigenvector of S(0) for the eigenvalue 1 and a right eigenvector of S(m)
for the eigenvalue 0, at the same time. For the determinant of P it follows

1 .
det P(u) = ——(1 +e™"™)?.
et P(u) = (14 ¢7)
In fact, it was shown in [10, 25] that ¢ provides controlled approximation order
m = 2. This example shows, that the factorization of the determinant given in
(4.10) provides only a necessary, not a sufficient condition for controlled approx-
imation order.

Remark. 1. In the following, let m € INg and 1 < r < m be given integers.
We consider equidistant knots of multiplicity

=z = l/r] (l€7Z),

where |z | means the integer part of z € IR. Let N, € C™="=1(IR) (1 <r <
m; k € ZZ) denote the normalized B-splines of order m and defect r with the
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knots g, . . ., € 4m. We introduce the spline vector N7, := (N/»")"_l In Plonka
[20], it was shown that the refinement mask P7,(u) of N7, can be factorized in

the form

1

Pl (u) = Q—mAm_l(zz) AP Ag(2) A ()
with P7 | :=diag (2”71, ..., 2% and matrices A, (v =0,...,m — 1) defined by
the vector of knots @, := (,,...,%,4,-1)" in a similar manner as C in (4.1) —

(4.2). In particular, we have
det P;L (u) = 2_T(m_1)+7'(7'—3)/2 (1 + e—iU)m

(cf. [20]). Since the approximation order of the spline space generated by N7, is
m, 1t can be conjectured that the B-splines with multiple knots are optimal in
the sense that for a fixed small support [0, [ (m—1)/r] 4 1] of ¢ the best possible
approximation order m is achieved.

2. For the construction of scaling functions providing a given approximation
order, also a reversion of Corollary 4.3 would be useful. This problem will be
dealt with in a forthcomming paper.
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