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Abstract. In this paper we construct an orthogonal trigonometric Schauder basis in the
space C(T2) which has a small growth of the polynomial degree. The construction is mainly
based on an anisotropic PMRA. The polynomial degree is considered in terms of l1- and
l∞-norm.

1. Introduction

In 1914 Faber [3] showed that no polynomial set {tk : k ∈ N} with deg tk ≤ k
2 can be a basis

for the space C(T) of continuous 2π-periodic functions with the uniform norm. Thus, for a
long time it remained an open question for which minimal growth of degree the polynomial
set {tk : k ∈ N} is a Schauder basis in the space C(T). Many papers were devoted to this
problem producing Schauder bases with smaller and smaller growth of the polynomial degree.
An exhaustive review of the history of this problem could be found in the paper of Ul’yanov
[13].

Definitive results on this problem were obtained by Privalov [9, 10]. On the one hand, he
showed that for any polynomial basis {tk : k ∈ N} in the space C(T) there exists an ε > 0
such that for sufficiently large k one has deg tk ≥ (1 + ε)k2 . On the other hand, for any such

ε > 0 he constructed a trigonometric Schauder basis satisfying deg tk ≤ (1 + ε)k2 .
At the same time, the following question was investigated: How does the additional con-

dition for the basis to be orthogonal affect the growth of the degree? In particular, in [11]
Privalov constructed an orthogonal trigonometric Schauder basis {tk : k ∈ N} in the space
C(T) with deg tk ≤ 8

3k. Further, this result was improved by Wojtaszczyk and Woźniakowski
[14] and later by Offind and Oskolkov [7]. Finally, Lorentz and Sahakian showed in [6] that
the additional condition for the basis to be orthogonal does not affect the growth of the
degree, i.e. for any ε > 0 they constructed an orthogonal trigonometric Schauder basis satis-
fying deg tk ≤ (1 + ε)k2 . Their proof was based on Meyer wavelets and corresponding wavelet
packets on the real line which then were periodized. In [8], by the help of de la Vallée Poussin
means and related polynomial wavelets, a similar basis was constructed with optimal growth
of the degree. This construction by means of periodic wavelet and wavelet packet spaces
yields an asymptotically optimal estimation of the norm of the corresponding partial sum
operator.

The main purpose of this paper is to solve the above-mentioned problem for the functions
of two variables, i.e. to construct an orthogonal trigonometric Schauder basis in the space
C(T2) with as small as possible growth of the polynomial degree. To achieve this, we use
ideas of [8] in combination with ideas of an anisotropic PMRA which were recently developed
in [5] and [1].
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∗Corresponding author.
E-mail address: vetalmyronjuk@ukr.net.

1



2 NADIIA DEREVIANKO, VITALII MYRONIUK, AND JÜRGEN PRESTIN

The paper is organized as follows: In Section 2 we first give the necessary definitions and
notations and after that we formulate and prove our main result. Section 3 is devoted to
the estimation of the norm of the orthogonal projection operator which is essential in the
proof of the main result. In this section we prove several auxiliary lemmas to estimate the
corresponding norm of the orthogonal projection operator.

In the paper we use the standard notations N, Z, Z+, R and C which correspond to
the sets of natural, integer, nonnegative integer, real and complex numbers, respectively. By
X2 = {x = (x1, x2) : x1 ∈ X, x2 ∈ X}, we denote the Cartesian product of two sets X where
X is one of the sets N, Z, Z+, R or C. For a finite set A ⊂ R2, the notation |A| denotes the
number of points of this set. Moreover, Z2×2 is a set of all integer matrices of order 2.

2. Orthogonal trigonometric Schauder basis

2.1. Function spaces. Let T2 ∼= [−π, π)2 be the 2-dimensional torus. As usual, the normed
space Lp(T2), 1 ≤ p < ∞, consists of all measurable complex-valued functions f that are
2π-periodic in each variable and

‖f‖p =

(
1

(2π)2

∫
T2

|f(x)|pdx
)1/p

.

By C(T2), we denote the space of all 2π-periodic in each variable and continuous on R2

complex-valued functions f equipped with the norm

‖f‖∞ = sup
x∈T2

|f(x)|.

The normed space C(R2) consists of complex-valued functions f that are continuous on
R2 and

‖f‖∞ = sup
x∈R2

|f(x)|.

For arbitrary vectors r ∈ Z2
+, we also define spaces

Cr(T2) =

{
f :

∂f r1+r2

∂xr11 x
r2
2

∈ C(T2)

}
and

Cr(R2) =

{
f :

∂f r1+r2

∂xr11 x
r2
2

∈ C(R2)

}
.

2.2. Anisotropic PMRA. For an arbitrary regular matrix M ∈ Z2×2, we define a pattern

P (M) = M−1Z2 ∩
[
−1

2 ,
1
2

)2
and a generating set G(M) = MP (M) (see Figure 1). Using

a geometrical argument [2, Lemma II.7], one can see that

|P (M)| = |P (MT)| = |G(M)| = |G(MT)| = |det M|.
For any function f ∈ L2(T2), we introduce the shift operator Tyf = f(· − 2πy), y ∈ R2.

Definition 2.1. For a sequence {Jl}l∈N of regular matrices Jl ∈ Z2×2, |det Jl| > 1, and a

sequence of spaces {Vj}j∈Z+ , Vj ⊂ L2(T2), we denote M0 =
(

1 0
0 1

)
and

Mj = Jj · . . . · J1M0, j ∈ N.
An anisotropic periodic multiresolution analysis in L2(T2) (anisotropic PMRA) is given by

the tuple
(
{Jl}l∈N, {Vj}j∈Z+

)
if the following properties are fulfilled:

(MR1) For all j ∈ Z+ there exists a function ϕj ∈ Vj such that the shifts Tyϕj , y ∈ P (Mj),
constitute a basis for Vj ;

(MR2) For all j ∈ Z+ it holds Vj ⊂ Vj+1 ;
(MR3) The union of all Vj is dense in L2(T2).
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Figure 1. The pattern P (M) (left) and the generating set G(MT) (right)
where M=

(−4 4
−4 −4

)
.

The space Vj from Definition 2.1 is called Mj-shift invariant space and the function ϕj
is called scaling function. If the sequence {Jl}l∈N of regular matrices from Definition 2.1 is
such that |det Jl| = 2, then the anisotropic PMRA is called dyadic.

The space Vj could be rewritten as the span of so-called orthogonal splines

f
ϕj
h (x) =

∑
k∈Z2

ϕ̂j(h+ MT
j k) ei(hT+kTMj)x, h ∈ G(MT

j ),

where ϕ̂j(k) =
1

(2π)2

∫
T2

ϕj(x)e−ikTx dx, k ∈ Z2, are the Fourier coefficients of a function

ϕj . Namely, the following statement is true.

Proposition 2.1. (See [5]) For the Mj-shift invariant space Vj it holds that

Vj = span
{
f
ϕj
h : h ∈ G(MT

j

}
.

Definition 2.2. For the dyadic anisotropic PMRA the wavelet space Wj is the orthogonal
complement of Vj in Vj+1 , i.e.

Wj = Vj+1 	 Vj , j ∈ Z+ .

From results of the paper [5] it follows that Wj is invariant with respect to the shifts Ty,
y ∈ P (Mj), and there exists a function ψj such that Wj = span {Tyψj : y ∈ P (Mj)}. Such
a function ψj is called wavelet.

2.3. Degree of trigonometric polynomials of two variables. For a vector
x = (x1, x2) ∈ R2, we use lq-norm

‖x‖lq =

{
(|x1|q + |x2|q)1/q , 1 ≤ q <∞,
max{|x1|, |x2|}, q =∞,

and introduce the notion of q-degree for a trigonometric polynomial t of two variables as
follows:

degq t = min

{
n ∈ Z+ : t(x) =

∑
‖k‖lq≤n

ckeikTx, ck ∈ C, k ∈ Z2

}
.

In this paper we restrict ourselves to considering only the cases q = 1 and q =∞.

Let
{

eikT· : k ∈ Z2
}

be the usual trigonometric monomial basis. We rewrite this basis by

using single numeration
{

eikT· : k ∈ Z2
}

=
{
ek : k ∈ N

}
so that the growth of deg∞ ek is
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Figure 2. The method of selection of vectors k ∈ Z2 so that the growth of

deg∞ eikT· (left) and the growth of deg1 eikT· (right) are minimal.

minimal (see Figure 2). It is clear that deg∞ ek = n if (2n− 1)2 + 1 ≤ k ≤ (2n+ 1)2, n ∈ N,
and consequently

deg∞ ek =

⌈√
k − 1

2

⌉
where dae = min {n ∈ Z : a ≤ n}.

If we rewrite this basis so that the growth of deg1 ek is minimal (see Figure 2), then we
obtain deg1 ek = n if 2n2 − 2n+ 2 ≤ k ≤ 2n2 + 2n+ 1, n ∈ N, and consequently

deg1 ek =

⌈√
2k − 1− 1

2

⌉
.

Since the usual trigonometric basis is not a Schauder basis in C(T2), analogously to the uni-
variate case it is natural to try to find an orthogonal trigonometric Schauder basis

{
tk : k ∈ N

}
in C(T2) for which the growth of degq tk is as small as possible.

2.4. Particular polynomial functions. Let us describe particular polynomial functions
which will be useful to construct an orthonormal Schauder basis in the space C(T2) with
small growth of the polynomial degree.

Let Mj = JD . . .JD︸ ︷︷ ︸
j

M0, j ∈ N, where JD =
(

1 −1
1 1

)
and M0 =

(
1 0
0 1

)
. After simple

calculations we get |det Mj | = 2j and

(2.1) Mj =


(−4)l

(
1 0
0 1

)
, j = 4l,

(−4)l
(

1 −1
1 1

)
, j = 4l + 1,

2(−4)l
(

0 −1
1 0

)
, j = 4l + 2,

2(−4)l
(−1 −1

1 −1

)
, j = 4l + 3,

l ∈ Z+.

The corresponding inverse matrix has the following form:

(2.2) M−1
j =



(−1)l

∆j

(
1 0
0 1

)
, j = 4l,

(−1)l

∆j

(
1 1
−1 1

)
, j = 4l + 1,

(−1)l

∆j

(
0 1
−1 0

)
, j = 4l + 2,

(−1)l

∆j

(−1 1
−1 −1

)
, j = 4l + 3,

l ∈ Z+,
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where

∆j =

{√
| det Mj | if j is even,√
| det Mj+1| if j is odd,

j ∈ Z+.

We also note that ∆j ∈ N.
Further, for 0 < α ≤ 1

14 we consider the piecewise polynomial

bα(x) =


1 if |x| ≤ 1

2 − α,
3

16α5

(
1
2 − |x|

)5 − 5
8α3

(
1
2 − |x|

)3
+ 15

16α

(
1
2 − |x|

)
+ 1

2 if 1
2 − α < |x| <

1
2 + α,

0 if |x| ≥ 1
2 + α,

and for x ∈ R2 we set

Bα(x) = bα(x1)bα(x2),

Φα(x) =

( ∑
z∈Z2

Bα(x− JT
Dz)

)
Bα(J−T

D x),

Ψα(x) = e−2πixTω

( ∑
z∈Z2

Bα(x− ν − JT
Dz)

)( ∑
z∈Z2

Bα(J−T
D x− JT

Dz)

)
Bα(J−T

D J−T
D x)

where ω =
(
−1

2 ,−
1
2

)T
and ν = (−1, 0)T.

By using Φα and Ψα, we now define functions

ϕα,j(x) =
1√

| det Mj |

∑
k∈Z2

Φα

(
M−T

j k
)

eikTx,

and

ψα,j(x) =
1√

|det Mj |

∑
k∈Z2

Ψα

(
M−T

j k
)

eikTx, x ∈ R2.

These functions constitute a particular case of a more general construction of the dyadic
anisotropic PMRA which was considered in [1]. That is the functions ϕα,j are scaling functions
and ψα,j are corresponding wavelets:

Vj = span
{

Tyϕα,j : y ∈ P (Mj)
}

and Wj = span
{

Tyψα,j : y ∈ P (Mj)
}
.

Further, we need to know how to orthonormalize basis elements of the spaces Vj and Wj

without losing the shift invariance property of these spaces. To this end, we set (see Figure 3)

Φ⊥α (x) =
Φα(x)( ∑

z∈Z2

‖z‖l1≤2

|Φα(x− z)|2
)1/2

, Ψ⊥α (x) =
Ψα(x)( ∑

z∈Z2

‖z‖l1≤2

|Ψα(x− z)|2
)1/2

and define the following two functions:

ϕ⊥α,j(x) =
1√

|det Mj |

∑
k∈Z2

Φ⊥α

(
M−T

j k
)

eikTx

and

ψ⊥α,j(x) =
1√

| det Mj |

∑
k∈Z2

Ψ⊥α

(
M−T

j k
)

eikTx, x ∈ R2.
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Figure 3. Plot of functions Φ⊥α (left) and |Ψ⊥α | (right) for α = 1
14 .

In view of the results [5, Corollaries 3.6 and 3.7], it follows that the shifts Tyϕ
⊥
α,j and

Tyψ
⊥
α,j , y ∈ P (Mj), constitute orthonormal basis elements for the spaces Vj and Wj respec-

tively:

Vj = span
{

Tyϕ
⊥
α,j : y ∈ P (Mj)

}
and Wj = span

{
Tyψ

⊥
α,j : y ∈ P (Mj)

}
.

2.5. The main result. For any set A ⊂ Z2 we consider a set of trigonometric polynomials

TA =

{
t : t(x) =

∑
k∈A

ckeikTx, ck ∈ C
}
,

and for any function f ∈ C(T2) we denote

EA(f)∞ = inf
t∈TA
‖f − t‖∞ .

The quantity EA(f)∞ is called the best approximation of the function f by trigonometric
polynomials from the set TA in the uniform metric.

Further, for arbitrary ε > 0 we set

λ =

{
1
14 if ε ≥ 6

7 ,
ε
12 if 0 < ε < 6

7 .

Definition 2.3. For given ε > 0 the set of polynomials {tk : k ∈ N} is defined by

t1 = 1

and for k = 2j + 1, . . . , 2j+1, j ∈ Z+, by

tk = Tykψ
⊥
λ,j , yk ∈ P (Mj).

For the polynomial set {tk : k ∈ N} from Definition 2.3 and any function f ∈ C(T2) we
define the operator

(2.3) Sµf =

µ∑
k=1

〈f, tk〉 tk

where 〈f, tk〉 =
1

(2π)2

∫
T2

f(x)tk(x) dx.

Theorem 2.1. For given ε > 0 the polynomial system {tk : k ∈ N} from Definition 2.3 is
an orthonormal Schauder basis in C(T2) such that

(2.4) deg∞ tk ≤ (2 + ε)

⌈√
k − 1

2

⌉
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Figure 4. The support of the functions Ψ⊥λ (M−T
2l ·) (left) and Ψ⊥λ (M−T

2l+1·)
(right), l ∈ Z+.

and

(2.5) deg1 tk ≤ (2 + ε)

⌈√
2k − 1− 1

2

⌉
.

Moreover, for all f ∈ C(T2) the following inequality is true:

(2.6) ‖f − Sµf‖∞ ≤ (1 + C(ε)) EAµ(f)∞

where Aµ =
{
k ∈ Z2 : M−T

j k ∈
[
−1

2 + λ, 1
2 − λ

]2}
for 2j ≤ µ < 2j+1, j ∈ Z+, and C(ε) > 0

is a positive constant which depends only on ε.

Proof. The orthonormality of the polynomial system {tk : k ∈ N} from Definition 2.3 follows
from the construction of this system which was discussed in the previous subsection.

We prove the degree inequalities (2.4) and (2.5). Note that these inequalities are trivial
for k = 1. For k ≥ 2 the polynomial system {tk : k ∈ N} is generated by basis elements of
wavelet spaces Wj , j ∈ Z+. For this reason, depending on the values of the parameter j, we
consider two cases.

Case I. Let j = 2l, l ∈ Z+. In this case for 22l < k ≤ 22l+1 we have (see Figure 4)

deg∞ tk = deg∞ ψ
⊥
λ,2l ≤ (1 + 2λ)2l

and

deg1 tk = deg1 ψ
⊥
λ,2l ≤ (1 + 6λ)2l.

Hence, to prove (2.4) and (2.5), it is sufficient to show that for 22l < k ≤ 22l+1 it holds

(2.7) (1 + 2λ)2l ≤ (2 + ε)

⌈√
k − 1

2

⌉
and

(2.8) (1 + 6λ)2l ≤ (2 + ε)

⌈√
2k − 1− 1

2

⌉
.
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For l = 0 or l = 1 the inequalities (2.7) and (2.8) are easily verified. If l ≥ 2 , then for
22l < k ≤ 22l+1 we have

(2 + ε)

⌈√
k − 1

2

⌉
≥ (2 + ε)

⌈√
22l − 1

2

⌉
= (2 + ε) 2l−1 ≥ (2 + 12λ)2l−1 > (1 + 2λ)2l

and

(2 + ε)

⌈√
2k − 1− 1

2

⌉
≥ (2 + ε)

⌈√
2(22l + 1)− 1− 1

2

⌉

≥ (2 + ε)

⌈√
22l+1 − 1

2

⌉
≥ (2 + ε)

(√
2− 1

2l

)
2l−1

> (2 + ε) 2l−1 ≥ (2 + 12λ)2l−1 = (1 + 6λ)2l.

Case II. Let j = 2l + 1, l ∈ Z+. In this case for 22l+1 < k ≤ 22(l+1) we have (see Figure 4)

deg∞ tk = deg∞ ψ
⊥
λ,2l+1 ≤ (1 + 6λ)2l

and

deg1 tk = deg1 ψ
⊥
λ,2l+1 ≤ (1 + 2λ)2l+1.

Hence, to prove (2.4) and (2.5), it is sufficient to show that for 22l+1 < k ≤ 22(l+1) it holds

(2.9) (1 + 6λ)2l ≤ (2 + ε)

⌈√
k − 1

2

⌉
and

(2.10) (1 + 2λ)2l+1 ≤ (2 + ε)

⌈√
2k − 1− 1

2

⌉
.

Similarly to the previous case, if l = 0 or l = 1, then inequalities (2.9) and (2.10) are easily

verified. If l ≥ 2 , then for 22l+1 < k ≤ 22(l+1) we have

(2 + ε)

⌈√
k − 1

2

⌉
≥ (2 + ε)

⌈√
22l+1 − 1

2

⌉

≥ (2 + ε)

(√
2− 1

2l

)
2l−1 > (2 + ε) 2l−1

≥ (2 + 12λ)2l−1 = (1 + 6λ)2l

and

(2 + ε)

⌈√
2k − 1− 1

2

⌉
≥ (2 + ε)

⌈√
2(22l+1 + 1)− 1− 1

2

⌉

≥ (2 + ε)

⌈√
22(l+1) − 1

2

⌉
= (2 + ε) 2l

≥ (2 + 12λ)2l > (1 + 2λ)2l+1.

Hence, inequalities (2.4) and (2.5) are proved.
Finally, we prove the approximation property (2.6) from which it follows that the poly-

nomial system {tk : k ∈ N} from Definition 2.3 is a Schauder basis in C(T2). In view of
Proposition 2.1 we can see that TAµ ⊆ span {tk : k = 1, . . . , µ} which implies the equality
Sµt = t for arbitrary t ∈ TAµ . Thus, choosing t∗ ∈ TAµ as the polynomial of the best
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approximation of the function f ∈ C(T2) and applying Theorem 3.1 (see next section), we
get

‖f − Sµf‖∞ = ‖f − t∗ + Sµ(t∗ − f)‖∞ ≤ ‖f − t
∗‖∞ + ‖Sµ(t∗ − f)‖∞

≤
(
1 + ‖Sµ‖C(T2)→C(T2)

)
‖f − t∗‖∞ ≤ (1 + C(ε)) EAµ(f)∞.

�

3. Norm of the orthogonal projection operator

First, we formulate and prove some auxiliary results.

Lemma 3.1. For any function f ∈ Cr(T2), r ∈ Z2
+, and any vector k ∈ Z2 the following

equality is true:

(3.1) f̂(k) =



1

(2π)2

∫
T2

f(x) dx, k1 = k2 = 0,

1

(2π)2 (ik1)r1

∫
T2

∂r1f

∂xr11

(x) e−ikTx dx, k1 6= 0, k2 = 0,

1

(2π)2 (ik2)r2

∫
T2

∂r2f

∂xr22

(x) e−ikTx dx, k1 = 0, k2 6= 0,

1

(2π)2 i
‖r‖l1kr11 k

r2
2

∫
T2

∂
‖r‖l1f

∂xr11 ∂x
r2
2

(x) e−ikTx dx, k1k2 6= 0.

Note that in the one-dimensional case the corresponding result is well-known (see, e.g. [4,
Chap. 19]). For the functions of two variables the proof is similar to the one-dimensional
case.

Remark 3.1. For any vector r ∈ N2 the equality (3.1) can be extended to all k ∈ R2. In
order to do so it is sufficient to impose the additional condition

(3.2)
∂‖l‖1f

∂xl11 ∂x
l2
2

(−π, x2) =
∂‖l‖1f

∂xl11 ∂x
l2
2

(π, x2) =
∂‖l‖1f

∂xl11 ∂x
l2
2

(x1,−π) =
∂‖l‖1f

∂xl11 ∂x
l2
2

(x1, π) = 0

where l ∈ Z2
+ and 0 ≤ lj ≤ rj − 1, j ∈ {1, 2} .

Let f : R2 → R be an arbitrary function that satisfies the condition

(3.3)
∑
z∈Z2

‖z‖l1≤2

f2(x+ z) > 0, x ∈ supp f,

and

f⊥(x) =



f(x)( ∑
z∈Z2

‖z‖l1≤2

f2(x+ z)

)1/2
, x ∈ supp f,

0, else.

Lemma 3.2. If f ∈ Cr(R2), r ∈ Z2
+, then f⊥ ∈ Cr(R2) too.
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Proof. For x ∈ supp f we have

∂f⊥

∂x1
(x) =

∂f

∂x1
(x)

∑
z∈Z2

‖z‖l1≤2

f2(x+ z)− f(x)
∑
z∈Z2

‖z‖l1≤2

f(x+ z)
∂f

∂x1
(x+ z)

( ∑
z∈Z2

‖z‖l1≤2

f2(x+ z)

)3/2

=
f1(x)( ∑

z∈Z2

‖z‖l1≤2

f2(x+ z)

)3/2
.

It is clear that f1 ∈ C(r1−1, r2)(R2) and supp f1 ⊆ supp f .
Continuing to differentiate, for x ∈ supp f we get

∂
‖r‖l1f⊥

∂xr11 ∂x
r2
2

(x) =
f‖r‖l1

(x)( ∑
z∈Z2

‖z‖l1≤2

f2(x+ z)

)‖r‖l1+1/2

where f‖r‖l1
∈ C(R2) and supp f‖r‖l1

⊆ supp f . Hence,

∂
‖r‖l1f⊥

∂xr11 ∂x
r2
2

(x) =



f‖r‖l1
(x)( ∑

z∈Z2

‖z‖l1≤2

f2(x+ z)

)‖r‖l1+1/2
, x ∈ supp f‖r‖l1

,

0, else.

Thus, since
∑
z∈Z2

‖z‖l1≤2

f2(x+ z) > 0 for x ∈ supp f‖r‖l1
, we get

∂
‖r‖l1f⊥

∂xr11 ∂x
r2
2

∈ C(R2). �

Corollary 3.1. For 0 < α ≤ 1
14 the functions Φ⊥α and |Ψ⊥α | belong to the space C(2,2)(R2).

Proof. It is easy to verify that function bα has a continuous second derivative and consequently
Bα ∈ C(2,2)(R2). As it is shown in the paper [1, Theorem 4.3 and 4.6], in this case the

functions Φα and |Ψα| also belong to the space C(2,2)(R2). Furthermore, these functions
satisfy condition (3.3). Thus, in view of Lemma 3.2, we get the assertion. �

Now, we formulate and prove the statement which generalizes a one-dimensional result
from [12, Chap. 4].

Lemma 3.3. For any polynomial t, 2π-periodic in each variable and any matrix Mj, j ∈ Z+,
which satisfies (2.1), it holds that

(3.4) ‖t‖1 ≤
1

|det Mj |
sup
x∈T2

∑
y∈P (Mj)

|t(x− 2πy)| .



ON AN ORTHOGONAL BIVARIATE TRIGONOMETRIC SCHAUDER BASIS 11
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− 1
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Figure 5. The set �0 for the matrix M5 (left) and M6 (right).

Proof. Let �y =
{
x− y : x = M−1

j ξ, ‖ξ‖l∞ ≤ 1
}

, y ∈ P (Mj). It is clear that �y is a shift

of the set �0 (see Figure 5) by the vector y ∈ P (Mj). Moreover,

vol

( ⋃
y∈P (Mj)

�y

)
= 4 vol

([
−1

2
,
1

2

]2
)

= 4.

Thus, in view of |P (Mj)| = | det Mj |, we get vol(�0) =
4

|det Mj |
.

Since the polynomial t is 2π-periodic in each variable, we can write

‖t‖1 =
1

(2π)2

∫
T2

|t(x)|dx

=
1

4

∑
y∈P (Mj)

∫
�y

|t(2πx)|dx =
1

4

∑
y∈P (Mj)

∫
�0

|t(2π(x− y))|dx

≤ 1

4
vol (�0) sup

x∈�0

∑
y∈P (Mj)

|t(2π(x− y))| = 1

| det Mj |
sup
x∈T2

∑
y∈P (Mj)

|t(x− 2πy)| .

�

Let us introduce the set (see Figure 6)

Ωj =
{
x ∈ R2 : M−T

j x ∈ [−2, 2)2
}
.

Note that this set contains supp Φ⊥α (M−T
j ·) and supp Ψ⊥α (M−T

j ·). Further, we need a gener-
alization of the well-known equality:

(3.5)
M−1∑
k=−M

eπikm
M =

{
2M, m = 2Ms, s ∈ Z,
0, else,

where m ∈ Z and M ∈ N.

Lemma 3.4. For any vector m ∈ Z2 and any matrix Mj, j ∈ Z+, which satisfies (2.1), it
holds that

(3.6)
∑

k∈Ωj∩Z2

e
π
2

ikT(M−1
j m) =

{
16|det Mj |, m = 4Mjs, s ∈ Z2,

0, else.
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−2∆j
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Figure 6. The set Ωj for j = 8l (left) and j = 8l + 1 (right), l ∈ Z+ .

Proof. If m = 4Mjs, s ∈ Z2, then we get∑
k∈Ωj∩Z2

e
π
2

ikT(M−1
j m) =

∑
k∈Ωj∩Z2

e2πikT(M−1
j Mjs)

=
∑

k∈Ωj∩Z2

e2πikTs =
∑

k∈Ωj∩Z2

1 = 16| det Mj |.

Let m 6= 4Mjs, s ∈ Z2. Then p = M−1
j m 6= 4s, s ∈ Z2. Depending on the values of the

parameter j, we consider several cases.
Case I. Let j = 8l, l ∈ Z+. In this case, in view of (2.2), we have

p = (p1, p2)T =

(
m1

∆j
,
m2

∆j

)T

.

Since p 6= 4s, s ∈ Z2, without loss of generality we can assume that p1 6≡ 0 (mod 4), i.e.
m1 6= 4n∆j , n ∈ Z.

Taking into consideration the view of the set Ωj (see Figure 6) and using equality (3.5),
we obtain∑
k∈Ωj∩Z2

e
π
2

ikT(M−1
j m) =

2∆j−1∑
k1=−2∆j

e
π
2

ik1p1

2∆j−1∑
k2=−2∆j

e
π
2

ik2p2 =

2∆j−1∑
k1=−2∆j

e
πik1

m1
2∆j

2∆j−1∑
k2=−2∆j

e
π
2

ik2p2 = 0

because m1 6= 4n∆j , n ∈ Z.
Case II. Let j = 8l + 1, l ∈ Z+. In this case, in view of (2.2), we have

p = (p1, p2)T =

(
m1 +m2

∆j
,
m2 −m1

∆j

)T

.

Since p 6= 4s, s ∈ Z2, without loss of generality we can assume that p1 6≡ 0 (mod 4), i.e.
m1 +m2 6= 4n∆j , n ∈ Z.

It is easy to verify that for the vector u = (2∆j , 2∆j)
T it holds that

(3.7) e
π
2

ikTp = e
π
2

i(k+u)Tp, k ∈ Z2.

Analogously, for the vector v = (−2∆j , 2∆j)
T we have

(3.8) e
π
2

ikTp = e
π
2

i(k+v)Tp, k ∈ Z2.

Thus, using (3.7) and (3.8), we can write (see Figure 6)

(3.9)
∑

k∈Ωj∩Z2

e
π
2

ikT(M−1
j m) =

∑
k∈Πj∩Z2

e
π
2

ikT(M−1
j m)
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where Πj = [−2∆j , 2∆j)× [0, 2∆j).
Thus, in view of (3.5) and (3.9), we get∑

k∈Ωj∩Z2

e
π
2

ikT(M−1
j m) =

2∆j−1∑
k1=−2∆j

e
π
2

ik1p1

2∆j−1∑
k2=0

e
π
2

ik2p2 =

2∆j−1∑
k1=−2∆j

e
πik1

m1+m2
2∆j

2∆j−1∑
k2=0

e
π
2

ik2p2 = 0

because m1 +m2 6= 4n∆j , n ∈ Z.
Case III. For j = 8l + s, 2 ≤ s ≤ 7, we have a similar proof to that in case I (if s is even)

and case II (if s is odd). �

Lemma 3.5. For the functions ϕ⊥α,j the following inequality is true:

(3.10)

∥∥∥∥ ∑
y∈P (Mj)

|ϕ⊥α,j(· − 2πy)|
∥∥∥∥
∞
≤ C1(α)

√
| det Mj | , C1(α) > 0.

Proof. By the definition of the function ϕ⊥α,j we have

I =

∥∥∥∥ ∑
y∈P (Mj)

|ϕ⊥α,j(· − 2πy)|
∥∥∥∥
∞

=
1√

| det Mj |
sup
x∈T2

∑
y∈P (Mj)

∣∣∣∣ ∑
k∈Ωj∩Z2

Φ⊥α

(
M−T

j k
)

eikT(x−2πy)

∣∣∣∣
=

1√
| det Mj |

sup
x∈[− 1

2
, 1
2)

2

∑
y∈P (Mj)

∣∣∣∣ ∑
k∈Ωj∩Z2

gα

(π
2

M−T
j k

)
e2πikT(x−y)

∣∣∣∣
where gα(x) = Φ⊥α

(
2x
π

)
, x ∈ T2.

The function in the supremum norm is periodic with respect to any vector y ∈ P (Mj).
Thus, for this function it suffices to consider the supremum over the set �0. Hence, we can
write

I =
1√

|det Mj |
sup
x∈�0

∑
y∈P (Mj)

∣∣∣∣ ∑
k∈Ωj∩Z2

gα

(π
2

M−T
j k

)
e2πikT(x−y)

∣∣∣∣
=

1√
|det Mj |

sup
‖ξ‖l∞≤1

∑
h∈G(Mj)

∣∣∣∣ ∑
k∈Ωj∩Z2

gα

(π
2

M−T
j k

)
e2πikT(M−1

j ξ) e−2πikT(M−1
j h)

∣∣∣∣
=

1√
|det Mj |

sup
‖ξ‖l∞≤1

∑
h∈G(Mj)

∣∣∣∣ ∑
k∈Ωj∩Z2

gα

(π
2

M−T
j k

)
ei(4ξ)T(π2 M

−T
j k) e−i(4h)T(π2 M

−T
j k)

∣∣∣∣.
Let fξ(x) = gα(x)ei(4ξ)Tx, x ∈ T2. Then, expanding fξ in Fourier series

fξ(x) =
∑
z∈Z2

f̂ξ(z) eizTx,

and applying equality (3.6), we get

I =
1√

|det Mj |
sup

‖ξ‖l∞≤1

∑
h∈G(Mj)

∣∣∣∣ ∑
k∈Ωj∩Z2

∑
z∈Z2

f̂ξ(z) eizT(π2 M
−T
j k) e−i(4h)T(π2 M

−T
j k)

∣∣∣∣
=

1√
|det Mj |

sup
‖ξ‖l∞≤1

∑
h∈G(Mj)

∣∣∣∣ ∑
k∈Ωj∩Z2

∑
z∈Z2

f̂ξ(z) e
π
2

ikT(M−1
j (z−4h))

∣∣∣∣
= 16

√
|det Mj | sup

‖ξ‖l∞≤1

∑
h∈G(Mj)

∣∣∣∣ ∑
s∈Z2

f̂ξ (4(h+ Mjs))

∣∣∣∣ ≤ 16
√
|det Mj | sup

‖ξ‖l∞≤1

∑
l∈Z2

|f̂ξ(4l)|
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= 16
√
|det Mj | sup

‖ξ‖l∞≤1

∑
l∈Z2

∣∣∣∣ 1

(2π)2

∫
T2

gα(x) e−4i(l−ξ)Txdx

∣∣∣∣
= 16

√
|det Mj | sup

‖ξ‖l∞≤1

∑
l∈Z2

|ĝα(4(l− ξ))|.

In view of Corollary 3.1, we have gα ∈ C(2,2)(T2). Besides, gα satisfies condition (3.2) with
r = (2, 2). Consequently, applying (3.1) for all k ∈ R2 and r = (2, 2), we obtain

I ≤ 16
√
|det Mj |

(∥∥gα∥∥∞ + 2

∞∑
l1=1

1

|l1|2

∥∥∥∥∂2gα
∂x2

1

∥∥∥∥
∞

+ 2

∞∑
l2=1

1

|l2|2

∥∥∥∥∂2gα
∂x2

2

∥∥∥∥
∞

+ 4
∑
l∈N2

1

|l1l2|2

∥∥∥∥ ∂4gα
∂x2

1∂x
2
2

∥∥∥∥
∞

)
≤ C1(α)

√
| det Mj | , C1(α) > 0.

�

Remark 3.2. By a similar technique we can prove an analogous result for the functions ψ⊥α,j ,
i.e.

(3.11)

∥∥∥∥ ∑
y∈P (Mj)

|ψ⊥α,j(· − 2πy)|
∥∥∥∥
∞
≤ C2(α)

√
|det Mj | , C2(α) > 0.

Now, we formulate and prove the main result of this section.

Theorem 3.1. The orthogonal projection operator Sµ in (2.3) for the functions {tk : k ∈ N}
from Definition 2.3, acting as an operator from C(T2) to C(T2), is uniformly bounded for all
µ ∈ N, i.e.

‖Sµ‖C(T2)→C(T2) ≤ C(ε), C(ε) > 0.

Proof. Depending on the values of the parameter µ, we distinguish two cases.
Case I. Let µ = 2j , j ∈ Z+. Since the range Vj of the orthogonal projection operator Sµ is

independent of the choice of its basis, we can choose the basis
{

Tyϕ
⊥
λ,j : y ∈ P (Mj)

}
of Vj .

Then, we have

‖S2j‖C(T2)→C(T2) = sup
‖f‖∞=1

sup
x∈T2

∣∣∣∣ ∑
y∈P (Mj)

〈
f, ϕ⊥λ,j(· − 2πy)

〉
ϕ⊥λ,j(x− 2πy)

∣∣∣∣
= sup
‖f‖∞=1

sup
x∈T2

∣∣∣∣ 1

(2π)2

∫
T2

f(ξ)
∑

y∈P (Mj)

ϕ⊥λ,j(x− 2πy)ϕ⊥λ,j(ξ − 2πy) dξ

∣∣∣∣
= sup
x∈T2

∥∥∥∥ ∑
y∈P (Mj)

ϕ⊥λ,j(x− 2πy)ϕ⊥λ,j(· − 2πy)

∥∥∥∥
1

≤ sup
x∈T2

∑
y∈P (Mj)

∣∣∣ϕ⊥λ,j(x− 2πy)
∣∣∣ ∥∥∥ϕ⊥λ,j(· − 2πy)

∥∥∥
1

=
∥∥ϕ⊥λ,j∥∥1

∥∥∥∥ ∑
y∈P (Mj)

|ϕ⊥λ,j(· − 2πy)|
∥∥∥∥
∞
.

Now, using inequalities (3.4) and (3.10), we get

‖S2j‖C(T2)→C(T2) =
∥∥ϕ⊥λ,j∥∥1

∥∥∥∥ ∑
y∈P (Mj)

|ϕ⊥λ,j(· − 2πy)|
∥∥∥∥
∞
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≤ 1

|det Mj |

∥∥∥∥ ∑
y∈P (Mj)

|ϕ⊥λ,j(· − 2πy)|
∥∥∥∥2

∞
≤ C2

1 (λ)

| det Mj |
|det Mj | = C2

1 (λ) .(3.12)

Case II. Let now 2j < µ < 2j+1, j ∈ Z+. We decompose the orthogonal projection Sµ into
the operator S2j and a remainder

Sµ f = S2jf +

µ∑
k=2j+1

〈f, tk〉 tk .

Further, estimating the norm of the remainder operator, we obtain∥∥∥∥ µ∑
k=2j+1

〈f, tk〉 tk
∥∥∥∥
C(T2)→C(T2)

= sup
‖f‖∞=1

sup
x∈T2

∣∣∣∣ µ∑
k=2j+1

〈f, tk〉 tk(x)

∣∣∣∣
= sup
‖f‖∞=1

sup
x∈T2

∣∣∣∣ 1

(2π)2

∫
T2

f(ξ)

µ∑
k=2j+1

tk(x) tk(ξ) dξ

∣∣∣∣
= sup
x∈T2

∥∥∥∥ µ∑
k=2j+1

tk(x) tk(·)
∥∥∥∥

1

≤ sup
x∈T2

2j+1∑
k=2j+1

|tk(x)| ‖tk‖1

=
∥∥ψ⊥λ,j∥∥1

∥∥∥∥ ∑
y∈P (Mj)

|ψ⊥λ,j(· − 2πy)|
∥∥∥∥
∞
.

Now, using inequalities (3.4) and (3.11), we have∥∥∥∥ µ∑
k=2j+1

〈f, tk〉 tk
∥∥∥∥
C(T2)→C(T2)

=
∥∥ψ⊥λ,j∥∥1

∥∥∥∥ ∑
y∈P (Mj)

|ψ⊥λ,j(· − 2πy)|
∥∥∥∥
∞

≤ 1

| det Mj |

∥∥∥∥ ∑
y∈P (Mj)

|ψ⊥λ,j(· − 2πy)|
∥∥∥∥2

∞

≤ C2
2 (λ)

| det Mj |
|det Mj | = C2

2 (λ) .(3.13)

Thus, in view of (3.12) and (3.13), we finally get for all µ ∈ N

‖Sµ‖C(T2)→C(T2) ≤ ‖S2j‖C(T2)→C(T2) +

∥∥∥∥ µ∑
k=2j+1

〈f, tk〉 tk
∥∥∥∥
C(T2)→C(T2)

≤ C2
1 (λ) + C2

2 (λ) = C(ε),

which concludes the proof. �
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