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0 Introduction
The intention of this thesis is the unification and essential generalization of non-
linear reconstruction methods based on the Prony Method. For that purpose
we use the new perception that the extensively used classical Prony Method
for parameter identification in exponential sums can also be considered as a
reconstruction technique for M -term classification of eigenfunctions of special
linear operators. This new insight in the method enables us to derive new gen-
eralized reconstruction methods for structured functions that can be depicted
for example as trigonometric functions, orthogonal polynomials or finite dimen-
sional vectors. Thus, it establishes a broader field of applications in, e.g. signal
analysis or approximation theory.
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1 A Generalization of Prony’s Method
In recent years, the Prony Method has been successfully applied to different in-
verse problems, as e.g. for approximation of Green functions in quantum chem-
istry [55] or fluid dynamics [6], for localization of particles in inverse scatter-
ing [27], for parameter estimation of dispersion curves of guided waves [50],
and for analysis of ultrasonic signals [7]. The renaissance of Prony’s method
originates from some modifications of the original algorithm that considerably
stabilize the original approach, as e.g. the ESPRIT method, the Matrix Pen-
cil Method or the Approximate Prony Method (APM) [28, 40, 48]. We will see
that the Prony Method works under the precondition that the signal at hand is
M -sparse in a certain function space. But the techniques mentioned above can
also be applied if the sparsity number M is not known beforehand, provided
that a sufficiently large number of measurements is given. And the applications
in practice show that they work well even in case of noisy measurements. Error
estimates for the performance of Prony-like methods with noisy measurements
are derived in [2, 19,40].

In this thesis, we want to present a new very general approach for the re-
construction of sparse expansions of eigenfunctions of suitable linear operators.
This new insight provides us with a tool to unify all Prony-like methods on the
one hand and to essentially generalize the Prony approach on the other hand.
Thus it will establish a much broader field of applications of the method. In
particular, we will show that all well-known Prony-like reconstruction methods
for exponentials and polynomials known so far, can be seen as special cases of
this approach. Moreover, the new insight into Prony-like methods enables us to
derive new reconstruction algorithms for orthogonal polynomial expansions in-
cluding Jacobi, Laguerre, and Hermite polynomials. The approach also applies
to finite dimensional vector spaces, and we derive a deterministic reconstruction
method for M -sparse vectors from only 2M measurements.

This dissertation is organized as follows. In the first chapter the original
Prony Method is introduced, followed by a generalization in terms of eigenfunc-
tions of linear operators and generalized eigenfunctions. In chapter two we want
to disengage the method from the restriction of a priori needed information of
the sparsity M that the signal is supposed to inherit. The third chapter treats
numerical realizations of our generalized Prony Method. This new approach
and its range will be enlighted in chapter four with the help of examples. Chap-
ter five is dedicated to further extensions of the generalized Prony Method and
chapter six rises attention to applications. The last chapter is a collection of
open problems in this topic.

1.1 Original Prony Method
In 1795, Gaspard Riche de Prony studied expansion characteristics of gases and
stated that they can be well described via low order exponential functions [45].
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This means he wanted to solve the problem

min
cj ,Tj
‖u(k)− f(k)‖2, k = 0, . . . , 2M, (1.1)

with

f(x) =

M∑
j=1

cje
Tjx, (1.2)

for a small number 2M + 1 of given equidistant measurements u(k), k =
0, . . . , 2M . Instead of solving the approximation problem (1.1), he considered
the measurements u(k) to be described exactly via exponential functions and
introduced a method to solve the exact problem of finding cj , Tj , j = 1, . . . ,M
such that u(k) = f(k), k = 0, . . . , 2M . His method relies on techniques from the
field of finite difference equations. Therefore, we start with a small excursion
into that field, which is mainly based on [21], chapter 5.

An (M + 1)-valued function F of the form

F (f(x),∆f(x), . . . ,∆Mf(x)) = 0 (1.3)

is called homogeneous difference equation. Here, ∆Mf(x) is recursively defined
by

∆Mf(x) := ∆M−1f(x+ 1)−∆M−1f(x), M ≥ 1,

∆0f(x) := f(x).

If F in (1.3) is only linearly dependent on ∆kf(x), k = 0, . . . ,M , we can rewrite
(1.3) as

M∑
k=0

ak∆kf(x) = 0, (1.4)

If, moreover, all ak, k = 0, . . . ,M are independent of x we call (1.4) a linear
homogeneous difference equation with constant coefficients. One can show that

∆kf(x) =

k∑
`=0

(−1)k−`
(
k

`

)
f(x+ `),

thus we can rewrite (1.4) in terms of translations,

M∑
k=0

pkf(x+ k) = 0, (1.5)

with certain coefficients pk, k = 0, . . . ,M . To solve this linear homogeneous
difference equation, we use the ansatz f(x) = zx, for some z 6= 0 and insert it
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in (1.5),

M∑
k=0

pkz
x+k = 0,

M∑
k=0

pkz
k = 0. (1.6)

The algebraic polynomial of order M in (1.6) is called the characteristic poly-
nomial associated with the linear difference equation (1.5). If all roots zj of
the polynomial (1.6) are simple, the general solution of (1.5) will be a linear
combination of the functions zxj , j = 1, . . . ,M . We can represent the possi-
bly complex roots of the polynomial P (z) :=

∑M
k=0 pkz

k as zj = eTj , with the
restriction Im(Tj) ∈ [−π, π).

If the parameters Tj , j = 1, . . . ,M of the function f in (1.2) are known,
we can compute the coefficients cj in a subsequent step. In order to determine
the coefficients cj uniquely we need M initial values, e.g. the given values
f(1), . . . , f(M). This leads to the problem of solving the linear Vandermonde
system

Vc = f z11 z12 · · · z1M
...

...
...

zM1 zM2 · · · zMM


 c1

...
cM

 =

 f(1)
...

f(M)

 .

The only problem left is to determine the a priori unknown characteristic func-
tion P (z), or equivalently, the coefficients pk in (1.5) out of the given data.
Equation (1.5) is satisfied for any x. So, by inserting x = 1, . . . ,M in (1.5)
we can provide ourselves with enough equations to determine the coefficients pj
that define the characteristic function. This leads to the problem of solving a
homogeneous linear system, where the system matrix is a Hankel matrix,

Hp = 0, (1.7)
f(0) f(1) · · · f(M)
f(1) f(2) · · · f(M + 1)
...

...
...

f(M) f(M + 1) · · · f(2M)



p0
p1
...
pM

 =


0
0
...
0

 .

Remark 1.1 Since multiplying a polynomial P (z) by a constant does not change
its roots, we can define pM := 1 and reduce the number of needed input values
by one if we rewrite (1.5) to

M−1∑
k=0

pkf(x+ k) = −f(x+M)
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and solve the inhomogeneous system
f(0) f(1) · · · f(M − 1)
f(1) f(2) · · · f(M)
...

...
...

f(M − 1) f(M) · · · f(2M − 2)




p0
p1
...

pM−1

 =


f(M)

f(M + 1)
...

f(2M − 1)

 .

A proof that that the system matrix in the equation above has indeed rank M
and thus leads to a unique solution, is done more generally in Theorem 2.1.

Let us summarize this method in an algorithm.

1.1.1 Algorithm

Reconstruction of sparse expansions of exponentials

Let f(x) =
∑M
j=1 cje

Tj , with cj ∈ C\{0}, Tj ∈ C, Im(Tj) ∈ [−π, π).
Input: M , f(0), . . . , f(2M − 1).

1. Form the Hankel-matrix H := (f(k + `))M−1k,`=0 and solve the system
Hp = −f with p = (pk)M−1k=0 and f = (f(M + k))M−1k=0 .

2. Define pM = 1 and find all roots eTj , j = 1, . . . ,M of the polynomial
P (z) =

∑M
k=0 pkz

k.

3. Determine the unknowns cj , j = 1, . . . ,M as the solution of the Van-
dermonde-system Vc = f1, with V := (eTjk)M−1,Mk=0,j=1, c := (cj)

M
j=1, f1 :=

(f(k))M−1k=0 .

Output: cj , Tj = ln(eTj ), j = 1, . . . ,M .

The algorithm, as it was introduced above, is just a plain version in order
to explain the idea. For real applications one has to consider erroneous data,
unknown sparsity and numerical issues that follow from them. This will be the
topic in chapters 2 and 3.

In the literature there can be found various ideas to solve this non-linear
inverse problem, where [28, 39, 45, 48, 49, 54] is just an excerpt of the list of
methods, but the oldest known goes back to Baron de Prony.

1.2 The Generalized Prony Method
Now that we understand how the Prony Method works for sparse linear combi-
nations of exponential functions, we might ask ourselves how this method can
be generalized for reconstructing sparse expansions of other function systems.

Recently, we considered in [35] the function reconstruction problem for sparse
Legendre expansions of order N of the form

f(x) =

M∑
j=1

cjPnj (x)
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with 0 ≤ n1 < n2 . . . < nM = N , where M � N , aiming at a generalization of
Prony’s method for this case. We derived a reconstruction algorithm involving
the function and derivative values f (`)(1), ` = 0, . . . , 2M−1. The reconstruction
in [35] is based on special properties of Legendre polynomials, but it does not
provide a direct approach for further generalization of the method to other
sparse orthogonal polynomial expansions or to other function systems apart
from exponentials and monomials.

In [16], the idea of efficient sparse polynomial interpolation has been trans-
ferred to the more general case ofM -term sums of characters of abelian monoids.
This approach has also been used in [26] for the reconstruction of functions be-
ing linear combinations of eigenfunctions of linear operators on suitable algebras
on integral domains. This last paper can be seen as one starting point for our
considerations in our work [34] and therefore also in this thesis.

Let V be a normed vector space over C, and let A : V → V be a linear
operator.

Assume that A possesses eigenvalues, and let Λ := {λj : j ∈ I} be a (sub)set
of pairwise distinct eigenvalues of A, where I is a suitable index set. We consider
the eigenspaces Vj = {v : Av = λjv} to the eigenvalues λj , and for each j ∈ I,
we predetermine a one-dimensional subspace Ṽj of Vj that is spanned by the
normalized eigenfunction vj . In particular, we assume that there is a unique
correspondence between λj and vj , j ∈ I.

An expansion f of eigenfunctions of the operator A is called M -sparse if its
representation consists of only M non-vanishing terms, i.e. if

f =
∑
j∈J

cjvj , with J ⊂ I and |J | = M. (1.8)

Due to the linearity of the operator A, the k-fold application of A to f yields

Akf =
∑
j∈J

cjAkvj =
∑
j∈J

cjλ
k
j vj . (1.9)

Further, let F : V → C be a linear functional with the property Fvj 6= 0 for
all j ∈ I. We show that the expansion f in (1.8) can be reconstructed by using
only the 2M values F (Akf), k = 0, . . . , 2M − 1.

Theorem 1.2 With the above assumptions, the expansion f in (1.8) of eigen-
functions vj ∈ Ṽj, j ∈ J ⊂ I, of the linear operator A can be uniquely recon-
structed from the values F (Akf), k = 0, . . . , 2M − 1, i.e., the “active” eigen-
functions vj as well as the coefficients cj ∈ C, j ∈ J , in (1.8) can be determined
uniquely.

Proof. We give a constructive proof.
1. We define the so-called Prony polynomial

P (z) :=
∏
j∈J

(z − λj),
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where the roots λj , j ∈ J , are the eigenvalues corresponding to the (un-
known) active eigenfunctions vj in the representation of f . Further, let P (z) =∑M
k=0 pkz

k, with pM = 1, be the monomial representation of the Prony poly-
nomial. Combining the unknown coefficients pk with the given values F (Akf),
k = 0, . . . , 2M − 1, and using (1.9) we observe the following relation for m =
0, 1, . . . ,

M∑
k=0

pkF (Ak+mf) =

M∑
k=0

pkF

∑
j∈J

cjλ
k+m
j vj

 =
∑
j∈J

cjλ
m
j

(
M∑
k=0

pkλ
k
j

)
Fvj

=
∑
j∈J

cjλ
m
j P (λj)︸ ︷︷ ︸

=0

Fvj = 0.

Together with pM = 1, the coefficients pk, k = 0, . . . ,M − 1, of the Prony
polynomial can now be determined via the linear system

M−1∑
k=0

pkF (Ak+mf) = −F (AM+mf), m = 0, . . . ,M − 1. (1.10)

Indeed, the coefficient matrix H := (F (Ak+mf))M−1,M−1k,m=0 is an invertible Han-
kel matrix, since (1.9) yields

H = Vλ · diag(c) · diag(Fv) ·VT
λ

with the Vandermonde matrix

Vλ :=
(
λkj
)M−1
k=0,j∈J

and with the diagonal matrices diag(c) = diag(cj)j∈J , diag(Fv) = diag(Fvj)j∈J ,
where the indices j ∈ J are assumed to be given in a fixed order. By assump-
tion, Vλ as well as the diagonal matrices diag(c) and diag(Fv) have full rank
yielding the invertibility of H.

2. Having determined the Prony polynomial

P (z) =

M∑
k=0

pkz
k =

∏
j∈J

(z − λj),

we can evaluate the eigenvalues λj , j ∈ J , that are the zeros of P (z). Since the
eigenspaces Ṽj are assumed to be one-dimensional we can uniquely determine
the corresponding eigenfunctions vj , j ∈ J .

3. In the last step we compute the coefficients cj , j ∈ J , of the expansion
(1.8) by solving the overdetermined linear system

F (Akf) =
∑
j∈J

cjλ
k
j vj , k = 0, . . . , 2M − 1,

using the eigenvalues λj and eigenfunctions vj found in the previous step.
This general approach to the Prony Method enables us to derive reconstruc-

tion algorithms for a variety of systems of eigenfunctions. We summarize the
algorithm as follows.

13



1.2.1 Algorithm

Reconstruction of the sparse expansion (1.8)

Input: M , F (Akf), k = 0, . . . , 2M − 1.

1. Solve the linear system

M−1∑
k=0

pkF (Ak+mf) = −F (AM+mf), m = 0, . . . ,M − 1. (1.11)

2. Form the Prony polynomial P (z) =
M∑
k=0

pkz
k using the obtained values pk,

k = 0, . . . ,M − 1 from step 1 and pM = 1. Compute the zeros λj , j ∈ J ,
of P (z) and determine the corresponding (normalized) eigenfunctions vj ,
j ∈ J .

3. Compute the coefficients cj by solving the overdetermined system

F (Akf) =
∑
j∈J

cjλ
k
j vj k = 0, . . . , 2M − 1.

Output: cj , vj , j ∈ J , determining f in (1.8).
A MATLAB code for this algorithm, with h := (F (Akf))2M−1k=0 and hM :=

h(k)2M−1k=M can look as follows. Note that the index in MATLAB for matrices
and vectors starts a 1 instead of 0, as we have used it until now.

% input signal column vector %h%, with 2M values.
% input sparsity number $M$.
H = hankel(h(1:M),h(M:(end-1)));
h_M = h(M+1:end);
Lambda = roots([1; flipud(H\(-h_M))]);
V = construct_V(Lambda);
c = V\h;

MATLAB implementation of algorithm 1.2.1

The found eigenvalues λ1, . . . , λM are stored in the vector Λ and the corre-
sponding coefficients are stored in c. Note that the function that constructs the
Vandermonde-type-matrix V in the MATLAB implementation shown above is
not only dependent on the found eigenvalues λ1, . . . , λM , but also on the oper-
ator A and the functional F , for they define the sampling values. That is why
we cannot show a specific implementation of that function. But at the end of
this chapter we will present one version of the construction of V for a special
example of the operator A.

In order to enhance the comprehension of the generalization to sparse ex-
pansions of eigenfunctions of linear operators, we will now look at an example.

14



A demonstration of the range of applications of the generalized Prony Method
will be undertaken in chapter 4.1, where we will investigate a lot more specific
linear operators A and also the impact of special functionals F to the algorithm
1.2.1.

Let us consider the vector space C(R) of continuous functions, and let Sa :
C(R)→ C(R) with

Saf(x) := f(x+ a), a ∈ R\{0} (1.12)

be the shift operator on C(R). We observe that {eTa : T ∈ C, ImT ∈ [−πa ,
π
a )}

is a set of pairwise distinct eigenvalues of Sa, and by

Saex(T+ 2πik
a ) = e(x+a)(T+ 2πik

a ) = eTaex(T+ 2πik
a ), x ∈ R, k ∈ Z,

we find for each eigenvalue λT := eTa, T ∈ I := {T ∈ C, ImT ∈ [−πa ,
π
a )}, the

eigenspace VT := span {ex(T+ 2πik
a ) : k ∈ Z}. In order to obtain a unique corre-

spondence between λT and its eigenfunction, we only consider the subeigenspaces
ṼT = span {eTx}. Further, let the functional F : C(R)→ C be given by

F (f) := f(x0), ∀f ∈ C(R), (1.13)

with an arbitrarily fixed x0 ∈ R. Hence F (eT ·) = eTx0 6= 0 for all T ∈ I.
Applying Theorem 1.2 yields that the sparse sum of exponentials

f(x) =

M∑
j=1

cje
Tjx (1.14)

with pairwise different Tj ∈ C and Im(Tj) ∈ [−πa ,
π
a ) can be uniquely recon-

structed from the values

F (Skaf) = F (f(·+ ka)) = f(x0 + ka), k = 0, . . . , 2M − 1,

e.g. from 2M equidistant sampling points with sampling distance a, starting at
point x0.

Let us look at a realization of the function that constructs V in the MAT-
LAB implementation of algorithm 1.2.1. Let A := S2 and let F be the point
evaluation functional F (f) := f(x0), with x0 = 5. The construction of V can
then look as follows.

function V = construct_V(Lambda)
M = length(Lambda);
x = (0:1:2*M-1)*2+5;
V = (ones(2*M,M)*diag(Lambda)).^(diag(x)*ones(2*M,M));
end

MATLAB implementation of construct_V

15



Remark 1.3 If we choose the linear operator A in (1.9) to be the translation
operator Sa (4.34) with a = 1 and if we further choose the point evaluation
functional F in theorem 1.2 to be F (f) := F (0), we see that algorithm 1.2.1
reduces to algorithm 1.1.1. In other words, the original Prony Method is a
special case of the generalized Prony Method applied to the translation operator
Sa. And even if we only consider the translation operator S1, we get a vast
generalization of the original Prony Method, due to the freedom of choice in the
functional F .

1.3 Generalized Eigenfunctions
Let us also consider the case of generalized eigenfunctions. Let r ≥ 1 be a fixed
integer. Analogously as for linear operators in finite-dimensional vector spaces,
we say that ṽ`, ` = 1, . . . , r, are generalized eigenfunctions of multiplicity ` of a
linear operator A : V → V to the eigenvalue λ, if

(A− λI)`ṽ` = 0, ` = 1, . . . , r,

and

Aṽ` = λṽ` +

`−1∑
s=1

α`,sṽs, ` = 1, . . . , r, (1.15)

with some constants α`,s ∈ C. Again, let Λ = {λj , j ∈ I} be a (sub)set of
pairwise distinct eigenvalues of A, and for each j ∈ I, let {ṽj,` : ` = 1, . . . , r} be
a predetermined set of linearly independent generalized eigenfunctions to the
eigenvalue λj . Further, let F : V → C be a functional with F (ṽj,`) 6= 0 for
j ∈ I, ` = 1, . . . , r.

Theorem 1.4 With the above assumptions, the expansion

f =
∑
j∈J

r∑
`=1

cj,`ṽj,`, J ⊂ I, |J | = M, r ≥ 1,

of generalized eigenfunctions of the linear operator A to the eigenvalues λj, j ∈
J ⊂ I, can be uniquely reconstructed from the values F (Akf), k = 0, . . . , 2rM−
1, supposed that the matrix (F (Ak+mf))rM−1,rM−1k,m=0 is invertible.

Proof. Using an induction argument, equation (1.15) implies that

Akṽj,` =

`−1∑
s=0

(
k

k − s

)
λk−sj

`−1∑
µ1=1

µ1−1∑
µ2=1

· · ·
µs−1−1∑
µs=1

(
s∏

ν=1

αj,`−µν

)
ṽj,µs ,

where we set
(
k
k−s
)

:= 0 if s > k. We now consider a generalized Prony polyno-
mial of the form

P (z) :=
∏
j∈J

(z − λj)r =

Mr∑
k=0

pkz
k, (1.16)
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where again λj denote the unknown eigenvalues of A that determine the active
sets of (generalized) eigenfunctions. Then we obtain the following relation for
m = 0, . . . ,Mr − 1,

Mr∑
k=0

pkF (Ak+mf)

=

Mr∑
k=0

pkF

∑
j∈J

r∑
`=1

cj,`Ak+mṽj,`


=

Mr∑
k=0

pkF

∑
j∈J

r∑
`=1

cj,`

`−1∑
s=0

(
k +m

k +m− s

)
λk+m−sj

`−1∑
µ1=1

· · ·

· · ·
µs−1−1∑
µs=1

(
s∏

ν=1

αj,`−µν

)
ṽj,µs

)

=
∑
j∈J

r∑
`=1

cj,`

`−1∑
s=0

(
Mr∑
k=0

pk

(
k +m

k +m− s

)
λk+m−sj · · ·

· · ·
µs−1−1∑
µs=1

(
s∏

ν=1

αj,`−µν

))
F (ṽj,`−s)

=
∑
j∈J

r∑
`=1

cj,`

`−1∑
s=0

λm−sj

(
`−1∑
µ1=1

· · ·
µs−1−1∑
µs=1

s∏
ν=1

αj,`−ν

)
·

(
Mr∑
k=0

pk

(
k +m

k +m− s

)
λkj

)
F (ṽj,`−s).

Now, the term
Mr∑
k=0

pk

(
k +m

k +m− s

)
λkj

can be written as a linear combination of the Prony polynomial P (z) and its
first r − 1 derivatives P (s)(z) =

∑Mr
k=s pk

k!
(k−s)!z

k−s evaluated at λj . For this
purpose, we only have to show that there exist coefficients βj,s,t such that

r−1∑
t=0

βj,s,t
k!

(k − t)!
=

(
k +m

k +m− s

)
holds for each k = 0, . . . ,Mr, where the coefficients βj,s,t are independent of k.
This is obviously possible, since each polynomial in k of degree up to r − 1 can
be written in the form

∑r−1
t=0 βj,s,t

k!
(k−t)! . Hence, by P (s)(λj) = 0 for j ∈ J, s =

0, . . . , r − 1, it follows that
Mr∑
k=0

pkF (Ak+mf) = 0
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for m = 0, . . .Mr − 1. In this way, we obtain again a linear Hankel system of
the form

rM−1∑
k=0

pkF (Ak+mf) = −F (ArM+mf), m = 0, . . . , rM − 1

in order to determine the coefficients pk of the Prony polynomial. Having de-
termined the zeros λj of the Prony polynomial, we obtain the corresponding
eigenfunctions ṽj,1, . . . , ṽj,r, and afterwards compute the complex coefficients
cj,` by solving the overdetermined system

F (Akf) =
∑
j∈J

r∑
`=1

cj,`Akṽj,`, k = 0, . . . , 2rM − 1.

Remark 1.5 Generalized Prony polynomials of the form (1.16) have already
been used for the reconstruction of spline functions in [54] and [38].

In this chapter we saw how the Prony Method can be derived from considerations
about linear difference equations and how we can generalize the method to (gen-
eralized) eigenfunctions of linear operators. Until now we have not considered
applicational problems that may arise, as for example the actual implementa-
tion for an algorithm or the handling of unknown sparsity M . This will be our
focus in the next two chapters.
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2 Generalized Prony Method for Unknown Or-
der of Sparsity M

The algorithms 1.1.1 and 1.2.1 we saw in the introductory chapter need the
exact number M of sparsity in the expansion (1.8) as input data. In practice
one is rarely provided with the exact value of M , but only with an upper bound
L ≥M . In this chapter we will see that this is no major drawback and expound
how we can adapt algorithm 1.2.1 to this setting.

Let A be a linear operator as introduced in chapter 1.2 and

f(x) =

M∑
j=1

cnjvnj (x) (2.17)

be a sparse expansion of eigenfunctions vnj (x) to the eigenvalues λnj of A.
Assume we have 2N ≥ 2L ≥ 2M sampling points of the form

h(k) = F (Akf), k = 0, . . . , 2N − 1,

where L is an a priorly known upper bound of the sparsity M in (2.17). There
are three ways that come immediately to mind to construct a Hankel matrix
to put the oversampled data h(k), k = 0, . . . , 2N − 1 into the first step of the
algorithm. We can use HN := (h(k + `))N−1k,`=0 ∈ CN×N which employs all the
given information (except h(2N − 1)), but can be a really big matrix, or we
use HL := (h(k + `))L−1k,`=0 ∈ CL×L which generally is of convenient size but
neglects all information stored in h(m), m = 2L − 1, . . . , 2N − 1. Another
way is to discard the square structure of the Hankel matrix H and to change
over to a rectangular matrix H2N−L+1,L := (h(k+ `))2N−L,L−1k,`=0 . Of course this
changes the problem of solving the linear system in step one of algorithm 1.2.1
into a least square problem, but it uses all given information while the order of
the polynomial in step 2 of algorithm 1.2.1 (which is defined by the number of
columns of H) still remains to be L.

Before we start our investigation with HL := (h(k+`))L−1k,`=0, we will consider
a different perspective to algorithm 1.2.1. In (1.10) we used the information that
the leading coefficient pM = 1 of the Prony polynomial P (z) is one, to reduce
the number of input data by one. Thus we have to solve a linear system in
the first step of algorithm 1.2.1. If we neglect the information pM = 1, we can
rewrite (1.10) into a homogenous system

M∑
k=0

pkF (Ak+`f) = 0, ` = 0, . . . ,M,

HM+1p = 0, (2.18)

with HM+1 := (h(k+`))Mk,`=0, p := (pk)Mk=0 and 0 ∈ CM+1. Of course, equation
(2.18) is still a linear system, but we can also interpret it as the eigenvalue
problem of finding an eigenvector p to the eigenvalue 0 of HM+1.
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To make this approach applicable we have to show first, that HM+1 is sin-
gular. Indeed, we will show that dim(ker(HL+1)) = L −M + 1 for L ≥ M .
Furthermore, we have to show that any vector u from the kernel of HL+1 de-
fines a polynomial U(z) =

∑L
k=0 pkz

k that contains (amongst others) all desired
roots λnj , j = 1, . . . ,M .

For the original Prony Method, i.e. HL+1 = (h(k+ `))Lk,`=0, h(k) =
∑M
j=1 cj

eTjk, cj ∈ C\{0}, Tj ∈ [−π, π), it was shown in [39] that dim(ker(HL+1)) =
L−M+1. We adapt that theorem to the generalized Prony Method. Using the
coefficients pk, k = 0, . . . ,M of the Prony polynomial P (z) =

∏M
j=1(z − λnj ) =∑M

k=0 pkz
k we construct the vector p, where pk = 0, k = M + 1, . . . , L. By

S := (δk−`−1)Lk,`=0 we denote the forward shift matrix.

Theorem 2.1 Let L ≥ M be given and let h(k) := F (Akf), with f(x) as
defined in (2.17). Then the Hankel matrix HL+1 := (h(k + `))Lk,`=0 has the
eigenvalue 0, where the kernel of HL+1 has the form

ker (HL+1) = span{p,Sp, . . . ,SL−Mp}.

Proof. 1. We show that Smp, m = 0, . . . , L−M is contained in the kernel of
HL+1. From setting (pk,m)Lk=0 := Smp, m = 0, . . . , L−M it follows

pk,m =

{
pk−m, (k −m) = 0, . . . ,M

0, otherwise.

For m = 0, . . . , L−M we get for the `-th component of the vector HL+1S
mp

(HL+1S
mp)`

=

L∑
k=0

pk,mF
(
Ak+`f

)
=

m−1∑
k=0

pk,m︸︷︷︸
=0

F
(
Ak+`f

)
+

M+m∑
k=m

pk,m︸︷︷︸
=pk−m

F
(
Ak+`f

)
+

L∑
k=M+m+1

pk︸︷︷︸
=0

F
(
Ak+`f

)

=

M∑
k=0

pkF
(
Ak+m+`f

)
=

M∑
k=0

pkF

 M∑
j=1

cnjλ
k+m+`
nj vnj


=

M∑
j=1

cnjλ
`+m
nj

(
M∑
k=0

pkλ
k
nj

)
Fvnj =

M∑
k=0

cnjλ
`+m
nj P (λnj )︸ ︷︷ ︸

=0

Fvnj .

2. Let u be any vector from the kernel of HL+1, i.e. HL+1u = 0. We show that
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u ∈ span{p,Sp, . . . ,SL−Mp}. Indeed, we have

0 =

L∑
k=0

ukF
(
Ak+`f

)
=

L∑
`=0

(
L∑
k=0

ukF
(
Ak+`f

))
z`, z ∈ C\{0}

=

M∑
j=1

L∑
`=0

L∑
k=0

ukF
(
cnjλ

k+`
nj vnj

)
z`

=

M∑
j=1

cnj

L∑
`=0

(λnjz)
`
L∑
k=0

ukλ
k
njFvnj

=

M∑
j=1

cnj︸︷︷︸
6=0

Q(λnjz)U(λnj )Fvnj︸ ︷︷ ︸
6=0

,

with Q(z) :=
∑L
k=0 z

k and U(z) :=
∑L
k=0 ukz

k. This means that we obtain a
linear combination of the polynomials Q(λnjz), where the coefficients depend
on the values U(λnj ). In the next step we show that the set of polynomials
{Q(λnjz)|j = 1, . . . ,M} is linearly independent, which means that the linear
combination above can only add up to zero if all coefficients U(λnj ) are zero.
Or in other words, that the polynomial U(z) = P (z)U0(z) is a product of the
Prony polynomial P (z) and a certain polynomial U0(z) of degree L−M − 1.

3. Let qj j = 1, . . . ,M be coefficients of a linear combination of the polyno-
mials Q(λnjz), such that this weighted sum adds up to 0,

0 =

M∑
j=1

qjQ(λnjz) =

M∑
j=1

qj

L∑
k=0

λknjz
k =

L∑
k=0

zk

 M∑
j=1

qjλ
k
nj

 .

Since this equation holds for arbitrary z ∈ C\{0} we get

M∑
j=1

qjλ
k
nj = 0, k = 0, . . . , L

Zq = 0,

with q := (qj)
M
j=1 and a Vandermonde like system matrix Z := (λknj )

L,M
k=0,j=1

which has full rank, since the eigenvalues λnj are pairwise distinct. This shows
that qj = 0 for all j = 1, . . . ,M and thus we have shown the linear independence
of the polynomials Q(λnjz).

4. Now, that we know from step 2 that U(z) = P (z)U0(z), for a polynomial
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U0(z) =
∑L−M
k=0 µkz

k we get

U(z) = P (z)U0(z) =

M∑
k=0

pkz
k
L−M∑
`=0

µ`z
`

= u0 + u1z + · · ·+ uLz
L

= p0µ0 + z(p0µ1 + p1µ0) + · · ·+ zL(pMµL−M ).

By comparing coefficients we get
u0
u1
...
uL

 =


p0µ0

p0µ1 + p1µ0

...
pMµL−M



= µ0


p0
p1
p2
...
0

+ µ1


0
p0
p1
...
0

+ · · ·+ µL−M


0
0
0
...
pM


This shows that any vector u from the kernel of HL+1 is a linear combination
of the vectors Skp, k = 0, . . . , L−M

u =

L−M∑
k=0

µkS
kp.

When we have no a priori knowledge of the sparsity M , we need to calculate
it during the algorithm. We want to present two ideas here. The first one is
to use theorem 2.1, because it tells us that the rank of HL+1 is equal to M .
Thus, we can estimate the rank of HL+1 in a first step and use the outcome as
the sparsity number M . At this stage let us point out that the outcome M̃ of
a rank estimate might vary from the original M in the case of erroneous input
data.

The second idea is to calculate all roots ξm, m = 1, . . . , L of the polynomial
U(z) :=

∑L
k=0 ukz

k, defined via HL+1u = 0. Afterwards we find a least square
solution c̃ of the overdetermined Vandermonde type system(

ξkm
)2N−1,L
k=0,m=1

c̃ = (hk)2N−1k=0 ,

and discard all roots ξm for which |c̃m| is smaller than a previously defined
threshold ε.

Finding the roots of a polynomial of high order is not trivial and therefore
the second idea of finding ξm, m = 0, . . . , N might not be applicable to the case
of using a large square matrix HN+1. As stated before, we can overcome this
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problem by changing the eigenvalue problem HL+1u = 0 into a singular value
problem H2N−L,L+1u = 0, and end up with a Prony-related-polynomial U(z) of
lower order L < N , while still using all given information about the function f .

Remark 2.2 As it is done in [39], we can also formulate a version of theorem
2.1 for the rectangle matrix H2N−L,L+1, which states

ker(H2N−L,L+1) = span{p,Sp, . . . ,SL−Mp},

where p is a right singular vector to the singular value 0 of H2N−L,L+1. But
since the proof follows similar lines as the proof of theorem 2.1 it is omitted.

We can now formulate two variants of a generalized Prony algorithm where
the sparsity M is not known a priori. Here the symbol H stands for either
HL+1,HN+1 or H2N−L,L+1.

2.1 Algorithm with Rank Estimate
Input: h(k) = F (Akf), k = 0, . . . , 2N − 1

1. Estimate the rank M of H.

2. (a) Find all roots λnj , j = 1, . . . ,M of P (z) =
∑M
k=0 pkz

k, where p =
(pk)Mk=0 is found as the eigenvector of the eigenproblem

(h(k + `))
M
k,`=0 (pk)Mk=0 = (0)Mk=0.

Alternatively:

(b) Find all roots λnj , j = 1, . . . ,M of P (z) =
∑M
k=0 pkz

k, where p =
(pk)Mk=0 is found as the singular vector of the singular value problem

(h(k + `))
2N−M−1,M
k,`=0 (pk)Mk=0 = (0)2N−M−1k=0 .

3. Calculate cnj , j = 1, . . . ,M as least square solution of(
λknj

)2N−1,M
k=0,j=1

(cnj )
M
j=1 = (h(k))

2N−1
k=0 .

Output: M, cnj , vnj , j = 1, . . . ,M .

A MATLAB implementation of this algorithm can look the following way.
Here we used the eigenvalue approach. The singular value approach will be
shown in the implementation of algorithm 2.2.
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% input column vector %h%, with more than 2M values.
N = round(length(h)/2);
M = rank(hankel(h(1:N),h(N:end)));
H = hankel(h(1:M+1),h(M+1:2*M+1));
[U,W]= eigs(H,1,0);
Lambda = roots(flipud(U));
V = construct_V(Lambda,s);
c = V\h;

MATLAB implementation of algorithm 2.1

If the number of input values in the implementation above is odd, the matrix
constructed for the rank calculation is a square matrix in CN×N . Note that
in the case of odd N the call round(N/2) returns (N + 1)/2. If the number
of input values is even, the matrix returned by hankel is rectangular and an
element of CN×N+1. The function eigs(H,1,0) returns the eigenvalue closest
to zero and the corresponding eigenvector of H. After running the algorithm, the
sparsity of the signal is stored inM , the eigenvalues in Λ and the corresponding
coefficients in c. Note that again the implementation of construct_V is not
only dependent on the found eigenvalues Λ but also on the operator A and
the functional F . That is why we have not shown an implementation of this
function here. For an example see the implementation at the end of chapter 1.2.

2.2 Algorithm with Coefficient Threshold
Input: L,ε, h(k) = F (Akf), k = 0, . . . , 2N − 1

1. Find all roots ξm, m = 1, . . . , L, of U(z) =
∑L
k=0 ukz

k, where u = (uk)Lk=0

is found as the eigenvector of the eigenvalue problem (resp. singular value
problem) Hu = 0.

2. Calculate c̃m, m = 1, . . . , L, as least square solution of(
ξkm
)2N−1,L
k=0,m=1

(c̃m)Lm=1 = (h(k))
2N−1
k=0 .

3. Discard all pairs (ξm, c̃m) with |c̃m| < ε and rename the remaining pa-
rameters as λnj and cnj , j = 1, . . . ,M . Here, M is the quantity of the
remaining pairs λnj , cnj .

Output: M, cnj , vnj , j = 1, . . . ,M
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% input signal %h% as a column vector.
% input an upper bound %L% for the sparsity of %f%.
% input threshold parameter %epsilon%.
H = transpose(hankel(h(1:L+1),h(L+1:end)));
[W,D,U]= svd(H);
D = diag(D);
smallest_SV = find(D == min(D));
Lambda = roots(flipud(U(:,smallest_SV)));
V = construct_V(Lambda,s);
c = V\h;
places = find(abs(c) > epsilon);
Lambda_end = Lambda(places);
c_end = c(places);
M = length(Lambda_end);

MATLAB implementation of algorithm 2.2

In contrast to the implementation of algorithm 2.1 we used here the function
svd(H) instead of svds(H,1,0), because MATLAB has often problems to
find a singular vector to the smallest singular value of a rank deficient matrix.
Furthermore, we use the column of the matrix U corresponding to the smallest
entry in the vector D instead of the corresponding row in W to evaluate the
roots λ1, . . . , λL, because U ∈ C(L+1)×(L+1), whereas W ∈ C(2N−L)×(2N−L).
In this way we have to calculate the roots of a polynomial of order L+1 instead
of order 2N − L where the latter can be considerably larger.

Remark 2.3 Often, the eigenvalues λj, j ∈ J are well separated or they all lie
on a lower dimensional manifold, e.g. on the unit circle. We may use this a
priori knowledge to discard all roots ξm in step 1 of the last algorithm, whose
distance to the set Λ = {λj |j ∈ J} is greater than a suitable threshold δ.

Example 2.4 An example gives us an impression of the different behavior of
the ideas stated above. For the operator A we use the translation operator and
the function we want to analyze will be

f(x) =

7∑
j=1

cje
λjx,

with

j cj λj
1 1.0 0.3i
2 −1.0 0.8i
3 2.0 1.1i
4 0.5 1.4i
5 0.2 2.1i
6 −3.0 2.3i
7 −1.0 (0.8 + a)i.
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At this stage we have not taken erroneous input data into account, i.e. we
work with correct data in this example. However, the accuracy of the algorithms
output is not only dependent on the error of the input data, but also on the
smallest distance of two active eigenvalues λm and λm+1, as will be examined
in chapter 3. Therefore, we look here at the different behaviors of the algorithms
in dependence of the smallest distance z, |z| < 0.2, between λ2 and λ7, as well
as at the speed differences for increasing numbers N of input data.
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Figure 1: The red stars indicate the total time needed in seconds to run the
generalized Prony algorithm with a rectangular Hankel matrix and the svd
approach in dependency of the number of rows N of H2N−L,L+1 and for L = 20.
The green stars show the running time for L = 50 whereas the blue stars indicate
the time needed for the square matrix HN+1 and the eigenvalue approach.

Since the running time for the svd based algorithm with L = 20 is almost al-
ways about 100 times faster than the eigenvalue approach, we used a logarithmic
scale for the measured time in order to illustrate the time differences throughout
largely varying running times. We see in figure 1 that the algorithm based on
a singular value decomposition with a good approximate L(= 20) to M = 7 is
considerably faster than the algorithm based on an eigenvalue decomposition of
a square matrix HN+1, when all given data are used in both versions. The total
time for all 1000 runs accumulates to 1.5 minutes for the svd approach with
L = 20 and to 4 minutes for L = 50. The eigenvalue decomposition approach
on the other hand needs roughly 1.5 hours. All tests are made on a standard
computer with a 2.4 GHz processor and 4 GB RAM. This test shows that the svd
approach outperforms the eigenvalue decomposition approach vastly in terms of
computational time. In the next test, when we will look at accuracy, it will turn
out that the eigenvalue approach shows advantages over the svd approach. For
that reason both approaches are presented here and none of the two algorithm
variants can be regarded as superior in all circumstances.
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When the separation distance

q := min{‖λnj − λns‖2 | j, s ∈ {1, . . . ,M}}

becomes very small, it is reasonable to assume that the algorithm runs into diffi-
culties for resolving all active eigenfunctions vnj (x) in (2.17) separately. On the
other hand, if we allow more input data we will generally observe a greater in-
terference difference between two different active eigenvalues at increased time.
This effect (called beat in acoustics) will be more dominant the more input data
we use. That is why we hope to resolve the active eigenvalues λnj better, the
more input data we use. In Table 1 we see the performance of the eigenvalue
decomposition approach (resp. svd approach) for q = 0.0001 and increasing
number N of input data. Here, let λ = (λnj )

M
j=1, λ̃ = (λ̃nj )

M
j=1, with λnj de-

noting the eigenvalue corresponding to the active eigenfunction vnj (x) of the
example signal and λ̃nj the according computed approximation.

N ‖λ− λ̃‖eig∞ ‖λ− λ̃‖svd∞ , L = 8 ‖λ− λ̃‖svd∞ , L = 20 ‖λ− λ̃‖svd∞ , L = 50
8 1.14 · 10−7 1.71 · 10−7 − −
16 1.22 · 10−10 4.10 · 10−9 7.80 · 10−10 −
32 2.58 · 10−11 1.31 · 10−9 4.53 · 10−11 5.55 · 10−10

64 9.33 · 10−12 8.06 · 10−10 4.80 · 10−11 9.71 · 10−12

128 8.17 · 10−13 2.33 · 10−10 7.79 · 10−12 4.02 · 10−12

256 9.05 · 10−14 1.77 · 10−10 2.17 · 10−12 6.80 · 10−13

Table 1: Accuracy differences of algorithms 2.1 and 2.2.

We observe an immense accuracy improvement for increasing the number
N of input data for the eigenvalue approach, but a less strong improvement
for the svd approach if L is fixed. If we, however, increase the upper bound L
we experience more accurate calculations. This way we can tune the tradeoff
between computational time and accuracy with the upper bound L.

Interestingly, the algorithm with the svd approach performs really well even
in the case of L = 20, N = 16 which leads to an underdetermined Hankel-system
with a Hankel-matrix H32−20,20+1 ∈ C12×21. Until now we always claimed L <
N and ended up with a rectangular Hankel matrix that has more rows than
columns. But if N − L is still larger than M , apparently the algorithm still
returns good results. The same holds for L = 50, N = 32.

Algorithm 2.1 and 2.2 are generalizations of the Approximate Prony Method
(APM) in terms of eigenfunctions of linear operators. This variant of the Prony
Method was introduced in [39] for exponential functions. In the next chapter
we will examine also other implementations of the Prony Method and generalize
them too, to eigenfunctions of special linear operators.

27



3 Numerical Behavior of the Prony Method
The Prony Method is now more than 200 years old. But it was almost forgotten
and undergoes now a revival. One reason for that is, that the method was
marked as being unstable. In [33] on pages 276-280, C. Lanczos gives an example
of the instability of Prony’s method. He uses the function

f(x) = 0.0951e−x + 0.8607e−3x + 1.5576e−5x,

takes 24 equidistant sampling points f(ξ), ξ = 0, 1/20, . . . , 23/20 and rounds
them to the nearest cent. Then he uses Prony’s method to find the unknwon
exponents −1,−3,−5 and the corresponding coefficients out of the erroneous
input data. The outcome of this test is that the Prony Method fails to recover
the three unknown exponents but returns only two exponentials e−4.45 and
e−1.58. But nevertheless the input data and the approximation constructed
with the two found exponentials differ only in the range of the noise level.

The proposed test for the Prony Method in [33] inherits two hard difficulties.
At first there is made a big failure on the measurements by rounding them to
two digits after the dot. Thus, the signal strength is in the range of the noise
level. Further, the problem introduced above has an intrinsic difficulty due to
the sensitivity of exponential functions to noise. C. Lancos states at page 279
of [33]:
“It would be idle to hope that some other modified mathematical procedure could
give better results, since the difficulty lies not with the manner of evaluation but
with the extraordinary sensitivity of the exponents and amplitudes to very small
changes of the data, which no amount of least-square or other form of statistics
could remedy. The only remedy would be an increase of accuracy . . . ”

This test does not mean that we have to give up the Prony Method because
it is unstable, but that we can not hope to resolve the underlying functions
with a high accuracy, when the noise level exceeds the signal strength. Indeed
Lanczos himself states in the last sentence on page 280 in [33]:
“On the other hand, the picture would have been quit different if our data had
had a ten times greater accuracy.”

That is to say we have to ensure a certain amount of accuracy and can
confidently use Prony’s method. And then we can of course ask the question
whether there is a numerical variant of Prony’s method that solves the problem
better than others. In this chapter we want to deal with this question.

3.1 Prony-like Methods
Only recently, it was shown by Potts and Tasche [43] that the ESPRIT Method
[48] by Roy and Kailath, the Matrix Pencil Method [28] by Hua and Sarkar
and the Approximate Prony Method (APM) [39] by Potts and Tasche can be
seen as Prony-like-methods, i.e., all those methods solve the same kind of prob-
lems with the same core ideas. This means that those methods can be seen as
different (stable) numerical realizations of Prony’s method. In the upcoming
subchapters 3.1.1, 3.2 on the ESPRIT and Matrix Pencil Method we will follow
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the steps in [43] and adapt the calculations to our generalized Prony Method
for eigenfunctions of operators.

Let A be a linear operator with a set of eigenfunctions V := {v`|Av` =
λ`v`, ` ∈ I} and a corresponding set of eigenvalues Λ := {λ`, ` ∈ I} for an
(possibly infinite) index set I. We consider a finite linear combination of eigen-
functions v`,

f(x) :=

M∑
j=1

cnjvnj (x). (3.19)

In the following we want to recover all unknown parameters M, cnj , vnj out of
N ≥ 2M sampling points

F
(
Akf

)
:= F

 M∑
j=1

cnjλ
k
njvnj

 , k = 0, . . . , N,

according to (1.9). Let us reintroduce the Prony polynomial

P (z) :=

M∏
j=1

(z − λnj ) =

M∑
k=0

pkz
k,

with leading coefficient pM = 1, the corresponding vector p := (pk)M−1k=0 and the
companion matrix

C(P ) :=


0 0 . . . 0 −p0
1 0 . . . 0 −p1
0 1 · · · 0 −p2
...

...
. . .

...
...

0 0 . . . 1 −pM−1

 . (3.20)

The eigenvalues of C(P ) are the zeroes λnj of the corresponding polynomial
P (z), [8]. For simplicity we define h(k) := F (Akf) and with

HM (s) :=(h(s+m+ `))M−1m,`=0, s = 0, 1 (3.21)

HM (0) =

 h(0) . . . h(M − 1)
...

. . .
...

h(M − 1) . . . h(2M − 2)

 ,

HM (1) =

 h(1) . . . h(M)
...

. . .
...

h(M) . . . h(2M − 1)


we denote two Hankel matrices whose entries are given input data. We saw
in (1.10) that p is a solution of the square Yule-Walker system HM (0)p =
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−(h(k))2M−1k=M . Or in other words, p is the (unique) coefficient vector for the
linear combination of the last column of HM (1) out of all columns of HM (0).
With this algebraic point of view we can extend the vector −p with a forward
shift matrix (δ(`−m+ 1))M−1,M−2m,`=0 to a full M ×M matrix C(P ) as in (3.20),
and we can formulate the useful relation

HM (0)C(P ) = HM (1). (3.22)

Equation (3.22) is closely related to a square matrix pencil problem [24] pp.251.

Definition 3.1 Let A,B be two M ×M matrices. The set of all matrices of
the form A − λB with λ ∈ C is said to be a matrix pencil. The eigenvalues of
the matrix pencil are elements of the set λ(A,B) defined by

λ(A,B) := {λ ∈ C|det(A− λB) = 0}.

Definition 3.2 With

λ(H) := {λj |Hxj = λjxj , j = 1, . . . , N}.

we denote the set of eigenvalues of a non-defective matrix H ∈ RN×N .

Now we can formulate the lemma that connects the Prony Method with the
Matrix Pencil Method.

Lemma 3.3 The eigenvalues of the matrix pencil H(1),H(0) are exactly the
eigenvalues of the matrix C(P ).

Proof. Let x be an eigenvector of the matrix C(P ) to an eigenvalue λnj . We
will see, that this assumption is enough to show λ(C(P )) = λ(H(1),H(0)).
Consider equation (3.22)

HM (0)C(P ) = HM (1)

HM (0)C(P )x−HM (1)x = 0[
λnjHM (0)−HM (1)

]
x = 0.

Lemma 3.3 shows that we can calculate the unknown active eigenvalues λnj
by solving the matrix pencil problem H(1)x = λH(0)x. Later on we will see the
details of algorithms that are either based on QR-, QZ-, or SV-decomposition.
But before we go into details we will extend the previous approach to unknown
order of sparsity M .

In practice we rarely have exact a priori knowledge of the sparsity M in the
linear combination (3.19), but one is often provided with an upper bound L such
that M ≤ L ≤ bN/2c. As demonstrated in chapter 2, there are basically three
ways to put the given data into the algorithm. The simplest case is to refuse
to use the knowledge of an upper bound L ≥ M and construct a large square
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Hankel matrix HbN/2c+1 = (h(m+ `))
bN/2c
m,`=0 in order to use as many given data

as possible. As we saw, this is computationally very expensive. If just a small
square Hankel matrix HL+1 = (h(m+ `))Lm,`=0 is constructed, we are not using
all the given data which leads to less accurate results. A way in between is to
construct a rectangular matrix HN−L,L = (h(m + `))N−L−1,L−1m,`=0 that uses all
given data and preserves stability, but at the expense of a more complicated
analysis.

In the case of L > M , let q denote the vector that solves HN−L,L+1q =
fN−L := (h(L + m))N−L−1m=0 and whose entries are the coefficients qk, k =
0, . . . , L− 1 of the Prony-related-polynomial

Q(z) =

L∑
k=0

qkz
k =

M∏
j=1

(z − λnj )R(z) = P (z)R(z).

Here, qL = 1 and R(z) is a residual polynomial of degree L−M , i.e. all zeroes of
P (z) are also zeroes of Q(z). Note that the polynomial Q(z) is not uniquely de-
termined, since HN−L,L is rank deficient. If we define the rectangular analogon
of (3.21)

HN−L,L(s) := (h(s+m+ `))N−L−1,L−1m,`=0 , s = 0, 1,

the relation

HN−L,L(0)C(Q) = HN−L,L(1)

still holds, with the same argumentation as above. If we replace the eigenvector
x in Lemma 3.3 by a right singular vector, the same lines in the proof can be
used to show that the eigenvalues λnj , j = 1, . . . , L of C(Q) are eigenvalues of
the rectangular matrix pencil problem

HN−L,L(1)x = λHN−L,L(0)x. (3.23)

If an upper bound L ≤ N of the sparsity M is known, we can either construct
a square Hankel matrix of convenient size and solve an eigenvalue problem or
we construct a rectangular Hankel matrix and solve a singular value problem.
The first approach leads to the Matrix Pencil Method, whereas the latter leads
to the ESPRIT Method.

3.1.1 ESPRIT

In [43] it was shown that the ESPRIT Method (estimation of signal parameters
via rotational techniques) [48] can be seen as a variant of Prony’s method for
sparse sums of exponentials. The advantage of this numerical realization of
Prony’s method is the avoidance of calculating the coefficients of the Prony
polynomial and its roots. As we saw in the original algorithm 1.1.1, we first
have to solve the system Hp = 0 and afterwards find all roots of the Prony
polynomial P (z) =

∑M
j=0 pjz

j . Numerically we find the roots of the Prony
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polynomial as the eigenvalues of the companion matrix C(P ) (3.20). In the
introduction of this chapter we saw, how these steps can be elegantly combined
in the generalized eigenvalue problem HM (0)C(P ) = HM (1). In this chapter
we will exemplarily show for the ESPRIT Method, that this variant of Prony’s
method does not rely on features of the exponential sums in the original Prony
Method and thus can be used for the generalized Prony Method as well.

We follow the lines in [43] and adapt the proofs to the case of sparse repre-
sentations of eigenfunctions of linear operators.

Let L ≤ N be an upper bound on the sparsity M , when 2N data of the
form F (A`f), ` = 0, . . . , 2N − 1 are given. The ESPRIT Method is based on a
singular value decomposition. Let us start with the factorization

H2N−L,L+1 = U2N−LD2N−L,L+1WL+1 (3.24)

of

H2N−L,L+1 :=
(
F (A`+mf)

)2N−L−1,L
`,m=0

, (3.25)

where U2N−L and WL+1 are unitary matrices and where D2N−L,L+1 is a rect-
angular diagonal matrix. By construction, the singular values of H2N−L,L+1

are the diagonal entries of D2N−L,L+1. Let the rows of WL+1 and the columns
of U2N−L be arranged in such a way that the singular values σ1 ≥ σ2 ≥ · · · ≥
σL+1 are nonincreasingly ordered. We use the known submatrix notation of
A(a : b, c : d) to select the rows a to b and the columns c to d of A and we
define

D2N−L,M := D2N−L,L+1(1 : 2N − L, 1 : M) =

(
diag(σj)

M
j=1

02N−L−M,M

)
WM,L+1 := WL+1(1 : M, 1 : L+ 1).

This is reasonable since we know from remark (2.2) of Theorem (2.1) that the
rank of H2N−L,L+1 equals the sparsity M in the representation of f in (3.19).
For that reason we have σM+1 = σM+2 = · · · = σL+1 = 0 in the noiseless case
and we can focus on the range of H2N−L,L+1. Another way to look at it is, to
estimate the rank of H2N−L,L+1 first and than apply the ESPRIT Method for
known sparsity. The simplified version of (3.24) is

H2N−L,L+1 = U2N−LD2N−L,MWM,L+1.

Similarly to the notation (3.21) we define also for WM,L+1 the matrix consisting
of the first L respectively last L columns as

WM,L(s) := WM,L+1(1 : M, 1 + s : L+ s), s ∈ {0, 1}. (3.26)

With this notation we can write

H2N−L,L(s) = U2N−LD2N−L,MWM,L(s),
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because the selection of columns we make in WM,L+1 in the above repre-
sentation is the same selection of columns in H2N−L,L+1. Since U2N−L is
unitary the generalized eigenvalue problem of the rectangular matrix pencil
zH2N−L(0)−H2N−L(1) is equivalent to the generalized eigenvalue problem of
the matrix pencil

zD2N−L,MWM,L(1)−D2N−L,MWM,L(0) (3.27)

Note that D2N−L,MWM,L(s) = diag(σ1, . . . , σM )W(1 : M, 1 + s : M + s) since
the last rows of D2N−L,M are zero. Therefore, by multiplying (3.27) from the
left with D−T2N−L,M , the matrix pencil (3.27) reduces to

zW(1 : M, 1 : M)−W(1 : M, 2 : M + 1).

But we can also use the trick that was introduced in [43] and multiply the
transposed matrix pencil (3.27) from the right with(

diag(σ−11 , . . . , σ−1M )
02N−L−M,M

)
and obtain the generalized eigenvalue problem of the matrix pencil

zWM,L(0)T −WM,L(1)T,

which has the same eigenvalues as the matrix pencil (3.27) except for the zero
eigenvalues and the advantage that more input data are used for the construction
of this matrix pencil, whenever L > M . Finally we determine the eigenvalues
λj of the active eigenfunctions vj as eigenvalues of the matrix

ZSV DM :=
(
WM,L(0)T

)†
WM,L(1)T.

Thus the ESPRIT algorithm reads as follows:

3.1.2 ESPRIT Algorithm

Input: F (Akf), k = 0, . . . , 2N − 1, L ≥M , ε

1. Compute the singular value decomposition (3.24). Determine the rank
and construct the matrices WM,L(0),WM,L(1) as in (3.26).

2. Compute all eigenvalues λ1, . . . , λM of the square matrix

ZSV DM :=
(
WM,L(0)T

)†
WM,L(1)T.

3. Compute the coefficients cj by solving the overdetermined system

F (Akf) =

M∑
j=1

cjλ
k
j vj , k = 0, . . . , 2N − 1.
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Note, that for determining the rank of the matrix H2N−L,L−1 we calculate the
quotients σ1/σ0, . . . , σL/σ0 and set the index of the first σM with σM/σ0 < ε as
the rank of H2N−L,L+1, as it was proposed in [44]. Let us look at a MATLAB
implementation.

% input signal column vector %h%, with 2N values.
% input upper bound %L% of the sparsity number $M$.
% input threshold %epsilon%.
H = transpose(hankel(h(1:L+1),h(L+1:end)));
[U,V,W] = svd(H);
M1 = find(diag(V)/V(1,1) < epsilon);
M = M1(1)-1;
W1 = W(1:L,1:M);
W2 = W(2:L+1,1:M);
Z = W1\W2;
Lambda = eig(Z);
V = construct_V(Lambda);
c = V\h;

MATLAB implementation of the ESPRIT algorithm 3.1.2

Of course the line M = M1(1)-1; can become problematic if the threshold ε
is not chosen suitably.

3.2 Matrix Pencil
In [43] Potts and Tasche have also shown that the Matrix Pencil Method dis-
cussed for example in [25, 28] can be seen as a Prony-like method. The main
difference to ESPRIT is that the first step of algorithm 3.1.2 does not rely on
a singular value decomposition but on a QR decomposition. The steps to show
that also the Matrix Pencil Method is a Prony-like method are similar to those
we saw when we treated the ESPRIT Method and are therefore omitted here.
For details we refer to [43] and just state the algorithm.

3.2.1 Matrix Pencil Algorithm

Input: F (Akf), k = 0, . . . , 2N − 1, L ≥M , ε

1. (a) Compute a QR decomposition of the matrix
H2N−L,L+1 = (F (Ak+`))2N−L−1,Lk,`=0 with a permutation matrix ΠL+1

such that

H2N−L,L+1ΠL+1 = Q2N−LR2N−L,L+1,

with non-increasing diagonal entries of R2N−L,L+1.

(b) Set D = diag(R2N−L,L+1) and determine the rankM of H2N−L,L+1.
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(c) Set DM = D(1 : M, 1 : M) and construct the matrices

SM,L(s) = D−1M R2N−L,L+1Π
T
L+1(1 : M, 1 + s : L+ s), s = 0, 1.

2. Compute all eigenvalues λ1, . . . , λM of the square matrix

ZQRM = ((SM,L(0)T)†SM,L(1))T

3. Compute the coefficients cj by solving the overdetermined system

F (Akf) =

M∑
j=1

cjλ
k
j vj , k = 0, . . . , 2N.

We determine the rank of the matrix H2N−L,L+1 as we did for the ESPRIT algo-
rithm by calculating the quotients D(1, 1)/D(0, 0), . . . ,D(L,L)/D(0, 0) and set-
ting the row indexM of the first diagonal entry D(M,M) with D(M,M)/D(0, 0) <
ε as the rank of H2N−L,L+1. Let us look at a MATLAB implementation.

% input signal column vector %h%, with 2N values.
% input upper bound %L% of the sparsity number $M$.
% input threshold %epsilon%.
H = transpose(hankel(h(1:L+1),h(L+1:end)));
[Q,R,P] = qr(H); %i.e. H*P = Q*R
D = diag(R);
M1 = find(D/D(1) < epsilon);
M = M1(1)-1;
DM = inv(diag(D(1:M)));
S = R*P’; %thus H = Q*S
S0 = DM*S(1:M,1:L);
S1 = DM*S(1:M,2:L+1);
Z = pinv(transpose(S0))*transpose(S1);
Lambda = eig(Z);
V = construct_V(Lambda);
c = V\f;

MATLAB implementation of the Matrix Pencil Method 3.2.1

3.3 MUSIC
We have seen that the ESPRIT Method is a Prony-like method. When search-
ing the literature about the ESPRIT Method one inevitably comes across the
MUSIC Method (multiple signal classification) [49] as another parameter iden-
tification method for trigonometric functions. We will first state the classical
MUSIC Method for exponentials following the presentation in [53] and see that
it also is a Prony-like method.
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Let

f(x) :=

M∑
j=1

cje
ωjx,

f̃(x) :=

M∑
j=1

cje
ωjx + e(x),

be a signal with additional noise e(x) with zero mean and variance σ2, cj ∈ R
and Re(ωj) = 0. Let L be an upper bound for the unknown sparsity M . We set

A := (eωjk)L,Mk=0,j=1, ∈ C(L+1)×M ,

y(t) := (cje
ωjt)Mj=1,

e(t) := (e(t+ k))Lk=0,

then

f(t) := (f(t+ k))Lk=0 = Ay(t),

f̃(t) := (f(t+ k))Lk=0 = Ay(t) + e(t). (3.28)

Since ωj , ω` can be considered independent random variables we observe

E{cjeωjtc`e−ω`(t−k)} = c2je
ωjkδj,`, (3.29)

E{f(t)f∗(t− k)} =

M∑
j=1

c2je
ωjk + σ2δk,0.

What we like to have in order to perform the MUSIC algorithm is the covariance
matrix

R := lim
N→∞

1

N

N∑
t=1

f̃(t)f̃∗(t),

with f̃(t) as in (3.28), but that implies that we need access to infinitely many
sampling points. According to the available data we estimate the covariance
matrix as the truncated sum

R̂ :=
1

L

L∑
t=1

f(t)f∗(t).

From (3.29) and (3.28) we get

R = APA∗ + σ2I

for P := diag(c21, . . . , c
2
M ). Let us assume that cj � σ2, j = 1, . . . ,M , then, for

the non increasing ordered eigenvalues λk, k = 1, . . . , L of R holds

λk > σ2, k = 0, . . . ,M − 1,

λk = σ2, k = M, . . . , L,
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since the rank of APA∗ is M .
Now let gm ∈ CL+1, m = 0, . . . , L, be the eigenvectors of R corresponding

to the eigenvalues λk, k = 0, . . . , L. From the structure of the set of eigenvalues
it follows that the first M eigenvectors gm, m = 1, . . . ,M − 1 form the signal
subspace, whereas the last L − M eigenvectors gm, m = M, . . . , L form the
noise only subspace. This means, for G := [gM , . . . ,gL] we get A∗G = 0. In
particular this last equation tells us that the noise space is orthogonal to the
signal subspace. Schmidt suggested in [49] to search through ω ∈ [−π, π] for
steering vectors v(ω) := (eωk)Lk=0 that fulfill

v∗(ω)GG∗v(ω) = 0

and then look for poles of the function

T (ω) =
1

v∗(ω)GG∗v(ω)
. (3.30)

In order to avoid confusions later on, we refer to this original method as the non
root MUSIC Method. In [46] Rao suggests the root MUSIC algorithm that finds
the unknown parameters ωj , j = 1, . . . ,M , as the roots of a certain polynomial.
Rao states:
“In Spectral MUSIC, a primary motivation for computing the null spectra was
the fact that

A∗gm = 0, m = M + 1, . . . , L,

[...]. Therefore, if we define polynomials using the eigenvectors corresponding
to the noise subspace, i.e.

gm(z) =

L∑
k=0

gk,mz
k, m = M + 1, . . . , L, (3.31)

then zj = eωj , j = 1, . . . ,M , the signal zeroes, are roots of each of the above
polynomials.”

Now we have everything together to see, that the root MUSIC algorithm is
nothing but the Prony Method as we have seen it in algorithm 2.2. Note that
if we define H := (f(k +m))Lk,m=0, as in the Prony Method we get

(HH∗)k,m :=

L∑
`=0

hk,`h̄`,m =

L∑
`=0

f(`+ k)f∗(`+m) = (R̂)k,m.

Thus, the matrix R̃ that is used in the MUSIC algorithm is basically the squared
Hankel-matrix H in the Prony Method. From Rgm = 0 we derive

Rgm = 0

g∗mRgm = 0

g∗mHH∗gm = 0

(H∗gm)∗H∗gm = 0

⇔ Hgm = 0.
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In other words, the eigenvectors corresponding to the eigenvalue zero of R co-
incide with the eigenvectors of H∗ corresponding to the eigenvalue zero in the
absence of noise. Therefore, the polynomials defined in (3.31) are Prony related
Polynomials Q(z)∗ as in algorithm 2.2, with zeroes λ̄j , j = 1, . . . ,M . Note that
in the presence of noise, the eigenvectors of H∗ corresponding to the smallest
eigenvalues do not necessarily have to coincide with the eigenvectors correspond-
ing to the smallest eigenvalues of the estimation R̂ to the matrix R. Therefore
we can expect different results for the MUSIC Method and the APM.

Even though we saw that the MUSIC Method is a Prony-like method, it
turns out that it does not perform as well as the methods we have investigated
before. Apparently, squaring the input data prior to using them in a Prony-like
method affects the output quality. For that reason we will not generalize the
MUSIC algorithm to our generalized Prony Method.

Let us look at a comparative test example between the MUSIC Method and
the APM.

Example 3.4 We have seen in example 2.4 that it is a hard problem to detect
a small minimal separation distance

q := {|λj − λs| | j, k ∈ {1, . . . ,M}}

between eigenvalues λj of active eigenfunctions vj, j = 1 . . . ,M in the signal
f =

∑M
j=1 cjvj. Consider the function

f(x) = sin(2.3x)− 2 cos(0.1x) + e2.301ix,

with q = 0.001. We oversample the signal f and use 23 input values f(0),
. . . ,f(22) without an a priori knowledge about an upper bound L for the actual
sparsity M = 5. Therefore, the two matrices we use in the MUSIC Method
and in the APM are elements of C12×12. In Table 2 we compare the computed
eigenvalues of the root MUSIC algorithm with those computed by the APM.

j λj λ̃j rootMUSIC λ̃j APM
1 −2.3i −2.299999918157941i −2.300000000000000i
2 −1i −1.000008926442188i −0.999999999999997i
3 1i 1.000000228773602i 1.000000000000011i
4 2.3i − 2.300000000010592i
5 2.3001i 2.300803605521613i 2.300999999986370i
Table 2: Performance differences of the MUSIC Method and the APM.

We see that the root MUSIC Method has problems in separating eigenvalues
with a small separation distance where the APM at the same time gives very
accurate results. Let us also have a look at the function (3.30) of the non root
MUSIC Method that is supposed to have singularities at 2.3 and 2.3001. In
Figure 2 we see an excerpt of T (ω) in the neighborhood of ω = 2.3.
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Figure 2: The blue line shows the characteristic of the function Tω as introduced
in 3.30 at the critical points 2.3 and 2.301.

The function does have a peak in the region around λ4 = 2.3 and λ5 = 2.3001,
but it should have two singularities. Note, that the vertical axis is in logarithmic
scale, such that we can observe more easily the missing second peak. This test
shows that also the non root MUSIC Method does not perform better.

Remark 3.5 The Pisarenko Method that was introduced in [37] is a special
case of the MUSIC Method when the sparsity M is known beforehand, as it was
shown for example in [53] .

The huge performance differences between the MUSIC Method and the APM
discards the MUSIC Method as an alternative method to the Prony-like methods
we have studied before. We will have comparative tests between the APM,
ESPRIT and the Matrix Pencil Method in subchapter 3.5, where we will see
that these three numerical variants perform somewhat similar. Therefore, we
have just tested the MUSIC Method against the APM.

3.4 Stability of the Approximate Prony Method
There are just a few stability results known for numerical realizations of the
original Prony and the existing ones are usually not transferrable to our gen-
eralized Prony Method. In this section we want to list some known stability
results for the case of the translation operator Af(x) := f(x+1) with the point
evaluation functional F (f) := f(0) and elicit their incapacity to perform as well
for other linear operators.

In [39] the stability of the Approximate Prony Method (APM) is investi-
gated. In other words, we are now looking at the special case were the signal f
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has the form

f(x) =

M∑
j=1

cje
iTjx,

with cj ∈ R\{0} and Tj ∈ [−π, π), j = 1, . . . ,M . Let hk := f(k) denote
the exact input data and let only perturbed input values h̃k = hk + ek, k =
0, . . . , 2N − 1 be known. Here we assume that |ek| ≤ ε for a certain accuracy
ε. Furthermore we assume to know an upper bound L with M ≤ L ≤ N of the
sparsity M of f . Note that the failure matrix

E = (ek+m)2N−L−1,Lk,m=0

is also a rectangular Hankel matrix and we can denote the Hankel matrix
H̃2N−L,L+1 that we use in the first step of algorithm 2.2 as H̃2N−L,L+1 =
H2N−L,L+1 + E2N−L,L+1.

The analysis in [39] starts backwards with the accuracy of the calculations
of the coefficients cj in step 2 of algorithm 2.2. Let V be the Vandermonde-type
matrix

V =
(
eikTj

)2N,M
k=0,j=1

. (3.32)

The quality of the calculated coefficients cj is not only dependent on the accu-
racy of the input values but also on the minimal separation distance

q := min{|Tj − Tk| | j, k ∈ {1, . . . ,M}},

as we saw in example 2.4. This observation can easily be justified by observing
that a Vandermonde-type matrix is rank deficient iff at least two entries in
one row are the same. This means, the condition number of V increases when
the separation distance q decreases. When enough input data are available
we can state an upper bound for the squared spectral norm of V and specify
a left inverse L depending on N and q. Thereby also the condition number
cond(V) := ‖L‖2‖V‖2 is bounded.

Lemma 3.6 Let N > π2/q and D := diag(1− |k|/(N + 1))Nk=−N be a diagonal
matrix, then

L := (VHDV)−1VHD

is a left inverse of V and the squared spectral norm of L can be estimated by

‖L‖22 ≤
3

2N + 2
.

The squared spectral norm of V can be bounded by

‖V‖22 ≤ 2N + 1 +
2π

q

(
1 + ln

π

q

)
.
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Thus the condition cond(V) is bound by O(1/(Nq)). For a proof see [39] chap-
ter 4. The proof heavily relies on the fact that all entries of V have norm 1 and
thus their magnitude is not exponentially increasing (respectively decreasing)
with k in (3.32). That is the reason for the moderate increase of the condition
number of this special Vandermonde-type matrix. Even for the translation op-
erator and the neglect of the restriction of real valued parameters Tj ∈ [−π, π),
Lemma 3.6 does not hold anymore, even less for arbitrary linear operators A
and eigenfunctions differing from the exponential functions.

Now let us look at a sensitivity result for the calculations of the coefficients
cj when only perturbed input data are given. Again we formulate the Lemma
as it is stated in [39] and refer to the proof in that work.

Lemma 3.7 Assume that |hk − h̃k| ≤ ε, k = 0, . . . , 2N − 1 and Tj − T̃j ≤
δ, j = 1, . . . ,M . Let V be given by 3.32 and Ṽ the perturbed version of V
determined by approximations T̃j of Tj. Further let Vρ = h and ρ̃ = L̃h̃, where
L̃ := (ṼHDṼ)−1ṼHD is a left inverse of Ṽ. If the assumptions of Lemma 3.6
are fulfilled, then for each N ∈ N with

N > π2 max{q−1, q̃−1}

the following estimate

‖ρ− ρ̃‖ ≤
√

6(N + 1)(2M + 1)‖h‖δ +
√

3ε

is fulfilled.

Special properties of the Dirichlet Kernel applied to differences of exponential
functions are used in the proof. Therefore, this result does not hold for other
eigenfunctions of linear operators than exponentials with purely imaginary pa-
rameters Tj .

In practice, the condition N > π2/q is often an immense exaggeration of the
actually need number of input values, but up until now it is an open question,
if the bounds in Lemma 3.6 and 3.7 are tight.

Let U(z) =
∑L
k=0 ukz

k be the Prony-related polynomial which coefficients
are calculated in step 1 of algorithm 2.2 and let Ũ(z) be the corresponding poly-
nomial when only erroneous input data are available. In [39] Potts and Tasche
also give a result which states that the perturbed polynomial Ũ(z) evaluated at
the correct active eigenvalues eTj is always smaller than a certain bound. Which
indicates that the roots of the Prony polynmial P̃ (z) are close to those corre-
sponding ones of ˜U(z). But the determination of the bound relies on ‖V‖ and
‖L‖, for which we argued that they are not easily calculated for eigenfunctions
of arbitrary linear operators A. Therefore this result is omitted here.

3.5 Numerical Tests for Different Methods
Now that we have considered different numerical realizations for our generalized
Prony Method, let us test if we can recognize performance differences. Consider

41



the function

f(x) = e0.3ix − e0.7ix + 2 cos(x)− 2e2.3ix + 5e2.9ix.

In this test scenario we use the translation operator Af(x) := f(x+ 1) and the
point evaluation functional F (f) := f(0) in order to analyze the signal f . We
set N = 40, i.e. we have the input values f(0), . . . , f(79) and we set L = 20 as
an upper bound for the actual sparsity M = 6. For the ESPRIT Method, the
Matrix Pencil Method and the APM based on singular value decomposition we
use the rectangular Hankel matrix H2N−L,L+1 = (f(k + m))2N−L−1,Lk,m=0 and for
the APM based on eigenvalue decomposition we use the square matrix HN =
(f(k,m))N−1k,m=0.

In our first test, we assume given perturbed values

f̃(k) = f(k) + e(k).

Here, e(k) is additive white gaussian noise e(k), with mean 0 and variance σ2.
We perform tests for 13 different variances σ2 = 10−14, 10−13, . . . , 10−2 and for
each choice of σ2 we perturb the signal f with 500 different instances of addi-
tional noise e and average the results. More precisely, we compute the largest
difference between the actual eigenvalues λj and the computed eigenvalues λ̃j ,
j = 1, . . . , 6 and average these values over the 500 calculations. Set λ = (λj)

6
j=1

and λ̃ = (λ̃j)
6
j=1, then we define for each method the reconstruction failure err

as

err :=
1

500

500∑
k=1

‖λ− λ̃‖∞.

The results of all 500 · 13 · 4 = 26000 calculations are presented in Table 3.

σ2 err ESPRIT err Matrix Pencil err svd-Prony err eig-Prony
10−14 1.53 · 10−15 1.47 · 10−15 3.63 · 10−15 3.04 · 10−15

10−13 1.58 · 10−15 1.64 · 10−15 3.47 · 10−15 3.20 · 10−15

10−12 5.38 · 10−15 8.14 · 10−15 1.72 · 10−14 1.51 · 10−14

10−11 5.25 · 10−14 7.96 · 10−14 1.59 · 10−13 1.49 · 10−13

10−10 5.24 · 10−13 8.02 · 10−13 2.72 · 10−12 1.56 · 10−12

10−9 5.18 · 10−12 7.89 · 10−12 1.56 · 10−11 1.55 · 10−11

10−8 5.27 · 10−11 8.05 · 10−11 1.42 · 10−10 1.53 · 10−10

10−7 5.29 · 10−10 7.95 · 10−10 1.53 · 10−09 1.89 · 10−09

10−6 5.15 · 10−09 8.03 · 10−09 1.67 · 10−08 1.68 · 10−08

10−5 5.17 · 10−08 8.02 · 10−08 1.52 · 10−07 1.67 · 10−07

10−4 5.25 · 10−07 8.00 · 10−07 1.71 · 10−06 1.52 · 10−06

10−3 5.24 · 10−06 8.18 · 10−06 1.66 · 10−05 1.71 · 10−05

10−2 5.25 · 10−05 7.93 · 10−05 1.49 · 10−04 1.64 · 10−04

10−1 5.36 · 10−04 8.00 · 10−04 1.50 · 10−03 1.57 · 10−03

10−0 5.49 · 10−03 1.25 · 10−02 1.36 · 10−02 1.27 · 10−02

Table 3: Performance differences of ESPRIT, MUSIC and the APM.
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We observe that both APM approaches give similar results. Note, that the
singular value decomposition approach though is faster, as we saw in example
2.4. But we see that the Matrix Pencil Method gives twice as good results as the
APM and the ESPRIT Method is even three times more accurate. However, in
the presence of high noise, there were occasionally some test, were neither the
ESPRIT nor the Matrix Pencil Method could recover all 6 active eigenfunctions
in f , due to a falsely computed sparsityM . In the last row of Table 3 we cheated
at the ESPRIT Method and MUSIC Method by setting M̃ = 6 and not letting
the algorithms find it during the computation. In this sense, the APM is more
reliable when it comes to heavily corrupted data. Note that all methods give
very accurate results in the presence of noise.

As we have already seen in example 2.4, a small separation distance q :=
{|λj − λs| | j, k ∈ {1, . . . ,M}} of the eigenvalues corresponding to the active
eigenfunctions in the signal f can cause numerical difficulties. For that reason
we consider now the function

f(x) = e0.3ix − e0.7ix + 2 cos(x)− 2e2.3ix − e(2.3+z)ix + 5e2.9ix. (3.33)

for some small z ∈ R and test, how well the different methods can compute the
eigenvalues λj , j = 1, . . . , 7. Again we set λ = (λj)

7
j=1, λ̃ = (λ̃j)

7
j=1 and err =

‖λ− λ̃‖∞. The performance tests are made for z = 10−`/2, ` = 1, . . . , 11. For a
minimal separation distance q = 10−6 non of the methods is able to distinguish
between the eigenvalues 2.3i and 2.300001i. Table 4 shows the accuracy results
for the different methods.

z err ESPRIT err Matrix Pencil err svd-Prony err eig-Prony
10−0.5 2.13 · 10−15 1.83 · 10−15 2.04 · 10−15 1.77 · 10−15

10−1 2.48 · 10−15 1.61 · 10−15 1.08 · 10−14 3.44 · 10−15

10−1.5 5.06 · 10−15 2.66 · 10−15 2.00 · 10−15 2.31 · 10−15

10−2 1.95 · 10−14 3.21 · 10−15 1.78 · 10−14 1.90 · 10−14

10−2.5 2.48 · 10−13 4.53 · 10−14 9.57 · 10−13 3.21 · 10−14

10−3 2.30 · 10−12 2.48 · 10−13 2.60 · 10−12 1.81 · 10−12

10−3.5 2.43 · 10−11 1.76 · 10−11 1.41 · 10−11 3.26 · 10−11

10−4 2.22 · 10−10 1.34 · 10−10 6.80 · 10−11 1.23 · 10−10

10−4.5 3.42 · 10−09 4.49 · 10−10 1.09 · 10−09 1.06 · 10−09

10−5 1.75 · 10−08 1.90 · 10−08 2.74 · 10−09 1.89 · 10−08

10−5.5 1.42 · 10−07 1.04 · 10−07 2.44 · 10−07 1.90 · 10−07

Table 4: Accuracy differences of ESPRIT, MUSIC and the APM.

Note that we established here a hard problem in distinguishing between
eigenvalues of active eigenfunctions with so small a separation distance as q ≈
3.16 · 10−6. Because, if we consider a function f2 were the summand −2e2.3ix in
(3.33) is replaced by −3e2.3ix and the summand −e(2.3+z)ix vanishes, then the
maximal distance

max
k=0,...,79

(f(k)− f2(k)) = 2.49 · 10−4
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of both functions at the sampling points k = 0, . . . , 79 is rather small.
In summary we can say that the Prony-like methods are high resolution

methods that can distinguish between eigenvalues that are very close to one
another in the absence of noise, but they still are powerful tools for analyzing
noisy measurements, when the minimal separation distance is only reasonably
small. Note that the difference between f and f̃ increases in time, since the effect
of the beat frequency q intensifies over longer observation intervals. Therefore,
we can expect better results if more input data are used. Indeed, if we set for
example q = 10−5.5, as in the last row of Table 4 and N = 400, L = 200 we get
the following better results.

z err ESPRIT err Matrix Pencil err svd-Prony err eig-Prony
10−5.5 1.97 · 10−10 3.88 · 10−10 1.09 · 10−09 2.94 · 10−10

All four variants of the Prony Method that we investigated in this chapter
perform about the same, whereas the ESPRIT Method turns out to be slightly
favorable over the others. In [53] Stoica and Moses elucidate the Pisarenko [37],
the MUSIC [49] and the ESPRIT [48] method and conclude:
“All the high-resolution methods presented [...] provide very accurate frequency
estimates, with only small differences in their performances. Furthermore, the
computational burdens associated with these methods are rather similar. Hence,
selecting one of the high-resolution methods for frequency estimation is essen-
tially a matter of taste.”
We observed better results with the Prony-like methods compared to the (non
root) MUSIC algorithm and therefore also the Pisarenko Method. And in-
deed the authors in [53] append after the passage cited above that the ESPRIT
Method holds some advantages over the other methods. But the message that
the choice (in one of the Prony-like methods) is principally a matter of taste,
transfers still to our case.
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4 Reconstruction of Sparse Expansions of Eigen-
functions of Linear Operators

The introductory chapter comprised the original Prony Method for exponential
functions and a generalization to eigenfunctions of linear operators. In the
second chapter we saw, how the generalized Prony algorithm can be adapted
to the case when the sparsity M in (2.17) is not known a priori. Now, having
algorithms that are also applicable if the sparsity M is unknown beforehand
we want to present the range of possible applications of our generalized Prony
Method. Therefore we will look at various examples of linear operators and
their eigenfunctions. There are several further linear operators that may be
used if we know their spectral structure, i.e. if we can give a suitable set of
eigenfunctions that correspond to pairwise different eigenvalues.

4.1 Prony Method for Eigenfunctions of the Translation
Operator

At the end of chapter one we have already considered the translation operator.
But for completeness and since it inherits the original Prony Method we will
revisit it here again.

Let us consider the vector space C(R) of continuous functions, and let Sa :
C(R)→ C(R) with

Saf(x) := f(x+ a), a ∈ R\{0} (4.34)

be the shift operator on C(R). We observe that {eTa : T ∈ C, ImT ∈ [−πa ,
π
a )}

is a set of pairwise distinct eigenvalues of Sa, and by

Saex(T+ 2πik
a ) = e(x+a)(T+ 2πik

a ) = eTaex(T+ 2πik
a ), x ∈ R, k ∈ Z,

we find for each eigenvalue λT := eTa, T ∈ I := {T ∈ C, ImT ∈ [−πa ,
π
a )}, the

eigenspace VT := span {ex(T+ 2πik
a ) : k ∈ Z}. In order to obtain a unique corre-

spondence between λT and its eigenfunction, we consider only the subeigenspaces
ṼT = span {eTx}. Further, let the functional F : C(R)→ C be given by

F (f) := f(x0), ∀f ∈ C(R), (4.35)

with an arbitrarily fixed x0 ∈ R. Hence F (eT ·) = eTx0 6= 0 for all T ∈ I.
Applying Theorem 1.2 yields that the sparse sum of exponentials

f(x) =

M∑
j=1

cje
Tjx (4.36)

with pairwise different Tj ∈ C and Im Tj ∈ [−πa ,
π
a ) can be uniquely recon-

structed from the values

F (Skaf) = F (f(·+ ka)) = f(x0 + ka), k = 0, . . . , 2M − 1,
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e.g., from 2M equidistant sampling points with sampling distance a, starting at
point x0. Let us specify an algorithm for the translation operator.

Algorithm 4.1 (Reconstruction of f in (4.36))

Input: Translation operator with h 6= 0, as well as the data F (f)(x + hk),
k = 0, . . . , 2N−1. Optionally an upper bound L for the sparsityM , else L = N .

1. (a) Construct the Hankel matrix

H2N−L,L+1 = (F (f)(x+ h(k +m)))2N−L−1,Lk,m=0

and use the ESPRIT Method 3.1.2, the Matrix Pencil Method 3.2.1 or
use 2.1 respectively 2.2 with an svd approach to find the eigenvalues
λj = eTj , j = 1, . . . ,M of the active eigenfunctions eTjx.
Alternatively:

(b) Construct the Hankel matrix HN−1 = (F (f)(x + h(k + m)))N−1k,m=0

and use 2.1 or 2.2 with an eigenvalue decomposition approach to find
the eigenvalues λj = eTj , j = 1, . . . ,M of the active eigenfunctions
eTjx.

2. Compute the coefficients cj by solving the overdetermined system

F (f)(x+ hk) =

M∑
j=1

cjF (eTj(x+hk)) k = 0, . . . , 2N − 1.

Output: M , cj , Tj , j = 1, . . . ,M .

In radar, sonar, geophysical seismology and likewise areas the signals dealt
with can often be well described by

f(x) =

M∑
j=1

cje
Tjx, Tj , cj ∈ C\{0}, (4.37)

see [53](p.139). Because it has numerous applications, the translation operator
is an exceptional case and we will examine some examples in detail to see the
method at work.

Assume f(x) to be a real valued linear combination of sines and cosines

f(x) =

M∑
`=0

a` cos(ω`x) +

M∑
`=1

b` sin(ω`x), (4.38)

with ω` ∈ [−π, π)\{0}, a`, b` ∈ R, ` = 1, . . . ,M , ω0 = 0, a0 ∈ R. A few
calculations show, that (4.38) is a special case of (4.37). Due to Euler’s formula

sin(x) =
eix − e−ix

2i

cos(x) =
eix + e−ix

2
,
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we get

f(x) =

M∑
`=0

a`
eiω`x + e−iω`x

2
+

M∑
`=1

b`
eiω`x − e−iω`x

2i

= a0 +

M∑
`=1

[
a` − ib`

2
eiω`x +

a` + ib`
2

e−iω`x
]

=

M∑
j=−M

cje
Tjx,

with

cj =


aj−ibj

2 , j > 0
aj+ibj

2 , j < 0

0, j = 0

, Tj =


ωj i, j > 0

−ωj i, j < 0

0, j = 0

.

For all j 6= 0 we get Tj = −T−j and cj = c̄−j . Let us look at an example.

Example 4.2 Let f(x) be a real valued function with four active terms ω` in
the notation of (4.38) or eight active terms in the exponential notation (4.37)

f(x) =

4∑
`=1

a` cos(ω`x) +

4∑
`=1

b` sin(ω`x), (4.39)

with

j ωj aj bj
1 1 2 1
2 2.6 1 −1
3 2.7 1.4 −1
4 3.1 −2 2

Let us choose F (f) := f(0), and use equidistant sampling points f(k),
k = 0, . . . , 30 as input data. Furthermore we use an upper bound L = 10 > 8
for the sparsity M of f(x). Note, that since we have an 8-sparse signal f , it
would be sufficient to use 16 input data. But in practice M is often not known
a priori. To resemble that scenario we have oversampled the signal. Further-
more, a higher number of input data can be used for a more stable calculation
of the unknowns aj , bj , ωj, if we are faced with numerical difficulties as a small
separation distance q (see example 2.4) or erroneous input data, see subchapter
3.5. The function and the sampling points are shown in figure 3.
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Figure 3: The blue line indicates the function f(x), whereas the red stars show
the sampling points.

Since we know an upper bound L = 10 of the sparsityM = 8 we can construct
a rectangular Hankel matrix H = (f(k + m))21,9k,m=0 and search for the right
singular vector p = (pk)9k=0 corresponding to the smallest singular value as
described in algorithm 2.1.

Let us stress again that the function f(x) in (4.39) is a special case, where
every Tj in 4.36 is purely imaginary and has an associated T−j which is its neg-
ative. Therefore the roots of the Prony-polynomial have to lie on the unit circle
and they come in complex conjugate pairs. This characteristic is demonstrated
in Figure 4. Also, in this example we have to evaluate the roots of a polynomial
Q(z) =

∑9
k=0 pkz

k which has one root more than we need. For that reason we
see a ninth, unwanted root at approximately 0.95 in Figure 4. In the last step
of our algorithm 2.2 of choice, the absolut value of the corresponding coefficient
c̃9 of z̃9 ≈ 0.95 will be smaller than the threshold ε = 10−8 and therefor e0.95x

is not considered as an active eigenfunction of the translation operator for the
present signal (4.39).
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Figure 4: The red stars indicate the found roots of the Prony algorithm.

Indeed, the fact that all roots should lie on the unit circle can be used to stabilize
the method for noisy input data. In the case of noisy data we usually consider
only those roots zj that lie close enough to the unit circle, i.e. ||zj | − 1| < ε.
Moreover, we can also use the information, that the roots come in complex
conjugate pairs. In order to do so, we make a short excursion into symmetric
polynomials.

4.1.1 Symmetric Prony Polynomials

Let Pa(x) = a0x
N−1+a1x

N−2+ · · ·+aN−1 be an algebraic polynomial of degree
N − 1. We say the polynomial Pa is a symmetric polynomial if the condition
ak = aN−1−k holds for all k of the coefficient-vector a = (a0, . . . , aN−1).

Definition 4.3 Let a ∈ RN , b ∈ RM with M ≥ N ≥ 1. The discrete convolu-
tion c = a ∗ b is defined as

cn :=

min(n,N)∑
k=max(0,n+1−M)

akbn−k. (4.40)

Let a,b be the coefficient vectors of the polynomials Pa(x), Pb(x) respectively
and c is the coefficient vector of the product Pc(x) of the two polynomials
Pa(x) and Pb(x). It is well-known that the coefficient-vector c of the polynomial
Pc = PaPb can be evaluated via the discrete convolution of the coefficient-vectors
c = a ∗ b, see e.g. [13], p. 823-825.
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We now introduce the flip matrix TN of order N which has ones on the
counter diagonal and zeroes elsewise by

TN = (fk,l)
N
k,l=1, fk,l = δk,(N+1−l),

TN =

0 . . . 1
...

...
1 . . . 0

 .

It is easy to see that a multiplication of A from the left by TN flips the rows of
the Matrix A and that a multiplication ATN from the right flips the columns
of A.

Remark 4.4 Due to the commutativity of the discrete convolution the condition
M ≥ N is no constriction.
In matrix-vector-notation we can reformulate equation (4.40) as

Ba = c

with the matrix

B =



b0 0 · · · 0
b1 b0 · · · 0
...

...
bM−1 bM−2 · · · bM−N

0 bM−1 · · · bM−N+1

...
...

0 0 · · · bM−1


∈ R(M+N−1)×N . (4.41)

Now we can formulate the following Lemma.

Lemma 4.5 Let a ∈ RN , b ∈ RM with M ≥ N ≥ 1, a0, b0 6= 0 and TN , TM ,
TN+M−1 be flip matrices of order N , M , N +M − 1 respectively, then

TM+N−1c = TNa ∗TMb (4.42)

holds.

Proof. From linear algebra we know, that the order of the polynomial Pc =
PaPb for non-vanishing leading coefficients a0 and b0 equals N + M − 1. We
start with the equation c = a ∗ b. With the notation from equation (4.41) we
have

c = Ba (4.43)

We now multiply equation (4.43) with the flip-matrix TN+M−1 from the left
hand side and use, that every flip-matrix is selfinverse

TM+N−1c = TM+N−1Ba = TM+N−1BIa = TM+N−1BFNTNa.
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We now consider the matrix TM+N−1BTN . As we observed before, the left-
multiplication of any matrix B by a flip matrix flips the rows of B and the
right-multiplication flips the columns of B. Thus we get

TM+N−1BTN =



bM−1 0 · · · 0
bM−2 bM−1 · · · 0

...
...

b0 b1 · · · bM−1
0 b0 · · · bM−2
...

...
0 0 · · · b0


∈ R(M+N−1)×N .

With entry-comparison we see that this is exactly the convolution matrix of the
convolution TMb ∗ a for any a ∈ RN . Using the commutativity of the convolu-
tion, i.e. TMb ∗TNa = TNa ∗TMb, the proposition holds.

Lemma 4.5 shows, that it does not matter, whether we first flip the coefficient-
vectors a,b and then evaluate their convolution or flip the result of the convo-
lution of a and b. This can be used to formulate the following Lemma.

Lemma 4.6 Let Pa, Pb be two symmetric polynomials of order N − 1,M − 1
respectively, i.e. a ∈ RN , b ∈ RM . Let w.l.o.g. M ≥ N , then the product
Pc = PaPb is itself a symmetric polynomial.

Proof. If M < N we can rename the polynomials due to the commutative
multiplication of polynomials. As we said before, the coefficients of the product
of two polynomials Pa, Pb can be evaluated via the convolution c = a ∗ b of the
corresponding coefficient-vectors a,b. From Lemma 4.5 we know that

TM+N−1c = TM+N−1a ∗ b = TNa ∗TMb = a ∗ b. (4.44)

holds. Due to the symmetry of the coefficient-vectors a,b the last equal-sign in
equation (4.44) holds.

Let us formulate a Corollary.

Corollary 4.7 The product of any number of polynomials of the type (x−z)(x−
z̄) with z = eiω ω ∈ [0, π] is symmetric.

Proof. It is easy to evaluate that (x − z)(x − z̄) = x2 − 2ax + 1 for the rep-
resentation z = a + ib of the complex number z. Thus the coefficient-vector of
this polynomial reads as (1,−2a, 1) and is symmetric. Using Lemma 4.6 the
proposition holds.

We apply these results to Prony’s method for sparse linear combinations of
exponentials, when only an upper bound L to the sparsity M of f is known.
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By definition (4.38) of the real valued input signal f(x) we know that for every
frequency Tk in f there is another frequency T−k = −Tk in f . Thus, the
Prony-polynomial Pp of order 2M + 1 with roots λj = eTj , j = −M, . . . ,M
and coefficient vector p ∈ R2M+2 is a symmetric polynomial. And therefore, we
can represent the polynomial Pq that we construct out of the found eigenvector
q ∈ RN in algorithm 2.1 (singular vector in algorithm 2.2) as Pq = PpPr. Hereby
N determines now the number N + 1 of input values f(k), k = 0, . . . , N and
Pr is some residual polynomial of degree N − (2M + 1). From Corollary 4.7 we
know that Pp is a symmetric polynomial. If we multiply the coefficient-vector
q of Pq by TN+1 from the left and apply Lemma 4.5 we get

TN+1q = T2M+2p ∗TN−2Mr = p ∗TN−2Mr.

Hereby the last equality holds because of the symmetry of Pp. So, if we flip the
coefficients of the polynomial Pq we get a polynomial which still has the desired
zeroes that correspond to the frequencies of f . With this step we can compare
the two zero-sets and delete all zeroes which have a distance greater than some
ε of any zero of the un-flipped polynomial Pq, because those zeroes surely do
not belong to the Prony-polynomial Pp.

This procedure can be helpful to distinguish between the desired zeroes and
the unrequested ones. Let PTN+1q be the polynomial associated with the vector
TN+1q, i.e. it is the flipped version of Pq. We saw that both PTN+1q and Pq
share the same roots as the Prony-polynomial Pp in the absence of noise. Thus
also the polynomial Q = (1−α)Pq +αPTN+1q is a polynomial that has the same
roots as Pp. Since the roots of a polynomial are continuously dependent on
the coefficients of that polynomial, see e.g. theorem of Bauer-Fike [24] p.200,
we can assume that the roots of Pp differ only slightly from the corresponding
roots of P̃TN+1q and P̃q if small perturbations in the coefficients of PTN+1q resp.
Pq are present. In other words, the common roots of the set of polynomials
Pq,α = {(1 − α)PTN+1q + αPq|α ∈ R} should stay in a small neighborhood
around the actual roots of Pp independently of α, whereas the remaining roots
can vary a lot.

Example 4.8 Consider the function

f(x) = sin(1.2x)− 2 cos(0.3x),

with given sampling points f(k), k = 0, . . . , 40. Here we use the point evaluation
functional F (f) := f(0) and the matrix H21 = (f(k + m))20k,m=0 in algorithm
2.2. This leads to a polynomial Pq of order 20, whereas the sparsity M equals 4.
Thus we have to discard 16 roots of Pq. In Figure 5 we see the unit circle in blue,
the correct locations of the four roots of the Prony-polynomial as red stars and
the black dots show the location of the roots of the polynomial (1−α)Pq+αPT21q,
when we let α go from −2 to 3 in steps of 1/100. As expected, we see that the
common roots stay in a close neighborhood for all α, whereas the other roots
differ vastly. Note that only one polynomial Pq is necessary to construct the set
of polynomials Pq,α = {(1− α)PT21q + αPq|α ∈ R}.
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Figure 5: The blue line indicates the unit circle, the red stars show the location
of the roots of the Prony-polynomial Pp and the black dots show the locations
of the roots of (1− α)Pq + αPT21q for α = −2,−2 + 1/100, . . . , 3.

Remark 4.9 1. There are other operators that also possess eigenfunctions of
the form eTx, see [34]. For example, the shift operator Sa in the above consid-
erations can be replaced by the difference operator ∆af(x) = f(x + a) − f(x)
or even by an m-fold difference operator ∆m

a f := ∆m−1
a (∆af), (m ∈ N). Using

again Ff := f(x0), the reconstruction then involves the values

F (∆mk
a f) = ∆mk

a f(x0) =

mk∑
`=0

(
mk

`

)
(−1)`f(x0 + `a).

2. Instead of using the functional Ff = f(x0) for some fixed x0 ∈ R, one
can also use a different functional. The functional Ff :=

∫ x0+a

x0
f(x)dx leads to

a reconstruction method, where f in (4.36) can be reconstructed from the values∫ x0+a

x0

Skaf(x) dx =

∫ x0+a

x0

f(x+ ka) dx

=

∫ x0+(k+1)a

x0+ka

f(x) dx, k = 0, . . . , 2M − 1.

We will have a closer look to the impact of the functional F to our generalized
Prony Method in subchapter 5.1.

3. The reconstruction method also applies to the multivariate case, as demon-
strated in subchapter 5.2.
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Moreover, Theorem 1.4 also admits efficient recovery of sums of the form

f(x) =

M∑
j=1

r∑
`=0

cj,`w`(x)eTjx (4.45)

with r ≥ 0, where w`, ` = 0, . . . , r denote algebraic polynomials of exact degree
`. Indeed we easily observe, that w`(x)eTx, ` = 0, . . . , r are linearly independent
generalized eigenfunctions of multiplicity ` + 1 of the shift operator Sa to the
eigenvalue eTa. Therefore, we can apply Theorem 1.4 for the reconstruction of
f using the 2M(r+ 1) values F (Akf), k = 0, . . . , 2M(r+ 1)− 1. Let us look at
an example.

Example 4.10 Consider the real valued signal

f(x) = (−x2 + 30x− 56)e−0.4x + (sin(x)− 2 sin(x/10))ex/5,

where the unknown function e−0.4x is multiplicatively combined with a second
order polynomial and the sum of sines (eix − e−ix)/(2i) + i(e−ix/10 − eix/10) is
damped by ex/5. For simplicity we choose again the point evaluation functional
F (f) := f(0) and use the input data f(k), k = 0, . . . , 32. In figure 6 the function
f is depicted in blue, the red stars indicate the 33 function values.
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Figure 6: The function (−x2 + 30x − 56)e−0.4x + (sin(x) − 2 sin(x/10))ex/5 in
blue and 33 sampling points as red stars.

Theorem 1.4 tells us that the Prony-polynomial has to have a triple root at
e−0.4. Furthermore we expect four roots with real part 0.2 and the imaginary
parts i,−i, i/10,−i/10. Indeed we calculate (among other roots)
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j ln λ̃j
1 −0.4000169
2 −0.3999915 + 0.0000146i
3 −0.3999915− 0.0000146i
4 0.2000000000000006 + 0.9999999999999996i
5 0.2000000000000006− 0.9999999999999996i
6 0.1999999999999982 + 0.0999999999999991i
7 0.1999999999999982− 0.0999999999999991i

Table 5: The found roots of the damped sines and a triple root of the
Prony-related-polynomial P (q).

We find three roots located in a small neighborhood around e−0.4 and if we
sum them up we get e−0.4000000000002, which is in the range of the accuracy of
the other desired roots. Nevertheless we observe, that the evaluation of multiple
roots is numerically challenging. Note that in the case of present generalized
eigenfunctions we first have to classify the clustered roots, calculate the mean λ∅
and make the ansatz

∑r
`=0 x

`eλ∅ in the construction of the Vandermonde-type-
matrix V in order to calculate the coefficients cj. We set ξ = −0.4000000000002,
construct the matrix

V =
(
eξ, keξ, k2eξ, eλ4k, . . . , eλ16k

)32
k=0

and solve the system Vc̃ = f , with f = (f(k))32k=0 for the vector of coefficients
c̃ = (c̃j)

16
j=1. Now we discard all coefficients and corresponding roots which

absolute value falls below a suitable threshold δ. Here we choose δ = 10−10. The
remaining pairs c̃j , λj are the found coefficients and corresponding eigenvalues.
We list the coefficients in Table 6.

j c̃j cj
1 −0.99999999999489 −1
2 29.99999999999123 30
3 −56.00000000000098 −56
4 1.00000000000003i 1
5 −1.00000000000003i −1
6 0.49999999999999i 1/2
7 −0.49999999999999i −1/2

Table 6: The computed coefficients of the signal f .

Remark 4.11 The standard differential and integral operators also posses ex-
ponential functions as eigenfunctions. We will investigate those operators in
subchapter 4.5.
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4.2 Prony Method for Eigenfunctions of the Dilatation
Operator

Let us consider the vector space C(C) of continuous functions and let Da :
C(C)→ C(C) with

Daf(x) := f(ax), a ∈ C, |a| 6= 1

be the dilatation operator on C(R). By

Dax
p = (ax)p = apxp

we observe that {xp : p ∈ C} is a set of eigenfunctions to Da with corresponding
eigenvalues ap. In order to ensure that the eigenvalues ap are pairwise distinct,
we assume that Im p ∈ [− π

ln a ,
π

ln a ). Therefore, we consider only the “admissi-
ble” set of eigenfunctions {xp : p ∈ C, Im p ∈ [− π

ln a ,
π

ln a )}. Further, let the
functional F : C(C) → C be given, e.g. F (f) := f(x0), where x0 ∈ C\{0} is
arbitrary but fixed.

With Theorem 1.2, we can uniquely reconstruct the sparse sum of generalized
monomials

f(x) =

M∑
j=1

cjx
pj (4.46)

with cj ∈ C\{0} and pairwise different pj ∈ C which satisfy Im pj ∈ [− π
ln a ,

π
ln a ),

using the 2M values F (Dk
af), k = 0, . . . , 2M − 1. Furthermore, in practice a

needs to be taken, such that akx, k = 0, . . . , 2N are pairwise different values in
order to circumvent redundant input data. This means, once the number 2N+1
of input data is fixed we can relax the condition |a| 6= 1 in the definition of the
dilatation operator to ak 6= a` for all k, ` = 0, . . . , 2N + 1. Let a = αeβi. The
sampling points are lying on a decreasing spiral for |α| < 1, on an increasing
spiral for |α| > 1 and on the unit circle for α = 1. For α = 1 the value β has to
be chosen in such a way, that a`x 6= ajx for all `, j ∈ {0, . . . , 2N}.
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Figure 7: As an example, the needed sets of sampling points are color coded for
different values of α.

Although the sets of sampling values might be somewhat unusual, the benefit
is that we can use a Prony Method to analyze this function. And this gives the
great advantage of needing only 2M input data to determine the 2M unknowns
cj , nj , j = 1, . . . ,M . In other words, the number of input data is only dependent
on the sparsity of the underlying function and not on the order of the generalized
polynomial f , i.e. a polynomial of arbitrary dimension is uniquely determined
by only 2M function values, as long as it is M -sparse in the monomial basis.
Let demonstrate this method in an algorithm.

Algorithm 4.12 (Reconstruction of f in (4.46))

Input: Dilatation operator with parameter h satisfying hk 6= hm, k,m ∈
{0, . . . , 2N − 1} as well as the data F (f)(xhk), k = 0, . . . , 2N − 1. Option-
ally an upper bound L for the sparsity M , else L = N .
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1. (a) Construct the Hankel matrix

H2N−L,L+1 = (F (f)(xhk+m))2N−L−1,Lk,m=0

and use the ESPRIT Method 3.1.2, the Matrix Pencil Method 3.2.1 or
use 2.1 respectively 2.2 with an svd approach to find the eigenvalues
λj = hpj , j = 1, . . . ,M of the active eigenfunctions xpj .
Alternatively:

(b) Construct the Hankel matrix HN−1 = (F (f)(xhk+m))N−1k,m=0 and use
2.1 or 2.2 with an eigenvalue decomposition approach to find the
eigenvalues λj = hpj , j = 1, . . . ,M of the active eigenfunctions xpj .

2. Compute the coefficients cj by solving the overdetermined system

F (f)(xhk) =

M∑
j=1

cjF (xpjhpjk) k = 0, . . . , 2N − 1.

Output: M , cj , pj , j = 1, . . . ,M .

Example 4.13 Let us look at an example with the underlying function

f(x) = −x30 + 1.3x18 − 2x9 + 6x5. (4.47)

We choose a = ei/10 where α = 1, β = 0.1 and use f(ak), k = 0, . . . , 10 as input
data, where F (f) = f(x0) is the functional that evaluates the function f at the
point x0 with x0 = 1. Thus, we sample the function (4.47) on the unit circle,
as indicated by the green dots in Figure (8). Since we sample the polynomial
f in the complex plane we obtain also complex function values. The unit circle
is represented by the blue continuous line and the green dots mark the sampling
points ak, k = 0, . . . , 10. The black line shows how the function f behaves on
that desired part of the unit circle and the red dots indicate the input data, i.e.
the function values at the sampling points. The blue dashed line shows which
function value belongs to which sampling point.
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Figure 8: Illustration of the complex valued polynomial in (4.47).

Note that even though we oversampled the function slightly and that no
upper bound L to the sparsity M = 4 is fixed, we still have very few input
data. For that reason we chose algorithm 2.2 with a square Hankel matrix
H = (F (D`+s

a f)(1))5`,s=0.
The output ñj , c̃j, j = 1, . . . , 4 for the parameters n1, . . . , n4 and the corre-

sponding coefficients c1, . . . , c4 is shown in Table 7.

j cj nj c̃j ñj
1 6 5 5.999999999999998 4.99999999999996
2 −2 9 −2.000000000000001 8.99999999999757
3 1.3 18 1.300000000000000 17.99999999999967
4 −1 30 −0.999999999999999 29.99999999999999

Table 7: We observe accurate reconstruction of the polynomial degrees nj and the
corresponding coefficients cj .

Since we know that the degrees nj are integers we round the obtained degrees
ñj prior to solving the linear system in order to compute the corresponding
coefficients cj . For that reason the coefficients c̃j are computed more accurately,
although they technically rely on the accuracy of ñj .

Of course this procedure does not apply if we do not have this information
about the parameters nj in advance. Indeed, nj can be real or even complex
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valued, and we are able to analyze suchlike functions nonetheless.

Example 4.14 Let f be a sparse linear combination of rational functions

f(x) =
6

x9
+

√
x

5
+ 1.3x, (4.48)

and let x0 = −0.7−0.7i, a = 1.1 ei/5 with α = 1.1, β = 0.2. We can apply exactly
the same algorithm to the problem of finding the parameters n1 = −9, n2 =
0.5, n3 = 1 and the corresponding coefficients out of given sampling points. For
simplicity let us again choose the point evaluation functional F (f) := f(x0) and
let us oversample the function slightly, e.g. we take f(akx0), k = 0, . . . , 14 as
input data. This way we see a bit more of the function’s behavior in Figure 9.
Using algorithm 2.2 we get the following good result:

j cj nj c̃j ñj
1 6 −9 6.000000000000195 −8.999999999999991
2 0.2 0.5 −1.999999999999844 0.499999999999968
3 1.3 1 1.299999999999984 1.000000000000002

In Figure 9 we see a visualization of the behavior of the function, and the sam-
pling points in the same manner as in Figure 8.
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Figure 9: Illustration of the complex valued rational function in (4.48).

Remark 4.15 In 1988, M. Ben-Or and P. Tiwari [3] introduced an algorithm
for parameter identification of sparse polynomials that is a special case of the
Prony algorithm for the dilatation operator explained above. Apparently, Ben-Or
and Tiwari were not aware that their algorithm is a Prony-type algorithm, but
this was discovered, e.g. in 2002 by M. Giesbrecht, G. Labahn and W. Lee [22].
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It should be noted, that in [3] the function f can also be a multidimensional poly-
nomial, but the sampling points have to be very special vectors which entries are
pairwise distinct prime numbers. The multidimensional case of the generalized
Prony Method will be discussed in chapter 5.2.

Our generalized Prony Method applied to the dilatation operator presented
above generalizes the Ben-Or and Tiwari algorithm [3] for interpolating sparse
polynomials in the sense that we are not restricted to integer exponents pj .
It can be applied to multivariate sums, where some restrictions to the set of
admissible eigenfunctions are needed in order to ensure an injective mapping
from the eigenvalues to the eigenfunctions, see Remarks 4.9 for the similar case
of multivariate exponential sums. By using a different functional F , a further
generalization of the Ben-Or and Tiwari reconstruction method is possible. As
before, for example Ff :=

∫ 1

0
f(x)dx leads to a reconstruction method using

the values

F (Dk
af) =

∫ 1

0

f(akx) dx =
1

ak

∫ ak

0

f(x) dx, k = 0, . . . , 2M − 1.

We may admit also generalized eigenfunctions of the dilation operator Da :
C((0,∞))→ C((0,∞)). Assuming that a > 0, a 6= 1, we observe that functions
of the form (lnx)`xp, ` = 0, . . . , r are generalized eigenfunctions of multiplicity
`+ 1 of Da (as defined in Chapter 1.3), since

Da

(
(lnx)`xp

)
= (ln ax)`(ax)p = (ln a+ lnx)`apxp

= ap(lnx)`xp +

`−1∑
s=0

(
`

s

)
(ln a)`−sap(lnx)sxp.

Thus, by Theorem 1.4, we are able to recover also expansions of the form

f(x) =

M∑
j=1

r∑
`=0

cj,`(lnx)`xpj

from the measurements f(akx0), k = 0, . . . , 2(r + 1)M − 1 for r ≥ 0, where
x0 > 0 is fixed.

Remark 4.16 Eigenfunctions of monomial form can also be obtained using
suitable differential operators, as we will see in subchapter 4.5.

4.3 Prony Method for the Sturm-Liouville Operator
Besides the exact Ben-Or/Tiwari interpolation algorithm for sparse multivari-
ate black-box polynomials [3], there have been several attempts to modify the
scheme in order to improve its stability and to reduce the computational costs,
see e.g. [23], [30]. The modifications include also stochastic approaches, as e.g.
the methods by Zippel [56].
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However, those reconstruction ideas can not easily be transferred to other
polynomial bases (Pk)∞k=0, since they require the property

Pk · Pl = Pk+l

(which is of course satisfied for monomials). An equivalent argument is, that
other polynomials than monomials are not eigenfunctions of the dilatation op-
erator.

In [32], Lakshman and Saunders firstly succeeded to achieve reconstruc-
tion formulas also for sparse expansions in the Pochhammer basis (un)∞n=0

with u0(x) = 1, un(x) = x(x + 1) . . . (x + n − 1) and in the basis of Cheby-
shev polynomials of first kind, given by T0(x) = 1, T1(x) = x and Tn(x) =
2xTn−1(x) − Tn−2(x) for n ≥ 2. These generalizations rely on very special
properties of these two bases, and there is no straightforward method for gen-
eralization to other bases of orthogonal polynomials.

Let us consider the Banach space C∞(R) of infinitely differentiable functions.
Let Lp,q : C∞(R)→ C∞(R) be the Sturm-Liouville differential operator of the
form

Lp,qf(x) := p(x)f ′′(x) + q(x)f ′(x), f ∈ C∞(R), (4.49)

where p(x) and q(x) are polynomials of degree 2 and 1, respectively. It is well-
known, that suitably defined orthogonal polynomials Qn are eigenfunctions of
this differential operator for special sets of eigenvalues λn, n ∈ N0, i.e., Lp,qQn =
λnQn. For convenience, we list the most prominent orthogonal polynomials with
their corresponding p(x), q(x) and their eigenvalues λn, n ∈ N in Table 8.

p(x) q(x) λn name symbol
(1− x2) (β − α− (α+ β + 2)x) −n(n+ α+ β + 1) Jacobi P

(α,β)
n

(1− x2) −(2α+ 1)x −n(n+ 2α) Gegenbauer C
(α)
n

(1− x2) −2x −n(n+ 1) Legendre Pn
(1− x2) −x −n2 Chebyshev 1. kind Tn
(1− x2) −3x −n(n+ 2) Chebyshev 2. kind Un

1 −2x −2n Hermite Hn

x (α+ 1− x) −n Laguerre L
(α)
n

Table 8: Polynomials p(x) and q(x) defining the Sturm-Liouville operator,
corresponding eigenvalues λn and eigenfunctions.

Obviously, Gegenbauer, Legendre, and Chebyshev polynomials are special
cases of Jacobi polynomials, where we have C(α)

n := P
(α−1/2,α−1/2)
n , Pn :=

P
(0,0)
n , Tn := P

(− 1
2 ,−

1
2 )

n and Un := P
( 1
2 ,

1
2 )

n .
We easily observe that for a set of eigenfunctions {Qn : n ∈ N0}, the corre-

sponding eigenvalues are pairwise different and well separated, i.e. λn 6= λm for
n 6= m. Further, we choose the functional F : C∞(R) → C that returns f at a
fixed value x0 ∈ R, i.e., F (f) := f(x0) with the condition that Qn(x0) 6= 0 for
all n ∈ N0.
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Let f(x) be an M -sparse expansion of orthogonal polynomials Qn, n ≥ 0,

f(x) =

M∑
j=1

cnjQnj (x), (4.50)

where cnj ∈ C\{0}, 0 ≤ n1 < · · · < nM = N are the indices of the “active” basis
polynomials Qnj in the expansion, and nM = N �M is the polynomial degree
of f .

Now Theorem 1.2 yields that f(x) can be uniquely recovered using the values

F (Lkp,qf) = Lkp,qf(x0) =

M∑
j=1

cnjλ
k
njQnj (x0), k = 0, . . . , 2M − 1, (4.51)

where the functional F is again chosen as F (f) = f(x0). Of course we will
hardly find an application that provides us with input data of the form (4.51),
but we will show that the values Lkp,qf(x0), (k = 0, . . . , 2M − 1) can be de-
termined uniquely by the derivative values f (m)(x0) for m = 0, . . . , 4M − 2,
and this assertion holds not only for sparse but for all expansions of orthogonal
polynomials f(x).

Theorem 4.17 Let f ∈ C∞(R) be an arbitrary polynomial of degree N ∈ N and
let Lp,q : C∞(R)→ C∞(R) be the Sturm-Liouville differential operator as given
in (4.49). Then, for each fixed x ∈ R, the values Lkp,qf(x), k = 0, . . . , 2M − 1,
can be determined uniquely by the derivative values f (m)(x), m = 0, . . . , 4M−2,
and we have

Lkp,qf(x) =

2k∑
`=1

g`,k(x) f (`)(x)

for k ≥ 1. Here g1,1(x) = q(x), g2,1(x) = p(x), and for k ≥ 2, g`,k(x) satisfies
the recursion

g`,k(x) = `

(
`− 1

2
p′′(x) + q′(x)

)
g`,k−1(x) (4.52)

+ ((`− 1)p′(x) + q(x))g`−1,k−1(x) + p(x)g`−2,k−1(x), ` = 1, . . . , 2k,

with the convention g`,k(x) = 0 for k ≥ 1, ` 6∈ {1, . . . , 2k}.

Proof. 1. For k = 0, we observe that L0
p,qf(x) = f(x), i.e. L0

p,q is the identity
operator. Since the operator Lp,q is a differential operator of order 2, we can
use the ansatz

Lkp,qf(x) =

2k∑
`=1

g`,k(x)f (`)(x), k ≥ 1, (4.53)

with polynomials g`,k, k ∈ N, ` = 1, . . . , 2k. In particular, for k = 1 we have

Lp,qf(x) = p(x)f ′′(x) + q(x)f ′(x),
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i.e., g1,1(x) = q(x) and g2,1(x) = p(x). We now prove by induction on k that
the coefficients g`,k(x) in (4.53) satisfy the recursion (4.52) for k ≥ 2 and ` =
1, . . . , 2k. Using (4.53) and the general Leibniz rule, we find for all n ∈ N0,

Lkp,qf(x) =Lk−1p,q (Lp,qf)(x) =

2k−2∑
`=1

g`,k−1(x) [Lp,qf(x)]
(`)

=

2k−2∑
`=1

g`,k−1(x)[p(x)f ′′(x) + q(x)f ′(x)](`)

=

2k−2∑
`=1

g`,k−1(x)[p(x)f (`+2)(x) + `p′(x)f (`+1)(x)

+

(
`

2

)
p′′(x)f (`)(x) + q(x)f (`+1)(x) + `q′(x)f (`)(x)]

=

2k∑
`=1

g`,k(x)f (`)(x)

due to the vanishing higher derivatives of p(x), q(x). A comparison of coefficients
leads to the recursion formulas for g`,k in (4.52).

Corollary 4.18 If x0 ∈ R is a zero of the polynomial p(x) in the defini-
tion (4.49) of the Sturm-Liouville operator, i.e., if p(x0) = 0, then the values
Lkp,qf(x0), k = 0, . . . , 2M−1 can be determined by f (m)(x0), m = 0, . . . , 2M−1
only. More precisely, we have

Lkp,qf(x0) =

k∑
`=1

g`,k(x0)f (`)(x0)

with g1,1(x0) = q(x0) and

g`,k(x0) = `

(
`− 1

2
p′′(x0) + q′(x0)

)
g`,k−1(x0)

+ ((`− 1)p′(x0) + q(x0))g`−1,k−1(x0)

for k ≥ 2, ` ∈ {1, . . . , k}, where we assume that g`,k(x0) = 0 for k ≥ 1, ` 6∈
{1, . . . , k}. In particular, for the Sturm-Liouville operator for Jacobi polynomi-
als with p(x) = (1−x2), we need only the values f (m)(1) (respectively f (m)(−1)),
m = 0, . . . , 2M − 1, in order to reconstruct Lkp,qf(1), (respectively Lkp,qf(−1)),
k = 0, . . . , 2M − 1.
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Proof. Let x0 be such that p(x0) = 0.

Lkp,qf(x0) =Lk−1p,q (Lp,qf)(x0) =

2k−2∑
`=1

g`,k−1(x0) [Lp,qf(x0)]
(`)

=

2k−2∑
`=1

g`,k−1(x0)[p(x0)f ′′(x0) + q(x0)f ′(x0)](`)

=

2k−2∑
`=1

g`,k−1(x0)[p(x0)︸ ︷︷ ︸
=0

f (`+2)(x0) + `p′(x0)f (`+1)(x0)

+

(
`

2

)
p′′(x0)f (`)(x0) + q(x0)f (`+1)(x0) + `q′(x0)f (`)(x0)]

=

2k∑
`=1

g`,k(x0)f (`)(x0)

Note that we cannot cancel p(x0) after the second equal sign prior to applying
the `-th derivative, because p(x0) = 0 does generally not imply that p′(x0) = 0
or p′′(x0) = 0. Thus we would erase the effect of p′(x0) and p′′(x0).

We summarize the algorithm for reconstructing orthogonal polynomial ex-
pansions as follows.

Algorithm 4.19 (Reconstruction of f in (4.50))

Input: Sturm Liouville operator with p(x), q(x) and λn as well as the basis
{Qn : n ∈ N0}, x0 ∈ R, f (m)(x0), m = 0, . . . , 4N − 2, optionally an upper
bound Lu ≥M .
Preprocessing: Construct G = (g`,k)2N−1,4N−2k,`=1 ∈ R(2N−1)×(4N−2) with g1,1 :=
q(x0), g2,1 := p(x0), g`,1 := 0 for ` 6∈ {1, 2}, and

g`,k :=


`
(
`−1
2 p′′(x0) + q′(x0)

)
g`,k−1

+((`− 1)p′(x0) + q(x0))g`−1,k−1 + p(x0)g`−2,k−1, k > 1, ` ∈ {1, . . . , 2k}
0, k > 1, ` 6∈ {1, . . . , 2k}

Observe that the construction of G only depends on the operator Lp,q and not
on the given data f (m)(x0).

1. Calculate h1 := Gf1, where f1 := (f (m)(x0))4N−2m=1 . Put now

h :=

(
f(x0)

h1

)
such that h = (h`)

2N−1
`=0 = (L`p,qf(x0))2N−1`=0 ∈ C2N .

2. (a) Construct the Hankel matrix H2N−L,L+1 = (hk+m)2N−L−1,Lk,m=0 and use
the ESPRIT Method 3.1.2, the Matrix Pencil Method 3.2.1 or use
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2.1 respectively 2.2 with an svd approach to find the eigenvalues λnj ,
j = 1, . . . ,M of the active eigenfunctions Qnj .
Alternatively:

(b) Construct the Hankel matrix HN−1 = (hk+m)N−1k,m=0 and use 2.1 or
2.2 with an eigenvalue decomposition approach to find the eigenvalues
λnj , j = 1, . . . ,M of the active eigenfunctions Qnj .

3. Compute the coefficients cnj by solving the overdetermined system

M∑
j=1

cnjQ
(`)
nj (x0) = f (`)(x0), ` = 0, . . . , 2N − 1.

Output: M , cnj , Qnj , j = 1, . . . ,M .

Example 4.20 Sparse Laguerre expansions
The Laguerre polynomials with parameter α are solutions of the second order

differential equation

x(L(α)
n )′′(x) + (α+ 1− x)(L(α)

n )′(x) = −nL(α)
n (x),

with eigenvalues λn = −n. Using Theorems 1.2 and 4.17 a sparse Laguerre
expansion of the form

f(x) =

M∑
j=1

cnjL
(α)
nj (x)

with cnj ∈ C\{0} and active indices 0 ≤ n1 < · · · < nM = N can be recon-
structed from f (m)(x0), m = 0, . . . , 4M−2. Here, x0 has to satisfy L(α)

n (x0) 6= 0
for all n ∈ N0. If we choose x0 = 0, formula (4.52) simplifies to

g1,1(0) = α+ 1,

g`,k(0) = (`+ α)g`−1,k−1(0)− `g`,k−1(0), k > 1, ` = 1, . . . , k,

g`,k(0) = 0, k ≥ 1, ` 6∈ {1, . . . , k}.

For example, for M = 2, this leads to the triangular matrix

G =

 (1 + α) 0 0
−(1 + α) (1 + α)(2 + α) 0
(1 + α) −3(1 + α)(2 + α) (1 + α)(2 + α)(3 + α)


in the preprocessing step of Algorithm 4.19. Let us give a small numerical
example. For α = 0 and given values f(0), f ′(0), . . . , f (11)(0) of the function

f(x) =

6∑
j=1

cnjLnj (x),
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we use Algorithm 4.19 to calculate approximations ñj , c̃nj of the original pa-
rameters nj , cnj for j = 1, . . . , 6, as shown in Table 9.

j nj cnj ñj c̃nj
1 142 −3 142.0000000018223 −2.999999999999987
2 125 −1 125.0000000494359 −1.000000000000034
3 91 2 90.9999998114290 2.000000000000063
4 69 −3 69.0000003316075 −3.000000000000058
5 53 −1 53.0000003445395 −0.999999999999988
6 11 2 10.9999999973030 2.000000000000004

Table 9: Numerical evaluation of indices of active basis polynomials and coefficients
of a sparse Laguerre expansion using Algorithm 4.19.

Here, since we know that the orders nj of the polynomials are integers,
we have rounded the values ñj to the next integer before proceeding with the
last step of Algorithm 4.19. While the degree of the polynomial f(x) is 142,
the 12 function and derivative values f (m), m = 0, . . . , 11, are sufficient for
reconstruction of the sparse expansion.

Example 4.21 Sparse Legendre expansions We consider sparse Legendre
expansions that we have already studied in [35]. The n-th Legendre polynomial
Pn satisfies the operator equation

(1− x2)P ′′n (x)− 2xP ′n(x) = −n(n+ 1)Pn(x). (4.54)

Hence, a sparse Legendre expansion of the form

f(x) =

M∑
j=1

cnjPnj (x)

with cnj ∈ C\{0} and active indices 0 ≤ n1 < · · · < nM = N can be
reconstructed from the values f (m)(x0), m = 0, . . . , 4M − 2, for arbitrarily
chosen x0 ∈ R satisfying Pn(x0) 6= 0 for all n ∈ N0. In particular, for
x0 = 1 (or x0 = −1) we need only the values from f (m)(1) (resp. f (m)(1)),
m = 0, . . . , 2M − 1, for the unique reconstruction of f . Multiplying (4.54) with
a constant α 6= 0 does not change the solutions. Thus we can consider

Lkp,q,αPn(x) := α(1− x2)P ′′n (x)− 2αxP ′n(x) = −n(n+ 1)αPn(x),

where pα(x) = α(1− x2), qα(x) = −2αx and λn,α = −n(n+ 1)α. Hence

Lkp,q,αf(1) =

k∑
`=1

gα`,k(1)f (`)(1)
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with

gα1,1(1) = −2α,

gα`,k(1) = −`(`+ 1)αgα`,k−1(1)− 2α`gα`−1,k−1(1), k > 1, ` = 1, . . . , k,

gα`,k(1) = 0, k ≥ 1, ` 6∈ {1, . . . , k}.

The constant α can be chosen suitably in order to improve the condition of the
matrix G. In particular, for α = − 1

2 we obtain

g
−1/2
`,k (1) =

`(`+ 1)

2
g
−1/2
`,k−1(1) + `g

−1/2
`−1,k−1(1)

yielding for M = 3,

G =


1 0 0 0 0
1 2 0 0 0
1 8 6 0 0
1 26 60 24 0
1 80 438 480 120

 ,

see also [35]. We use Algorithm 4.19 in order to recover the sparse Legendre
expansion

f(x) = −3P5492(x)− P465(x) + 2P54(x)

of degree 5492 from the given values f(1), f ′(1), . . . , f (5)(1). Table 10 contains
the computed approximations ñj , c̃nj of the original parameters nj , cnj for j =
1, 2, 3.

j nj cnj ñj c̃nj
1 54 2 53.983951125658 2.000000000000048
2 465 −1 465.000054039331 −1.000000000000048
3 5492 −3 5491.999999999999 −3.000000000000000

Table 10: Numerical evaluation of indices of active basis polynomials and coefficients
of a sparse Legendre expansion using Algorithm 4.19.

Here again, since we know that the orders nj of the polynomials are integers,
we have rounded the values ñj to the next integer before proceeding with the
last step of Algorithm 4.19.

Chebyshev reconstruction with sampling values

In the recent preprint [42], the authors consider a Prony-like method for the
reconstruction of M -sparse Chebyshev expansions with Chebyshev polynomials
of first kind of the form Tn(x) = cosn(arccosx), for x ∈ [−1, 1] and n ∈ N0. In
their approach, an expansion of the form

f =

M∑
j=1

cnj Tnj
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is reconstructed from the function values f
(

cos( kπ
2N−1 )

)
, k = 0, . . . , 2M − 1,

where N > M is the true degree of the polynomial f . Obviously, this recon-
struction algorithm is different from the Prony Method that is based on the
Sturm-Liouville operator. Instead we have to take the so-called “Chebyshev-
shift operator” Sh : C(R)→ C(R) with h ∈ [−1, 1],

(Shf)(x) :=
1

2

(
f(hx− (1− h2)1/2(1− x2)1/2) + f(hx+ (1− h2)1/2(1− x2)1/2)

)
.

We consider x ∈ [−1, 1] and set x = cos t with t ∈ [0, π] as well as h = cosα
with α ∈ [0, π]. Then, for Chebyshev polynomials of first kind we obtain indeed

ShTn(x) =
1

2

(
Tn(hx− (1− h2)1/2(1− x2)1/2) + Tn(hx+ (1− h2)1/2(1− x2)1/2)

)
=

1

2
(Tn(cos(t+ α)) + Tn(cos(t− α)))

= cos(nα) cos(nt) = cos(nα)Tn(x).

Hence, the Chebyshev polynomials of first kind are eigenfunctions of the Chebyshev-
shift operator Scosα with the corresponding eigenvalues cos(nα). We define
F (f) := f(1) and set h := cos( π

2N−1 ). Applying Theorem 1.2 yields that
the sparse Chebyshev expansion can be uniquely reconstructed from the val-
ues F (Skhf), k = 0, . . . , 2M − 1, where

F (S0hf) = f(1),

F (S1hf) = f(cos(
π

2N − 1
)),

F (S2hf) =
1

2

(
f(1) + f(cos

2π

2N − 1
)

)
,

F (S3hf) =
1

4

(
3f(cos

π

2N − 1
) + f(cos

3π

2N − 1
)

)
,

etc. Indeed, one can simply prove by induction, that the values F (Skhf), k =
0, . . . , 2M − 1, can be represented as linear combinations of the function values
f
(

cos( kπ
2N−1 )

)
, k = 0, . . . , 2M − 1.

4.4 Prony Method for Finite Dimensional Linear Opera-
tors

The generalized Prony Method considered in Chapter 1.2 can also be applied
to finite dimensional vector spaces. Let x ∈ CN be M -sparse, i.e., only M
components of x = (x1, . . . , xn)T differ from zero.

We want to recover x from only 2M linear measurements yk = aT
k x, k =

0, . . . , 2M−1, where the vectors ak ∈ CN need to be chosen suitably. The prob-
lem of reconstructing sparse vectors using only a small amount of measurements
has been heavily studied in the research field of compressed sensing, where the
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recovery algorithms are usually based on `1-minimization or greedy methods.
In this regard, often a stochastic matrix A ∈ CM1×N is used in order to recover
x from y = Ax ∈ CM1 , M1 ≥ 2M with high probability.

Here we want to derive a deterministic method to recover x, where A ∈
C2M×N with rows aT

k ∈ CN is explicitly given and of minimal dimension. For
this purpose, we use a linear operator A : CN → CN that can be represented
by a diagonal matrix A = diag(a0, . . . , aN−1) with pairwise different entries aj ,
j = 0, . . . , N − 1. Obviously, the unit vectors ej := (δj,`)

N−1
`=0 form a system of

eigenvectors of A with Aej = ajej for j = 0, . . . , N − 1. Further we choose a
linear functional F : CN → C e.g. of the form Fx = 1

Tx :=
∑N
j=1 xj . Hence,

Fej = 1
Tej = 1 6= 0 holds.

Using Theorem 1.2, we can now reconstruct a sparse vector x of the form

x =

M∑
j=1

cnjenj

with 0 ≤ n1 < · · · < nM ≤ N − 1 from the values

yk := F (Akx) = 1
T · Akx = aT

k x,

where aT
k = (ak0 , . . . , a

k
N−1), k = 0, . . . , 2L− 1. If the sparsity number M is not

known, but only an upper bound L we can formulate the following algorithm.

Algorithm 4.22 (Reconstruction of a sparse vector)

Input: operator diag(a0, . . . , aN−1), yk = aT
k x, k = 0, . . . , 2N − 1, optionally

an upper bound L ≥M .

1. (a) Construct the Hankel matrix

H2N−L,L+1 = (yk+m)2N−L−1,Lk,m=0

and use the ESPRIT Method 3.1.2, the Matrix Pencil Method 3.2.1 or
use 2.1 respectively 2.2 with an svd approach to find the eigenvalues
λj = anj , j = 1, . . . ,M of the active eigenvectors enj .
Alternatively:

(b) Construct the Hankel matrix HN−1 = (yk+m)N−1k,m=0 and use 2.1 or
2.2 with an eigenvalue decomposition approach to find the eigenvalues
λnj = anj , j = 1, . . . ,M of the active eigenvectors enj .

2. Compute the entries xnj by solving the overdetermined system

yk =

M∑
j=1

xnja
k
nj , k = 0, . . . , 2N − 1.

Output: M , nj , xnj 6= 0, j = 1, . . . ,M .
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To demonstrate this approach we want to present a small numerical example.
Let x ∈ R128 be a 3-sparse vector with x28 = 3, x71 = −1, x99 = 4, and let
A = diag(k/32)64k=−63 ∈ R128×128. For a given vector of values y = (yk)5k=0 with
yk = 1 · Akx we compute approximations ñj and x̃nj according to Algorithm
4.22. The results are shown in the Table 11.

nj xnj ñj x̃nj
28 3 27.99999999999999 3
71 −1 71.00000000000001 −1
99 4 99.00000000000000 4

Table 11: Numerical evaluation of the indices and the coefficients of a sparse vector x
using Algorithm 4.22.

Remark 4.23 1. In order to obtain a stable algorithm, the operator A may for
example be chosen as

A = diag(ω0
N , ω

1
N , . . . , ω

N−1
N ),

where ωN := e−2πi/N denotes the N -th root of unity. For this choice of A, the
vector y = (yk)2M−1k=0 of needed input values for Algorithm 4.22 is given by

y = FN,2Mx,

where FN,2M = (ωk`N )2M−1,N−1k,`=0 ∈ C2M×N contains the first 2M rows of the
Fouriermatrix of order N .

2. In the above considerations, the canonical basis can be replaced by any
other basis B = {b1, . . . ,bN} of CN . Choose a diagonal matrix A with pair-
wise different (complex) entries λ1, . . . , λN . Then the operator A := BAB−1 :
CN → CN , where B = (b1 . . .bN ) ∈ CN×N contains the columns bj, possesses
the eigenvalues λ1, . . . , λN with corresponding eigenvectors b1, . . . ,bN by con-
struction. Further, we define a functional F : CN → C satisfying Fb` 6= 0 for
` = 1, . . . , N . We can e.g. choose Fx := dTx for all x ∈ CN , where d is taken
suitably. Hence, a sparse expansion

x =

M∑
j=1

cnj bnj

in the basis B can by Theorem 1.2 be recovered by

F (Akx) = dTAkx, k = 0, . . . , 2M − 1.

3. Using Theorem 1.4, we can apply the recovery procedure also when the
given operator possesses eigenvalues with higher multiplicity, where also gener-
alized eigenvectors can be incorporated.
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4.4.1 Comparison with Compressed Sensing

Our generalized Prony Method applied to finite dimensional vector spaces fits
the setting that the research field of compressed sensing attends to. In [4] a
decent introduction to compressed sensing is given. The ideas we address here
were introduced in [9].

When a given signal is compressible in some domain, we try to realize the
compressing of the signal directly at the sampling process. Let the signal y ∈ CN
be M -sparse in a transformed domain, i.e. y = Ψx, for some transformation
matrix Ψ ∈ CN×N and with a vector x that has only M non vanishing entries.
One can think of the vector y as for example an image and of the matrix Ψ as
the inverse discrete Fourier transform matrix of size N×N . Then, the signal y is
compressible in the Fourier domain, if we relax the condition of strictlyM -sparse
vectors x to essentially compressible vectors x that have only M entries with
sufficiently large absolute value. The classical approach takes the vector y and
applies a Fourier transformation x = Ψ−1y in order to compress the image y. In
compressed sensing we ask now if we can substitute the knowledge of every single
entry of the signal y by fewer, but more general linear measurements z = Φy.
Here, the measurement matrix Φ is an element of CM×L, M < L � N . If we
can recover the signal y only from the measurement z ∈ CL, we have achieved
an L-term compression directly at the sampling process.

There are two main questions to be answered here. Firstly, we have to
concern ourselves with the question, which matrix Φ preserves the information
contained in x in the sampled vector z, such that we can recover y. Secondly,
we have to categorize an algorithm that recovers y from z. Of course the choice
Φ = I ensures that all information stored in y remain in z, but it keeps all
samples of y. We are looking for a linear mapping Φ with as few rows as possible
to guarantee the invertibility of the sampling process. One way to accomplish
this, is to look at probabilistic measures. Instead of exact recovery, we focus on
the probability that a random sparse signal fails to be correctly reconstructed.
If that probability approaches zero we can state that the sampling scheme is
successful in recovering y with probability 1. Let Φ(L) denote the first m rows
of an invertible matrix ΦN×N . If we use {B(m)}Nm=0 as sampling matrices, it
follows that the failure probability of recovering for Φ(0), Φ(N) is 1 respectively
0. As L increases, the failure probability decreases. The important observation
is that the decreasing rate of failure probability is exponential with respect to
m
N [9]. Therefore, we can expect an almost zero failure already for L � N . Of
course the exact rate highly depends on the mutual behavior of Φ,Ψ. In [9] is
stated

Pfailure < Ne
− cL

µ2(Ψ,Φ)(L)M , c > 0.

Here µ(Ψ,Φ) is the maximum coherence between rows of Ψ and Φ i.e.

µ
(
Ψ,Φ(L)

)
=
√
N max

1≤a≤N,1≤b≤L
|〈Ψa,Φb〉|,
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where Ψa denotes the a-th row of Ψ and Φb the b-th row of Φ. From this
statement it follows that the probability of reconstruction is almost surely 1 for

L ≥ µ2 (Ψ,Φ)
M log(N)

c
(4.55)

In other words, the lower the maximum coherence between Ψ and Φ, the lower
the number of required samples. Therefore a random matrix Φ is used. In [15],
Donoho has shown that the coherence between i.i.d. Gaussian Φ and any unitary
Ψ is considerably small.

In order to recover theM -sparse x from y one has to solve a `0 minimization
problem, i.e.

argmin
x̃∈CN

‖x̃‖0, (4.56)

s.t.ΦΨx̃ = z. (4.57)

With ‖x‖0 we denote the number of non zero entries in x even though ‖ · ‖0
is not a norm. This is an NP hard problem, but in [11] it is shown that if the
matrix ΨΦ fulfills the restricted isometry property (RIP) (see, e.g. [20]), the
solution of problem (4.56) is equivalent to the solution of the L1 minimization
problem

argmin
x̃∈CN

‖x̃‖1,

s.t.ΦΨx̃ = z.

The latter problem can be solved via linear programming.
If we set A := ΦΨ the problem above can be interpreted as the problem of

recovering the indices j and the entries xj , j = 1, . . . ,M , from L linear measure-
ments z, which we can approach with our generalized Prony Method applied
to finite dimensional vector spaces. The advantage of the generalized Prony
Method is that we can guarantee the recovery of x with the minimum of 2M
measurements, if we can identify a suitable linear operator A, such that the
entries zk can be represented as zk = Akx. As we have seen in Remark 4.23,
the first 2M rows of the Fourier matrix FN fulfill this condition. Therefore,
the generalized Prony Method provides a deterministic solution to this recov-
ery problem in the noiseless case. Unfortunately, it is not stable for large M
and hence does not apply to essentially compressible signals. The compressed
sensing approach on the other hand can only guarantee recovery with a certain
probability and needs O(M logN) measurements. This means that not only the
sparsity M , but also the dimension of the original signal space CN defines the
number of needed input values and furthermore, the matrix A has to fulfill the
RIP, which is non trivial to check. Then again, under the assumptions made
above for compressed sensing, we can guarantee stable recovery of x, which we
lack up until now for our generalized Prony Method.

73



4.5 Prony Method for the Differential Operator
Finally, we want to mention that the exponentials can also be seen as eigen-
functions of differential operators. Let us consider the vector space C∞(R) of
infinitely differentiable functions, and let d

dx : C∞(R) → C∞(R) be the differ-
entiation operator. We observe that {T : T ∈ C} is a set of pairwise distinct
eigenvalues of d

dx and by

d

dx
eTx = T eTx

we can uniquely relate the eigenfunction eTx to the eigenvalue T . Let x0 be a
fixed real number. Then, with F (f) := f(x0), ∀f ∈ C∞(R), we can again apply
Theorem 1.2 for recovering the sparse sum of exponentials

f(x) =

M∑
j=1

cje
Tjx (4.58)

with pairwise different Tj ∈ C. The reconstruction of f can be uniquely per-
formed using the values

F

(
dk

dxk
f

)
(x) = f (k)(x0), k = 0, . . . , 2M − 1,

where x0 ∈ R can be chosen arbitrarily.

Algorithm 4.24 (Reconstruction of f in (4.58))

Input: F
(

dk

dxk
f
)

(x), k = 0, . . . , 2N − 1. Optionally an upper bound L for the
sparsity M , else L = N .

1. (a) Construct the Hankel matrix

H2N−L,L+1 =

(
F

(
dk+m

dxk+m
f

)
(x)

)2N−L−1,L

k,m=0

and use the ESPRIT Method 3.1.2, the Matrix Pencil Method 3.2.1 or
use 2.1 respectively 2.2 with an svd approach to find the eigenvalues
λj = Tj , j = 1, . . . ,M of the active eigenfunctions eTjx.
Alternatively:

(b) Construct the Hankel matrix

HN−1 =

(
F

(
dk+m

dxk+m
f

)
(x)

)N−1
k,m=0

and use 2.1 or 2.2 with an eigenvalue decomposition approach to find
the eigenvalues λj = Tj , j = 1, . . . ,M of the active eigenfunctions
eTjx.
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2. Compute the coefficients cj by solving the overdetermined system(
F

(
dk

dxk
f

)
(x)

)
=

M∑
j=1

cjF (T kj eTjk) k = 0, . . . , 2N − 1.

Output: M , cj , Tj , j = 1, . . . ,M .

Moreover, let {w`}r`=0 be a basis of the space of polynomials of degree at
most r and deg(w`) = `, ` = 0, . . . , r. Then we easily check that the functions
w`(x)eTx, ` = 0, . . . , r, form linearly independent generalized eigenfunctions of
multiplicity ` + 1 of the linear operator d

dx , and Theorem 1.4 applies for the
recovery of sparse expansions of the form

f(x) =

M∑
j=1

r∑
`=0

cj,`w`(x)eTjx

using the derivative values f (k)(x0), k = 0, . . . , 2M(r + 1)− 1, for r ≥ 0.

Eigenfunctions of monomial form can also be obtained using suitable differ-
ential operators. Let dx : C∞(R) → C∞(R) be the differential operator of the
form

dxf(x) :=
d

dx
(xf(x)) = f(x) + xf ′(x).

Then we have

dx(xp) =
d

dx
(xp+1) = (p+ 1)xp, p ∈ R,

and the operator dx possesses the set {p + 1 : p ∈ R} of pairwise different
eigenvalues with corresponding eigenfunctions xp. We consider now a sparse
monomial expansion of the form

f(x) =

M∑
j=1

cjx
pj

with cj ∈ C\{0} and pairwise different pj ∈ R. Using Theorem 1.2, this expan-
sion can be completely recovered from F ((dx)kf), k = 0, . . . 2M − 1. A simple
induction argument shows that the values (dx)kf can be obtained recursively
from the derivative values f (`)(x0), ` = 0, . . . , 2M − 1.

Lemma 4.25 For ak,` = ak−1,`−1 + 2ak−1,`, k, ` > 0 with ak,0 = 1, ak,`=0 for
` > k and a0,1 = 1, the functions (dx)kf(x) can be represented as

(dx)kf(x) =

k∑
`=0

ak,`x
`f (`)(x).
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Proof. We observe

(dx)x`f (`)(x) = 2x`f (`) + x`+1f (`+1), ` ≥ 1,

and proof the induction argument by computing

(dx)kf(x) = (dx)

k−1∑
`=0

ak−1,`x
`f (`)(x)

= (dx) ak−1,0︸ ︷︷ ︸
=1

f(x) +

k−1∑
`=1

ak−1,`(dx)x`f (`)(x)

= f(x) + 1︸︷︷︸
:=ak−1,0

·xf(x) +
k−1∑
`=1

ak−1,`

(
2x`f (`)(x) + x`+1f (`+1)(x)

)

= f(x) +

k∑
`=1

(2 ak−1,`︸ ︷︷ ︸
ak−1,k=0

+ak−1,`−1)x`f (`)(x)

Therefore we have ak,` = 2ak−1,` + ak−1,`−1 for ` ≥ 1 and ak,0 = 1. Note
that by assumption ak−1,` = 0, if ` > k. For that reason we have ak,k :=
2 · 0 + ak−1,`−1 = 1 in the last step.

In this chapter we saw examples of suitable linear operators and their eigen-
functions that apply to our generalized Prony Method. The freedom of choice
that we have in selecting the functional F inherits further generalizations which
will be part of our considerations in the next chapter.
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5 Extending the Generalized Prony Method
The examples in the last chapter display the range of our generalized Prony
Method, concerning eigenfunctions of suitable linear operators. In this chapter
we want to examine possible extensions to multivariate signals and we want to
study the functional F that is introduced in Theorem 1.2.

5.1 Freedom of Choice in the Functional F
We saw that we can reconstruct M -sparse functions f of the form (1.8) when
information in the form F (Akf), k = 0, . . . , L, L ≥ 2M − 1 are given. But up
until now we have not exploited the freedom of choice in the functional F . In
this chapter we want to elaborate possible classifications of the functional F .

Once we made a choice for the operator A we have fixed the set of func-
tions, with which we can represent f . As we have seen, these functions are
the eigenfunctions of the operator A. In order to use Theorem 1.2 and thereby
the generalized Prony Method, we need input data that use the k-th power
of the operator A applied to f . These powers define the kind of input data
we need. As we have seen, for example the translation operator (4.34) needs
equidistant sampling points, the Sturm-Liouville (4.49) needs first derivatives
of f . Of course the application of the k-th power of A to f gives an element of
the vector space V which can in general not be handled as an input data. We
need a functional F : V → C, that reduces the information stored in Ak to a
single value. And here we have a huge freedom in choosing the functional F .
We hope that we can use this freedom in order to stabilize the method.

The first examples of functionals that might come to mind are convolutions of
elements f from the vector space V with finitely supported or at least essentially
finite supported kernels ϕ with respect to V . With essentially finite supported
with respect to V we mean kernels ϕ that decay fast enough, such that (f ∗
ϕ)(x) < ∞ for all x ∈ C and all f ∈ V . The continuous convolution of two
functions f, g is defined as

(f ∗ g)(x) :=

∫ ∞
−∞

f(ξ)g(x− ξ)dξ

We define the mirrored kernel g̃(x) := g(−x) and observe

(f ∗ g̃)(x) :=

∫ ∞
−∞

f(ξ)g(ξ − x)dξ.

This defines of course a function and not a scalar, but we can set F to be

Fx0,g(f) := (f ∗ g̃)(x0) =

∫ ∞
−∞

f(ξ)g(ξ − x0)dξ.

Note that for example the functional Fk(f) := f (k)(x0) that evaluates the k-th
derivative of a function f at the point x0 does not lie in the class defined above,
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but still fulfills all requirements needed as the functional F in the generalized
Prony Method.

For the purpose of understanding let us fix the operator A as the translation
operator Ahf(x) := f(x+h) and observe the effect of different kernels ϕ to the
signal

f(x) = 2 sin(0.4x) + cos(x)− 2e−1.1x + 0.5ex/10. (5.59)

Dirac distribution
Let ϕ be the Dirac distribution δx0 with the property 〈δx0 , f〉 =

∫∞
−∞ δ(x−

x0)f(x)dx = f(x0). Then the functional F becomes the point evaluation func-
tional

F (f) := (ϕ ∗ f)(x0) = 〈δx0
, f〉 =

∫ ∞
−∞

δ(x− x0)f(x)dx = f(x0)

F (A`hf) =

∫ ∞
−∞

δ(x− x0)f(x+ `h)dx = f(x0 + `h).

We know this functional well from the previous examples, but for the sake of
completion we show a visualization in figure 10.
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sampling points

Figure 10: The blue graph shows the characteristics of the signal f in the
interval [0, 30], whereas the red stars show the equidistant input data F (A`2f),
` = 0, . . . , 15.

This shows that the classical Prony Method falls into this setting.

Constant spline
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Let

ϕ(x) =

{
1, x ∈ [−1, 1],

0, else

be the constant spline, then the functional F becomes an integral evaluation
of consecutive intervals

F (f) :=

∫ ∞
−∞

ϕ(x)f(x)dx =

∫ 1

0

f(x)dx

F (A`hf) :=

∫ 1

0

f(x+ `h)dx =

∫ (`+1)h

`h

f(x)dx.

We apply the integral approach to our test scenario and depict an example in
Figure 11.
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Figure 11: The blue graph shows the signal f in the interval [0, 30]. The bars
represent the integral F (A`2f) =

∫ (`+1)h

`h
f(x)dx, ` = 0, . . . , 14.

We want to present a way, how this approach might become expedient if
we are provided with a lot of, possibly, erroneous input data. The idea is to
approximate the integral at a certain predefined interval out of given sampling
points, e.g. ∫ (`+1)h

`h

f(x)dx ≈
N∑
k=1

ω`,kf(k), c` ≤ k ≤ C`,

with quadrature weights ω`,k, k = 1 . . . , N . Note that for ω`,k = 1
N , c` = `h,

C` = (` + 1)h and equidistant input data the quadrature formula becomes the
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arithmetic mean. The prospect of this approach is that the smoothing operation
of evaluating an integral over a certain interval levels out the failures with which
the input data are corrupted.

Furthermore, this special functional is also advantageous for a low noise
level, if very many input data are given. Because we saw in Example 2.4 that
the running time of the Prony Method increases dramatically for a high number
of input data and now we can use all 2N − 1 input data to approximate 2L +
1 consecutive interval-integrals. Thus, we use all the given information in a
preprocessing step in order to compute 2L + 1 input data for our generalized
Prony Method, where L is an upper bound for the sparsity M , but L� N .

The probably most promising feature is that we are able to process non-
equidistant input data. Assume we have many sampling points given that do
not lie on an equispaced grid, then we can artificially construct equidistant input
data by approximating consecutive interval-integrals out of the non-equidistant
given data.

Let us look at an example.

Example 5.1 For the test scenario stated above we use 1500 input values f̃(sh0)
= f(sh0)+esh0 , s = 0, . . . , 1499, h0 = 1/50, with additional gaussian noise esh0 ,
with zero mean and variance σ2 = 1. The PSNR for these perturbed input data
is about 20dB. The input values are depicted as black dots in Figure 12. We
choose the interval length h = 2 and the mean value of 100 consecutive sampling
points as integral approximation∫ (k+1)h

kh

f(x)dx ≈ 1

100

100∑
s=1

f̃(s+ k), k = 0, . . . , 14,
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Figure 12: The blue graph shows the signal f in the interval [0, 30]. The bars
represent the approximated interval-integrals. The black dots depict the erro-
neous given sampling points and the red graph shows the characteristic of the
reconstructed signal.

We use the ESPRIT Method with the 15 approximated interval integrals as
described above and reconstruct the eigenvalues λ1 = 0.4i, λ2 = −0.4i, λ3 = i,
λ4 = −i, λ5 = −1.1, λ6 = 0.1 to the active eigenfunctions of the signal f in
(5.59) with a failure in the range of 10−2. If we use instead all 1500 given sam-
pling points, without preprocessing, the ESPRIT Method is considerably slower
than the approach introduced here and the method fails to detect any eigenvalue
λj, j = 1, . . . , 6 with an accuracy below 0.3. In other words, without the benefit-
ing smoothing feature of the interval integration, the method fails to detect the
active eigenfunctions in the perturbed signal.

As mentioned before, due to our freedom of choosing the interval length
artificially, we are no longer restricted to equidistant input data. Of course,
there have to be enough non equispaced input data available in every newly
chosen interval to approximate the integral of f in that interval. Let us look at
an example.

Example 5.2 Assume 61 non equidistant given sampling points of the signal f
in 5.59 in the interval [0, 30]. That means, on average we have a distance 0.5
between two sampling points. In Figure 13 we see the original signal depicted
in blue and the non equidistant input data as red dots. In a first step we make
a cubic spline interpolation of the given sampling points. In the next step we
approximate the integral in every artificially chosen interval [k, k + h], k =
0, . . . , 14, h = 2 as the exact integral of the spline function in those intervals.
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Figure 13: The blue graph shows the signal f in the interval [0, 30]. The red dots
depict 61 non equidistant sampling points and the gray dashed lines indicate
the arbitrarily chosen intervals.

Again we choose 15 intervals of length 2 and approximate the integral in
those intervals. In Figure 13 we see that 61 non equidistant input data are
rather few, because there are some intervals that inherit almost too few samples
to reliably approximate the integral in that interval, without a previous spline
interpolation. Nevertheless, with our approach for non equidistant input data
we get to recover the eigenvalues λj, j = 1, . . . ,M quit accurate, except for
λ5 = −1.1. The results are presented in Table 12.

j λ̃j λj
1 0.4006i 0.4i
2 −0.4006i −0.4i
3 0.9987i i
4 −0.9987i −i
5 −1.31166 −1.1
6 0.10020 0.1

Table 12: The computed eigenvalues of the signal f in 13.

Note that in Figure 13 there is each a sampling point at 0 and at 30. This is
no loss of generality, because for a given set of non equidistant sampling points
we can always assume the first given sampling point to be at zero and the last one
at any preferred point. Translating the first sampling point to 0 does not effect
the eigenvalues λj, j = 1, . . . ,M but only the initial phase of each exponential
function in f , which just effects the coefficients cj, j = 1, . . . ,M . Setting the
last sampling point to an arbitrary point apart from 0 on the other hand scales
the eigenvalues λj, j = 1, . . . ,M .
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Remark 5.3 The Prony Method for non equidistant input data was already
investigated, in our paper [36].

Let us summarize the advantages that we can observe with this approach.

1. For input data with gaussian noise corruption, the smoothing operation
of approximating an integral has an error correcting feature.

2. All input data can be used and we still end up with a method that works
in reasonably short time.

3. Maybe the most interesting feature is the possibility of handling non eq-
uispaced input data. If we adjust the weights ω`,k properly according to
the local step width we can construct approximations of the needed input
values in the form of a convolution as described above.

4. Instead of approximating the integral in a certain interval as the weighted
sum of the (possibly non equispaced) given input data, we can also approx-
imate the given data with a spline function first and evaluate the desired
integral approximation of the original function as the exact integral of the
spline in a second step.

It is reasonable to assume that the more data we use to approximate the
convolution of the underlying function with a certain kernel, the better this
approximation will be. That is why we can also look at kernels with a wider
support than the interval we choose.

Gaussian
An extreme version of a kernel that has a wider support than the interval

we choose is an infinitely supported kernel. Of course here we have to ensure
that the kernel will decay faster than any eigenfunction of the operator A, such
that the convolution of the underlying function f with the chosen kernel will
stay finite. A kernel that meets this condition for the translation operator, and
thus the exponential functions as eigenfunctions, is the Gauss function.

Let ϕ be the gauss function

ϕb(x) := e−bx
2

, b > 0.

The functional F becomes a convolution of the Gauss kernel with the function
f translated by h`,

F (A`hf) :=

∫ ∞
−∞

f(x+ `h)e−bx
2

dx =

∫ ∞
−∞

f(x)e−b(x−`h)
2

dx.
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Other Functionals
Linear Combinations
Of course also linear combinations of different kernels are again suitable

kernels. We can, for example use

F (f)(x) :=

N∑
k=−N

α(k)[〈δx−k, f〉+ 〈δx+k, f〉]

=

N∑
k=−N

α(k) [f(x+ k) + f(x− k)] .

Let ψ be a functional ψ : Q → (−1, 1) with ψ(x) = ψ(−x) and ψ(x) = 0,
|x| ≥ 1. Possible realizations of ψ are, e.g. spline functions, centered at zero
and shrunken to the interval [−1, 1] or

ψ(x) :=

{
e1/(x

2−1), x ∈ (−1, 1)

0, else

if ψ : R→ R is preferred infinitely differentiable. If we set now

α(k) := ψ

(
k

N

)
f(k)

we end up with the functional

FN,ψ(f)(x) :=
∑
k∈Z

ψ

(
k

N

)
f(k)

f(x− k) + f(x+ k)

2
,

which was proposed in [19] as a preconditioning for erroneous input data for
Prony-like methods in order to stabilize the calculations.

Remark 5.4 As we already mentioned in the introduction of this subchapter,
we can also use functionals that cannot be written as a convolution of the func-
tion f with a certain kernel. Let us take for example the functional

F (f)(x) = f ′(x0),

F (Akf)(x) = (Akf)′(x0),

which uses derivatives instead of sampling points.

Let us close this subchapter about the functional F with an open problem.
In order to apply theorem 1.2 we have to ensure that F (vj) 6= 0 and |F (vj)| <

∞, j ∈ I, for all eigenfunctions of the operator A. But we have not taken into
account that the functional F applied to different eigenfunctions vj , j ∈ I
can differ vastly in magnitude. An interesting question in that direction is, if
we benefit from constructing special functionals with a priori knowledge of the
active eigenfunctions in the signal at hand. To be more specific, assume we have
already some (presumably perturbed) results from a first run of our generalized
Prony Method. Can we construct a functional F such that |F (vj)| > |F (vk)|
for all j ∈ J and k ∈ I\J?
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5.2 Multivariate Version of the Generalized Prony Method
The reconstruction method also applies to the multivariate case. Let Sa :
C(Rd)→ C(Rd) be the shift operator with

Saf(x1, . . . , xd) = f(x1 + a1, x2 + a2, . . . , xd + ad),

with the set of eigenfunctions {eT·x = eT1x1+···+Tdxd : T` ∈ C, ImT` ∈ [−πa ,
π
a ), ` =

1, . . . , d}. The corresponding eigenvalues eT·a allow a unique conclusion to the
corresponding eigenfunction eT·x if there exists an injective linear mapping that
maps T to T · a. This condition can be satisfied by a suitable restriction of T
and a special choice of a. Let f(x) be of the form

f(x) =

M∑
j=1

cje
Tj ·x

with Tj = (Tj,1, . . . , Tj,d)
T, where Tj,` ∈ N for j = 1, . . . ,M, ` = 1, . . . , d.

Choose now pairwise relatively prime numbers p1, . . . , pd with p` > max
j=1,...,M

Tj,`

for ` = 1, . . . , d. Further, let N = p1p2 · · · pd, and a := (Np1 , . . . ,
N
pd

). Then each
variable Tj ∈ Nd can be uniquely determined from τj := Tj ·a using the reverse
steps of the Chinese remainder theorem which is discussed for example in [51].
We have

τj =

d∑
`=1

Tj,`N

p`
.

Hence, τj ≡ Tj,` mod p` for 1 ≤ ` ≤ d, and we can recover Tj from τj by
Tj,` = τj − p`

⌊
τj
p`

⌋
, see [23]. Unfortunately, this procedure is highly unstable.

Another procedure for recovery of multivariate exponential sums is based on
the determination of Tj ∈ Cd, Im Tj ∈ [−πa ,

π
a )d, from different scalar products

Tj · a1, Tj · a2, etc., see [38,41].

5.3 Analyzing Translations of Multivariate Gaussians in
Time Domain

In this subchapter we want to present a very new approach to analyze transla-
tions of certain kernels when sampling points in the time domain are given. The
results presented here evolved from discussion with Robert Schaback. Note that
the analysis of translations of 1-periodic window functions via Prony’s method
was already discussed in our paper [36].

Define the kernel

Kb(x) := e−bx
Tx, b > 0
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component wise for x ∈ Rd and consider

f(x) =

M∑
j=1

cjKb(x− sj) =

M∑
j=1

cje
−b(x−sj)T(x−sj).

For known b we want to determine the unknown translations sj ∈ Rd and the
corresponding coefficients cj out of given sampling points f(n), n ∈ Ω ⊂ Rd.
We define the Prony polynomial

P (z) =

N∑
k=0

pkz
nk , nk ∈ K ⊂ Nk

with roots e2bsj , i.e. P (e2bsj ) = 0, j = 1, . . . ,M . Let us investigate the following
weighted sum

N∑
k=1

qkf(nk +m)α(m, k)

=

N∑
k=1

qk

M∑
j=1

cje
−b(nk+m−sj)T(nk+m−sj)α(m, k)

=

M∑
j=1

cj

N∑
k=1

qke−b(n
T
k nk+m

Tm+sTj sj+2nT
km−2n

T
k sj−2m

Tsj)α(m, k)

=

M∑
j=1

cj e−b(m
Tm+sTj sj−2m

Tsj)︸ ︷︷ ︸
=e−b(m−sj)T(m−sj)

N∑
k=1

pk︸︷︷︸
:=qke

−b(nT
k
nk)

e−2b(n
T
km−n

T
k sj)α(m, k)

=

M∑
j=1

cje
−b(m−sj)T(m−sj)

N∑
k=1

pk
(
e2bsj

)nk
α(m, k)︸ ︷︷ ︸
:=e2bm

Tnk

=

M∑
j=1

cje
−b(m−sj)T(m−sj)

N∑
k=1

pk
(
e2bsj

)nk
︸ ︷︷ ︸

=P (e2bsj )=0

= 0.

Defining α(m, k) := e2bm
Tnk and qk := pkeb(n

T
k nk) we have to solve the following

system

Hq =0,

H :=(f(nk +m`)e
2bmT

` nk)N`,k=1

q :=(pkeb(n
T
k nk))Nk=1,

thus we compute the coefficients of the Prony polynomial by pk = qke−b(n
T
k nk).
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Remark 5.5 In one dimension we can define a polynomial as a product of
linear factors, i.e.

P (x) =

M∏
j=1

(x− sj) =

M∑
k=0

pkx
k,

and we know that it has a monomic representation. These two possibilities to
define a polynomial are the key to Prony’s method as we have introduced it in
this thesis.

In higher dimensions we generally cannot define a polynomial as a product
of linear factors, since higher dimensional polynomials do not necessarily de-
compose into linear factors. That is why we just postulated that there exists a
polynomial with the desired roots. But a necessary condition for the minimal
degree of the multivariate polynomial is an open problem. One way to get a
sufficient condition is to decouple the multivariate polynomial for given roots
sj ∈ Rd, j = 1, . . . ,M

Pi(xi) :=

M∏
j=1

(xi − si,j) =

M∑
k=0

pi,kx
k
i , i = 1, . . . , d

P (x) :=

P1(x1)
...

Pd(xd)


⇒ P (sj) = 0.

Since the multi index nk defines the sampling points we need, this approach sam-
ples along the axis. And here we need 2M sampling points in each dimension.
Can we guarantee to stay closer to the origin with the needed sampling values if
we allow mixed terms?

Now, that we have seen the general approach, let us consider the simpler
one dimensional case. Assume a function

f(x) =

M∑
j=1

cje
−b(x−sj)2

and given sampling points f(hn), n = 0, . . . , N , h > 0. The task is to determine
the unknowns sj and the coefficients cj . We define the Prony polynomial and
some assisting functions

P (z) :=

M∏
j=1

(z − e2bhsj ) =

M∑
k=0

pkz
k,

α(m, k) := e2bhmk

qk := pkebhk
2

,
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with roots e2bhsj , i.e. P (e2bhsj ) = 0. Now we analyze the following weighted
sum

M∑
k=0

qkf(hk +m)α(m, k)

=

M∑
k=0

qk

M∑
j=1

cje
−b(hk+m−sj)2α(m, k)

=

M∑
j=1

cj

M∑
k=0

qke−b(h
2k2+m2+s2j+2hkm−2hksj−2msj)α(m, k)

=

M∑
j=1

cje
−b(m2+s2j−2msj)

M∑
k=0

pke−b(h
2k2+2hkm−2hksj)e2bhmk

=

M∑
j=1

cje
−b(m2+s2j−2msj)

M∑
k=0

pk
(
e2bhsj

)k
︸ ︷︷ ︸

=0

= 0

Example 5.6 Set M = b = h = c = s = 1, i.e.

f(x) = e−(x−1)
2

α(m, k) = e2mk

qk = pkek
2

We need just one root, so a linear polynomial is sufficient, which means we need
a 2× 2 matrix H (

f(0)α(0, 0) f(1)α(0, 1)
f(1)α(1, 0) f(2)α(1, 1)

)(
p0
p1e

)
=

(
0
0

)
(

e−1 1
1 e1

)(
p0
p1e

)
=

(
0
0

)
⇒ P (z) ≈ z − 0.1353352832366127

log(0.1353352832366127)/2 ≈− 1

In the multi dimensional case we are faced with a further numerical issue.
The zero sets of a d dimensional polynomial usually lie on a d− 1 dimensional
manifold. The numerical calculation of those zero sets is challenging. Further-
more we are interested in specific points e2bsj , j = 1, . . . ,M that are elements of
the zero sets of each Prony related polynomial. Therefore, we have to calculate
intersections of the zero sets of different Prony related polynomials. Let us look
at a two dimensional example.
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Example 5.7 We set b = h = 1,

s1 = e[1,0]
T

≈ [2.718, 1]T

s2 = e[1,2]
T

≈ [2.718, 7.389]T

s3 = e[−1,3]
T

≈ [0.368, 20.09]T

and consider the function

f(x) =

3∑
j=1

e−(x−sj)
T(x−sj).

Thus c1 = c2 = c3 = 1. We have some freedom in choosing the two dimen-
sional Prony related polynomial Q(x), x ∈ R2, which in turn defines the needed
sampling points. Let us choose for example

Q(x1, x2) = q0 · 1 + q1x2 + q2x
2
2 + q3x1 + q4x1x2 + q5x

2
1

andmk = (k, 0)T, k = 0, . . . , 5, i.e. n0 = (0, 0)T, n1 = (0, 1)T, n2 = (0, 2)T, n3 =
(1, 0)T, n4 = (1, 1)T, n5 = (2, 0)T. This choice defines the structure of sampling
points we need for each row in the Hankel matrix H. By varying mk we just
shift the pattern defined by nk, k = 0, . . . , 5 in the x1, x2 plane. The choice
mk = (k, 0)T, k = 0, . . . , 5 is somewhat better than other choices, since we use
again several points for different rows in H, but for the purpose of demonstration
let us choose m̃0 = (0, 0)T, m̃1 = (2, 1)T, m̃2 = (3.5, 0)T, m̃3 = (1, 2.5)T, m̃4 =
(5, 2)T, m̃5 = (3, 4)T. We see in Figure 14 the recurring pattern of our choice
of Q(x) and m̃k, k = 0, · · · 5, where the patterns are color-coded from dark blue
for m̃0 to light blue for m̃5.

−1 0 1 2 3 4 5 6 7 8
−1

0

1

2

3
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6

x
1
−axis

x
2
−

a
x
is

Figure 14: Example of possible sampling patterns for 6 different rows of the
Hankel matrix H.
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Let

H =
(
f(nk +m`)e

2mT
` nk
)5
`=0,k=0

be the Hankel matrix we use for the Prony Method, then rank(H) = 3, since we
have three active translations present in the signal f(x). For that reason, we also
get three different vectors q1,q2,q3 that lie in the kernel of H. The entries of
those vectors define the coefficients of three different Prony related polynomials
corresponding to the choice we made in appointing nk, k = 0, . . . , 5. We now
have to find the common roots of those polynomials.

The roots of the Prony related polynomials lie on one dimensional manifolds
in the x1, x2 plane. We approximate those zero set by fixing x1 which makes the
Prony related polynomial only dependent on x2 and its roots can be evaluated
as the eigenvalues of the companion matrix. In Figure 15 we vary x1 in steps
of 1/1000 and compute the roots of each of the three Prony related polynomials.
Indeed we see that these polynomials share three roots at the shifts s1, s2, s3,
which are depicted as red circles. (The straight lines that appear in Figure 15
are the absolute values of the non real roots of the Prony related polynomials.)
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Figure 15: The roots of three different two dimensional Prony related polyno-
mials depicted in blue, green and black. The red circles indicate the location of
the shifts s1, s2, s3.

In this last example we have seen that this method for analyzing translations
of multivariate kernels works in principal, but there are still open questions,
such as developing suitable numerical implementations for finding zero sets of
multi dimensional polynomials. Another open problem is to answer the question
which criteria we need for the choice of nk, k = 0, . . . , L to ensure that the
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corresponding Prony related polynomial has the unknown shifts sj , j = 1, . . . ,M
as roots. In chapter 7 we will pay attention to other open problems that occurred
during the examination of our generalized Prony Method.
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6 Applications of the Prony Method
In this chapter we want to present an application of Prony’s method for non
destructive material examination. In order to apply Prony’s method for this sce-
nario we have to perform a preprocessing step based on Fourier techniques that
transforms the problem at hand into a problem we can analyze with the Prony
Method. For that reason we will explain this approach in detail in subchapter
6.1 before we start with the actual example in subchapter 6.2. .

6.1 Prony Method after Preprocessing
Up until now we always considered the ansatz that the underlying function of
the given data can be expressed as an M -term representation of eigenfunctions
of a certain linear operator. Now we want to consider the case that not the
data themselves but only a transformed version is M -sparse in the transformed
space. In a joined work with Manfred Tasche and Daniel Potts [36] we examined
signals that needed a Fourier transform prior to being applicable as input data
for Prony’s method.

Let N ∈ 2N be fixed. We introduce an oversampling factor α > 1 such that
n := αN is a power of 2. Let ϕ ∈ C(R) be a 1-periodic even, nonnegative
function with a uniformly convergent Fourier expansion. Further we assume
that all Fourier coefficients

ck(ϕ) :=

1/2∫
−1/2

ϕ(x) e−2πikx dx = 2

1/2∫
0

ϕ(x) cos(2πkx) dx, k ∈ Z

are nonnegative and that ck(ϕ) > 0 for k = 0, . . . , N/2. Such a function ϕ
is called a window function. We can consider one of the following window
functions.

Example 6.1 A well known window function is the 1–periodization of a Gaus-
sian function (see [17,18,52])

ϕ(x) =

∞∑
k=−∞

ϕ0(x+ k), ϕ0(x) :=
1√
πb

e−(nx)
2/b, x ∈ R, b ≥ 1

with the Fourier coefficients ck(ϕ) = 1
n e−b(πk/n)

2

> 0, k ∈ Z.

Example 6.2 Another window function is the 1-periodization of a centered car-
dinal B–spline (see [5, 52])

ϕ(x) =

∞∑
k=−∞

ϕ0(x+ k), ϕ0(x) := M2m(nx), x ∈ R; m ∈ N

with the Fourier coefficients ck(ϕ) = 1
n

(
sinckπn

)2m, k ∈ Z . With M2m, m ∈ N
we denote the centered cardinal B–spline of order 2m.
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Example 6.3 Let m ∈ N be fixed. A possible window function is the 1-perio-
dization of the 2m-th power of a sinc-function (see [31])

ϕ(x) =

∞∑
k=−∞

ϕ0(x+ k) , ϕ0(x) :=
N (2α− 1)

2m
sinc2m

(
πNx (2α− 1)

2m

)
with the Fourier coefficients ck(ϕ) = M2m

(
2mk

(2α−1)N
)
, k ∈ Z.

Example 6.4 Let m ∈ N be fixed. As next window function we mention the
1-periodization of a Kaiser–Bessel function (see [29])

ϕ(x) =

∞∑
k=−∞

ϕ0(x+ k) ,

ϕ0(x) :=


sinh(b

√
m2−n2x2)

π
√
m2−n2x2

for |x| ≤ m
n

(
b := π

(
2− 1

α

))
,

sin(b
√
n2x2−m2)

π
√
n2x2−m2

otherwise

with the Fourier coefficients

ck(ϕ) =

{
1
n I0

(
m
√
b2 − (2πk/n)2

)
for |k| ≤ n

(
1− 1

2α

)
,

0 otherwise,

where I0 denotes the modified zero–order Bessel function.

Now we consider a linear combination

f(x) =

M∑
j=1

cjϕ(x+ sj) (6.60)

of translates with complex coefficients cj 6= 0 and pairwise different shift pa-
rameters sj , where

− 1

2
< s1 < . . . < sM <

1

2
(6.61)

is fulfilled. Then f ∈ C(R) is a complex-valued 1-periodic function. Further let
N ≥ 2M + 1. Assume that perturbed, uniformly sampled data

f̃l = f

(
l

n

)
+ el, |el| ≤ ε1 l = −n/2, . . . , n/2− 1

are given, where the error terms el ∈ C are bounded by a certain accuracy ε1
(0 < ε1 � 1). We suppose that |cj | � ε1, j = 1, . . . ,M .

Then we consider the following nonlinear approximation problem for a sum
(6.60) of translates: Determine the pairwise different shift parameters sj ∈
(− 1

2 ,
1
2 ) and the complex coefficients cj in such a way that∣∣∣∣∣∣f̃l −

M∑
j=1

cj ϕ

(
l

n
+ sj

)∣∣∣∣∣∣ ≤ ε, l = −n/2, . . . , n/2− 1 (6.62)
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for very small accuracy ε > 0 and for minimal number M of translates. Note
that all reconstructed values of the shift parameters sj , the coefficients cj , and
the number M of translates depend on ε, ε1, and n. By the assumption |cj | �
ε1, j = 1, . . . ,M , we will be able to recover the original integer M in the case
of small error bounds ε and ε1.

This nonlinear inverse problem (6.62) can be numerically solved in two steps.
First we convert the given problem (6.62) into a parameter estimation problem
for an exponential sum by using Fourier technique. Then the parameters of the
transformed exponential sum are recovered by a Prony-like method as intro-
duced in chapter 3.

For the 1–periodic function (6.60), we compute the corresponding Fourier
coefficients. By (6.60) we obtain for k ∈ Z

ck(f) =

1/2∫
−1/2

f(x) e−2πikx dx =
( M∑
j=1

cj e2πiksj
)
ck(ϕ) = h(k) ck(ϕ) (6.63)

with the exponential sum

h(x) :=

M∑
j=1

cj e2πixsj (x ∈ R) . (6.64)

In applications, the Fourier coefficients ck(ϕ) of the window function ϕ are
often explicitly known, where ck(ϕ) > 0, k = 0, . . . , N/2 by assumption. Further
the function f is sampled on a fine grid, i.e., we know noisy sampled data f̃l =
f(l/n)+el, l = −n/2, . . . , n/2−1 on the fine grid {l/n : l = −n/2, . . . , n/2−1}
of [−1/2, 1/2], where el are small error terms. Then we can compute ck(f),
k = −N/2, . . . , N/2 by discrete Fourier transform

ck(f) ≈ 1

n

n/2−1∑
l=−n/2

f

(
l

n

)
e−2πikl/n

≈ f̂k :=
1

n

n/2−1∑
l=−n/2

f̃l e
−2πikl/n .

For shortness we set

h̃k := f̂k/ck(ϕ), k = −N/2, . . . , N/2 . (6.65)

6.1.1 Algorithm

Prony Method for Sums of Translates
Input: N ∈ 2N, L with M ≤ L ≤ N/2, n = αN power of 2 with α > 1,

f̃l = f(l/n)+el, l = −n/2, . . . , n/2−1, ck(ϕ) > 0, k = 0, . . . , N/2 and accuracy
ε > 0.
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1. By fast Fourier transform compute

f̂k :=
1

n

n/2−1∑
l=−n/2

f̃l e
−2πikl/n, k = −N/2, . . . , N/2 ,

h̃k := f̂k/ck(ϕ), k = −N/2, . . . , N/2 .

2. Apply algorithm 2.1 or 2.2 to hk+N/2 = h̃k, k = −N/2, . . . , N/2 with
threshold ε.

Remark 6.5 Note that we used the special property of the Fourier transform
that shifts in the time domain become modulations in the frequency domain,
which leads to a parameter identification problem of the form (6.64). For that
reason the approach analyzed here is not transferable to other function systems
than the exponential functions.

In the next subchapter 6.2, we will exemplarily use this approach for non-
destructive material testing.

6.2 Nondestructive Material Examination
Recently we considered in [7] the application of Prony’s method for nondestruc-
tive material examination using the ideas we presented in [36].

Many ultrasonic testing applications are based on the estimation of the time
of arrival (TOA), time of flight diffraction (TOFD) or the time difference of
arrival (TDOA) of ultrasonic echos. In order to analyze the received signals,
one can usually suppose that the diffracted and backscattered echo from an
isolated defect is a time-shifted, frequency-dissipated replica of the transmitted
pulse with attenuated energy and inverted phase. In case of various flaw defects,
the backscattered ultrasonic signal is a convolution of a modification of the
transmitted pulse with the reflection centers. Generally, we are faced with noisy
measurements caused by reflections on microstructures of the tested material
and electronic disturbances. It is therefore desirable to remove the effect of the
pulse from the recorded signal, i.e. to perform a deconvolution.

For representation of a received signal s(t), we suppose that it can be ob-
tained as a linear combination of time-shifted, energy-attenuated versions of the
transmitted pulse function with inverted phase, where each shift is caused by an
isolated flaw scattering the transmitted pulse. Usually, we have only a certain
estimate of the transmitted pulse function. Using a similar approach as in [14],
we model the pulse echo by a real-valued Gabor function of the form

fθ(t) = Kθ e
−αt2 cos(ωt+ φ), (6.66)

with the parameters θ = (α, ω, φ). Here, α describes the bandwidth factor, ω is
the center frequency, and φ the phase of the pulse echo. Because of its Gaussian
shape envelope, this model is called Gaussian echo model. These parameters
have intuitive meanings for the reflected pulse; the bandwith factor α determines
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the bandwith of the echo and hence the time duration of the echo in time domain.
The frequency ω is governed by the transducer center frequency.

The normalization factor Kθ is taken such that ‖fθ‖2 = 1. More precisely,
we obtain

K−2θ = ‖e−αt
2

cos(ωt+ φ)‖22 =

∫ ∞
−∞

e−2αt
2

cos2(ωt+ φ) dt

=

√
π

2
√

2α
(1 + cos(2φ)e−ω

2/8α), (6.67)

where we have used that
∫∞
−∞ e−2αt

2

sin(2ωt)dt = 0 since the integrand is an
odd function. In [14], the feasibility of this model has been demonstrated by a
setup for a planar surface reflector using a steel sample, where the experimental
echo is fitted by the Gaussian echo.

Let us consider the sparsity model

s(t) =

M∑
m=1

ã(m) fθ(t− τm) + ν(t), (6.68)

with additional noise ν(t), where we want to optimize over the time shifts τ =
(τ1, . . . , τM ) and the amplitudes ã = (ã(1), . . . , ã(M)) where M is unknown but
small. Usually one also wants to optimize over the pulse parameters θ, but for
simplicity we assume that we have a good estimate for the parameter vector
θ calculated beforehand such that we can concentrate on the computation of
τ and ã from the samples of s. Furthermore, we assume here that we have a
suitable bound M̃ > M for the true number of relevant coefficients and can
replace M by M̃ in the above model. For that purpose, we now adapt the ideas
of calculating shift parameters with Prony-like methods as considered in our
paper [36].

Let the Fourier transform of a function f ∈ L1(R) be given by

f̂(ξ) :=
1√
2π

∫ ∞
−∞

f(t) e−iξt dt.

Applying the Fourier transform to (6.68) (with M replaced by the bound M̃ >
M), we find

ŝ(ξ) =

 M̃∑
m=1

ã(m) e−iξτm

 f̂θ(ξ) + ν̂(ξ).

In our case, the real-valued Gabor function fθ(t) = Kθ e
−αt2 cos(ωt+ φ) is the

real part of gθ(t) = Kθe
−αt2ei(ωt+φ) = Kθ e

iφe−αt
2

eiωt. We obtain the Fourier
transform of gθ,

ĝθ(ξ) =
Kθe

iφ

√
2π

∫ ∞
−∞

e−αt
2

e−it(ξ−ω) dt =
Kθe

iφ

√
2α

e−(ω−ξ)
2/4α,
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and hence

f̂θ(ξ) =
1

2

(
ĝθ(ξ) + ĝθ(ξ)

)
=

Kθ

2
√

2α

(
eiφe−(ω−ξ)

2/4α + e−iφe−(ω+ξ)
2/4α

)
.

(6.69)
Particularly, the function f̂θ(ξ) possesses only a zero at ξ = 0 if φ = (2π+1)π

2

while f̂(ξ) 6= 0 for all ξ 6= 0. Avoiding the case ξ = 0, we can hence write

ĥ(ξ) :=
ŝ(ξ)

f̂θ(ξ)
=

M̃∑
m=1

ã(m) e−iξτm + ε̂(ξ),

where the noise term ε̂(ξ) := ν̂(ξ)/f̂θ(ξ) is assumed to be small.
For given samples ĥ(k∆ξ), (where ∆ξ is a fixed sampling distance) we now

aim to compute the frequencies τm ∈ R+ and the corresponding amplitudes
ã(m), for m = 1, . . . , M̃ separately using algorithm 6.1.1.

In the third step of algorithm 2.1 (or in second step of algorithm 2.2) that
is incorporated in 6.1.1, we can compute the amplitudes ãm as least square
solution of the overdetermined linear system

M∑
m=1

ãm fθ(`∆t − τm) = s(`∆t), ` = 0, . . . , N,

thereby neglecting the noise function ν(t).
As a test scenario for a back wall deformation we use the pulse function

depicted in Figure 16. In Figure 17 we see a corrupted simulation of the detected
echo. Here, every column of the picture represents measurements over time at
the same spot of the scanning device. The bulge in the center of the picture
indicates a back wall deformation, whereas the straight lines at the left and
right indicate an intact back wall. We see additional noise at the measured data
that we want to eliminate while we still keep the information about the back
wall. Finally, in Figure 18 we see location of the found translations, whereas
the corresponding amplitudes are color coded.
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Figure 16: The pulse function used by the ultra sonic scanning devise for non
destructive material examination.

Figure 17: Simulation of perturbed measurements.
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Figure 18: Found translations in Figure 17 of the pulse function depicted in
Figure 16.

We see that even though the measurements are heavily corrupted with noise,
we still can recover the essential information in Figure 17 via Prony’s method.
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7 Open Problems

7.1 Denoising with Regularization
For a linear operator A : V → V mapping from vector space V to V and a
functional F : V → C let the function f be as in (1.8). Let f , e ∈ C2N+1, where
f = (F (Akf))2Nk=0 is a signal vector and e an additive noise vector. Assume that
only erroneous input data

f̃ = f + e

are given. The theory of Prony’s method presented in chapter 1 tells us that
the Hankel-type matrix in algorithm 2.1 or algorithm 2.2 should be singular.
But when we have to handle erroneous input data, the corresponding Hankel-
type matrix becomes “more and more regular”, i.e. the smallest eigenvalue
respectively singular value increases in magnitude. Let us observe the general
behavior in an example.

Example 7.1 Let us observe the behavior of the singular values of the matrix
H := (F (Ak+m)f̃)40,10k,m=0 of the function

f(x) = sin(1.3x)− 3 cos(x),

with the functional F (f) := f(0), operator (Af)(x) := f(x+ 1) and input data
F (Akf) = f(k), k = 0, . . . , 40. We use the MATLAB function randn which
generates random numbers with mean 0 and variance 1. In order to adapt the
noise level we multiply the outcome of the random number generator with Cs =
10−15+s, s = 0, . . . , 15 prior to adding the noise to the exact function values.
Note that due to the machine accuracy eps even the putatively exact data have
a round of failure in the range of 10−15. The PSNR for the observed interval
decreases about roughly 20 dB for the transition from Cs to Cs+1, s = 0, . . . , 14.
Starting with a PSNR of 310 for C0 we indeed end up with a PSNR of 11 for
C15 in this example. In Figure 19 we have shown the found singular values
of algorithm 2.2 for the different noise levels explained above. The color code
goes from orange for the multiple C0 = 10−15 to blue for multiple C15 = 1. We
observe that the noise space is less and less distinguishable from the signal space,
the more corrupted the input data get.
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Figure 19: Here, the singularvalues of H := (F (Ak+m)f̃)40,10k,m=0 are shown for
different noise levels. The noise levels range from 10−15 to 1 and are color coded,
from orange for 10−15 to blue for the noise level 1. The first four singular values
corresponding to the signal space remain relatively alike for different noise levels,
whereas the seven smallest singular values increase linearly with the corruption
level of the input data.

Remark 7.2 Figure 19 is not an average of the calculated eigenvalues over
many perturbed signals and still we observe a compelling correspondence between
the noise level and the magnitude of the smallest eigenvalues.

In example 7.1 we saw a direct correspondence between the noise level the
input data are corrupted with and the smallest singular value of the Hankel
matrix containing the given data. Since the given data are erroneous, we can
try to allow small changes in the given data while we simultaneously aim for a
matrix that has a low rank. This is because a low rank matrix in algorithm 2.1
or 2.2 returns a sparse approximation of the given data in the desired function
space.

We want to regularize the input data f̃ prior to applying Prony’s method.
Define the operator DL : C2N → C(2N−L)×(L+1) that constructs a rectangular
Hankel-type matrix out of a given vector as

DLf :=(F (Ak+m)f)2N−L−1,Lk,m=0

=


F (A0f) F (A1f) . . . F (ALf)
F (A1f) F (A2f) . . . F (AL+1f)

...
...

...
F (A2N−Lf) F (A2N−L+1f) . . . F (A2N−1f)

 .
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Let G ∈ C(2N−L)×(L+1). We now define the minimization problem

f0 = argmin
G

[
‖G−DLf̃‖2F + α rank(G)

]
.

In the first term we allow small changes of the input data, with respect to the
Frobenius norm, which is reasonable for erroneous input data. In the second
term we want the Hankel-type matrix G to have a small rank. These two
constrictions are balanced by the regularization parameter α. Problematic in
this setting is the constraint that the rank of G should be small, hence this
minimization problem is again NP hard. Literature contributing to this topic
include the paper [47].

7.2 Prony Method for Not Exactly Sparse Functions
In this thesis we have always assumed that the signal we investigate isM -sparse
in a certain function space. What happens, if the signal is not exactlyM -sparse
but only has coefficients cj that decay “fast enough”? Let V be a vector space
andA a linear operator with eigenfunctions vj to eigenvalues λj , j ∈ J . Consider
the function

f =

∞∑
j=1

cjvj ,

with, for example c := (cj)
∞
j=1 ∈ `1. One important question that we have to

answer in this setting is the following. What sufficient conditions does the coef-
ficient vector c have to fulfill, to guarantee recovery of the active eigenfunctions
vj corresponding to coefficients with large enough absolute value |cj | > ε, via
our generalized Prony Method? Let us split the set of summands in f into two
sets

f(x) = fs(x) + fn(x) =
∑
j∈Js

cjvj +
∑
m∈Jn

cmvm,

with Js = {j | |cj | > ε} and Jn = {m||cm| ≤ ε}. Can we answer the previ-
ous question by pretending that the summands cmvm, m ∈ Jm are (colored)
additional noise to the essential signal fs(x)? If that is the case, we can use
our generalized Prony Method to approximate functions in the function space
V with just M terms. Again, a special case would be that V = C(R) and A
is the translation operator such that we have exponential functions as eigen-
functions of A. Then we can approximate special functions with fast decaying
Fourier coefficients with an a priori defined accuracy δ and only M terms. The
word “special” has to be specified too. The hope is that by using only M terms
calculated via Prony’s method, we still get an approximation f̃ to the signal f
with ‖f − f̃‖2 < δ, whereas the approximation via, for example the DFT, needs
L > M terms to achieve the same accuracy. This hope is motivated by the
fact that the eigenvalues (frequencies in this case) corresponding to the active
eigenfunctions in the approximation f̃ are not restricted to lie on a grid, as they
are, when calculated via the DFT.
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7.3 Negative Results
This section is dedicated to ideas that turned out to be inapplicable. Often,
when one is confronted with a new topic, one has immediate crosslinks to other
topics, wondering if they can be combined. Sadly, it is seldom documented if
such a link does not turn out to work properly. Here we want to present some of
those routes with a certain expectation that did not help to improve the results.

7.3.1 Approximating Derivatives of Orthogonal Polynomials

Theorem 4.17 showed that we can relax the restrictive requirement of having
input data of the form Lkp,qf(x) to derivatives as input data, when analyzing
orthogonal polynomials. In general this doubles the number of input data. But
even derivatives might not be available in some applications. At that point the
idea arose that we could approximate the needed derivatives out of for instance
equidistant sampling points using Taylor expansion

f(x+ kh) = f(x) +

∞∑
`=1

f (`)(x)(kh)`

`!
, h > 0, k ∈ Z. (7.70)

A common way to generate approximation formulas of the n-th derivative of f(x)
at the point x0 with order d uses combinations of (7.70) for different k ∈ Z.

Example 7.3

f(x+ h) = f(x) + f ′(x)h+ f ′′(x)h2 +O(h3)

f(x− h) = f(x)− f ′(x)h+ f ′′(x)h2 +O(h3)

f(x+ h)− f(x− h) = 2f ′(x)h+O(h3)

f ′(x) =
1

2h
f(x+ h)− 1

2h
f(x− h) +O(h2)

If equidistant sampling points f(x0 +mh), m = 0, . . . , N of a function f(x) are
given, the formula above tells us that we can approximate the first derivative of
f(x0 +mh) as

f ′(x+mh) ≈ 1

2h
f(x+ (m+ 1)h)− 1

2h
f(x+ (m− 1)h), m = 1, . . . , N − 1

with 2-nd order precision in stepwidth h.

We can combine more Taylor expansions around an evaluation point f(x+mh)
in order to get approximation formulas for higher order derivatives and higher
order approximations. The hope is that we compute the first 4M derivatives
of a function f(x) at point x1 = x0 +mh for some m, out of given equidistant
sampling points such that we can compute the values F (Lp,qf(x1)) afterwards.
Unfortunately, this approach is not stable enough for practical use. The co-
efficients of the high order derivative approximations have a too large variety
in magnitude and inherit cancelation such that, even in the noiseless case, an
approximation with higher orders does not provide better results.
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Example 7.4 Let

f(x) = −P10(x) + 3P5(x) + 2P2(x) (7.71)

be a sparse linear combination of Legendre polynomials with given equidistant
sampling points f(−1+kh), h = 0.05, k = 0, . . . , 40. From those points we want
to evaluate the first derivatives of f at the point x0 = 0.1. The exact derivatives
are presented in Table 13.

k f (k)(0.1)
0 −0.311388752612890
1 3.190725211367187
2 −23.30322441445312
3 973.9938121875002
4 1902.802997812500
5 −19685.75450625000
6 −169957.6003125000
7 1613849.737500000
8 13956067.12500000
9 −65472907.50000000
10 −654729075.0000000

Table 13: Accurate first 10 derivatives of the function f in (7.71).

Note that all further derivatives are zero because f(x) is a 10-th order poly-
nomial. The polynomial (7.71) is 3-sparse in the Legendre basis. Thus, Theorem
1.2 tells us that we need at least 6 input data of the form F (Lkp,qf), k = 0, . . . , 5.
Here we use algorithm 2.2 which needs an additional input value. Furthermore,
we oversample slightly and use a total of 9 input values of the form F (Lkp,qf),
k = 0, . . . , 8, which leads to a Hankel-matrix H = F (Lk+mp,q f)4k,m=0 ∈ R5×5. In
Theorem 4.17 we saw, that we can evaluate the values F (Lkp,qf) out of the first
2k derivatives if the evaluation point is not 1 or −1. Alltogether we need the
value f(0.1) and the first 17 derivatives at the point 0.1. In figure 20 we have
shown the absolute difference of the correct derivatives and the approximated
derivatives in dependence of the order of the used Taylor expansion. The orders
are color-coded, where the failure made by using the second order Taylor expan-
sion is depicted in blue and the 20-th order in bright green. Only odd orders are
used. We see a similar increase of the made failure of approximating deriva-
tives, after the ninth derivative. Note that the derivatives and therefore also
the failures keep increasing after the 10-th derivative even though they should be
zero. In Figure 20 we used a logarithmic scale for the vertical axis.
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Figure 20: Absolute values of the differences between the actual derivatives
f (k)(0.1), k = 0, . . . , 17 and the approximated derivatives. The different used
orders for the Taylor approximation are color-coded, with the second order
approximation depicted in blue and the 20-th order approximation depicted in
bright green.

Note that the value f(0.1) does not have to be approximated. That is why
we do not observe a difference in Figure 20 at the point zero.

Indeed, the algorithm fails to detect all three active Legendre polynomials cor-
rectly, for any approximation order. Instead of P2(x) the method finds P3(x).
Since we cannot detect the active eigenfunctions in f accurately in this sim-
ple example, we have to discard the approach of approximating derivatives of
a polynomial out of equidistant sampling points via Taylor approximation as
a suitable preprocessing tool for our generalized Prony Method applied to the
Sturm-Liouville operator.
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Conclusion
In this thesis we have generalized the classical Prony Method that works for

exponential functions to eigenfunctions of linear operators. This meta method
enables us not only to develop Prony Methods for other function systems than
the exponential functions, but also to further generalize the classical Prony
Method due to the freedom of choice in the functional F . We have shown ex-
amples of different linear operators and their eigenfunctions, the impact of the
functional F to the method and possible applications of the method. Further-
more we generalized numerical implementations of the classical Prony Method
to our generalized Prony Method and performed comparative tests. Finally we
gave an outlook to future spheres of activities.
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