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Abstract. In this paper, we derive a new recovery procedure for the reconstruction
of extended exponential sums of the form y(t) =

∑M
j=1

(∑nj

m=0 γj,m t
m
)

e2πλjt, where
the frequency parameters λj ∈ C are pairwise distinct. For the reconstruction we
employ a finite set of classical Fourier coefficients of y with regard to a finite interval
[0, P ] ⊂ R with P > 0. Our method requires at most 2N + 2 Fourier coefficients ck(y)
to recover all parameters of y, where N :=

∑M
j=1(1 + nj) denotes the order of y(t).

The recovery is based on the observation that for λj 6∈ i
P Z the terms of y(t) possess

Fourier coefficients with rational structure. We employ a recently proposed stable it-
erative rational approximation algorithm in [12]. If a sufficiently large set of L Fourier
coefficients of y is available (i.e., L > 2N+2), then our recovery method automatically
detects the number M of terms of y, the multiplicities nj for j = 1, . . . ,M , as well as
all parameters λj , j = 1, . . . ,M and γj,m j = 1, . . . ,M , m = 0, . . . , nj , determining
y(t). Therefore our method provides a new stable alternative to the known numerical
approaches for the recovery of exponential sums that are based on Prony’s method.
Keywords: sparse exponential sums, extended exponential sums, rational approxi-
mation, AAA algorithm, barycentric representation, Fourier coefficients.
AMS classification: 41A20, 42A16, 42C15, 65D15, 94A12.

1 Introduction

Recently, we have proposed a new reconstruction method to recover real functions of the
form

y(t) =
N∑
j=1

γj cos(2πajt+ bj), γj ∈ (0,∞), (aj , bj) ∈ (0,∞)× [0, 2π),

from a limited number of classical Fourier coefficients of y from its Fourier expansion on
a given fixed interval [0, P ], see [17].

This paper continues and strongly generalizes our research started in [17]. We present
a new reconstruction method to recover complex extended exponential sums, i.e., sums
being of polynomial exponential form,

y(t) =
M∑
j=1

( nj∑
m=0

γj,m t
m

)
eλjt, γj,m ∈ C, γj,nj 6= 0, λj ∈ C.
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First we introduce the main objects studied in the paper. For N ∈ N, we consider the
set of proper exponential sums

Y0
N =

y : y(t) =
n∑
j=1

γjeλjt, γj , λj ∈ C, n ≤ N

 (1.1)

and the set of extended exponential sums

YN =

y : y(t) =
M∑
j=1

( nj∑
m=0

γj,m t
m

)
eλjt, γj,m, λj ∈ C, n :=

M∑
j=1

(1 + nj) ≤ N

 . (1.2)

We call n = n(y) the order of the exponential sum y(t) and M = M(y) its length.
Obviously, Y0

N is a subset of YN and we have n(y) ≥ M(y) in the general case and
n(y) = M(y) for y ∈ Y0

N . In fact, Y0
N is a dense subset of YN , and YN is closed with

respect to the maximum norm in C[a, b] for any compact interval [a, b]. Moreover, YN is
an existence set for the space C[a, b] of continuous functions given on a compact interval
[a, b], see, [23] or [5, Chapter VI]. Approximation with extended exponential sums has a
long history. We refer to [10], [26] that are dedicated to the question of approximation
of classes of smooth functions Lp[a, b], 1 ≤ p < ∞, and C[a, b] by extended exponential
sums. Further, it is well-known for a long time that there is a close connection between
approximation with exponential sums and rational approximation, see [5, 24].

The extended exponential sums y(t) in YN of order n ≤ N are solutions of homogeneous
linear differential equations of order n with constant coefficients a0, . . . , an−1 ∈ C of the
form

y(n) + an−1y
(n−1) + . . .+ a1y

′ + a0y = 0. (1.3)

The corresponding characteristic polynomial is given as

p(λ) = λn + an−1λ
n−1 + . . .+ a1λ+ a0 =

M∏
j=1

(λ− λj)nj+1,

i.e., p(λ) has M distinct roots λj with multiplicity nj + 1, j = 1, . . . ,M . In particular, the
functions tmeλjt, m = 0, . . . , nj , j = 1, . . . ,M , are linearly independent and form a basis
of the space of the solutions of the differential equation (1.3). Similarly, it can be shown
that YN is the solution space for homogeneous linear difference equations of order n ≤ N ,
see e.g. [4], and therefore YN is closely related to the characterization of Hankel operators
of finite rank, [9, 13].

Extended exponential sums appear in many applications in system identification and
sparse approximation, see e.g. [1, 14]. For a comprehensive study of extended exponential
sums from an algebraic point of view, we refer to [11].

Our goal in this paper is to reconstruct the exponential sums in Y0
N and YN . This

problem has been extensively studied using Prony’s method and its generalizations, see
for example [6], [7], [16], [21], [19], [20]. However, the known studies mainly focussed on the
recovery of proper exponential sums. The extended model is less often treated, see [3, 2, 15,
22, 24, 25]. Since Prony’s method involves computations with Hankel or Toeplitz matrices
with possibly high condition numbers, it requires a very careful numerical treatment. This
is particularly true if the distance between two distinct frequency parameters λj1 and λj2
is very small. The extended exponential sums appear if such frequencies collide.
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Our new method for reconstruction of signals in form of (extended) exponential sums
is based on rational approximation and can be seen as a good alternative to the Prony
reconstruction approach. As input information for our new algorithm we use a finite set
of their Fourier coefficients. More precisely, we consider the Fourier expansion of y ∈ YN
on [0, P ] for some P with 0 < P <∞ of the form

y(t) =
∑
k∈Z

ck(y) e2πikt/P

with Fourier coefficients ck(y) := 1
P

∫ P
0 y(t) e−2πikt/P dt. We will derive algorithms to

reconstruct y from a sufficiently large set of given Fourier coefficients ck(y). Although
Y0
N is a subset of YN we will separate the reconstruction of proper exponential sums as a

special case due to the fact that in many applications only the set Y0
N is considered.

If we have −iλj 6∈ 1
P Z for all frequencies λj , i.e., if y(t) in (1.1) or (1.2) does not possess

any P -periodic terms, then we will employ the special property that the classical Fourier
coefficients ck(y) of y ∈ Y0

N and y ∈ YN of full order N can usually be represented by a
rational function rN of type (N − 1, N), i.e., ck(y) = rN (k) for k ∈ Z. Our reconstruction
approach is then based on the recovery of this rational function rN using a modification
of the AAA algorithm that has been recently proposed in [12]. Numerical stability of
this algorithm is ensured by barycentric representation of the constructed approximant.
The second important property of the AAA algorithm is that it works iteratively thereby
enlarging the polynomial degree of the numerator and denominator of the rational approx-
imant step by step. The modified AAA algorithm will terminate if the needed order N
of the exponential sum is reached. This gives us the opportunity to reconstruct the order
N of the exponential sum, supposed that a sufficiently large set of L ≥ 2N + 1 Fourier
coefficients is given.

If y ∈ YN is an extended exponential sum, then the corresponding rational function
rN has M multiple poles with multiplicities nj + 1 such that

∑M
j=1(1 + nj) = N . Having

reconstructed the rational function rN (t), we will show, how all wanted parameters that
determine y ∈ YN can be uniquely computed from rN . More exactly, beside N , M , and
nj , j = 1, . . . ,M , we can determine all frequencies λj and all polynomial coefficients γj,m
j = 1, . . . ,M , m = 0, . . . , nj , from rN .

Further we will extend the algorithm for the case when P -periodic components also
appear in the expansions (1.1) and (1.2). In this case we first reconstruct the rational
function that determines the non-P -periodic part of y(t) using modified AAA-algorithm
and recover all parameters of the non-P -periodic part of y(t) as before. In a second step,
the P -periodic part of y(t) is determined. Note that this is only possible if the given
set of Fourier coefficients contains all ckj (y) that are related to the occurring frequencies
that have to be recovered, i.e., we need knowledge about ckj (y) if λj = ikj

P is a frequency
parameter that occurs in y(t). For proper exponential sums with periodic terms it can
be simply shown that only a finite number of Fourier coefficients of y(t) loses its special
rational structure. The recovery of P -periodic parts for (truly) extended exponential sums
requires a special treatment, since in this case the polynomial coefficients corresponding
to P -periodic terms still influence all Fourier coefficients of y.

Outline. In Section 2 we prove that the signals y ∈ YN (and consequently y ∈ Y0
N )

are uniquely determined by given parameters M , nj , λj , γj,m for j, . . . ,M , m = 0, . . . , nj .
In Section 3 we shortly describe the main ideas of the needed modified AAA-algorithm
for rational approximation of functions. In Section 4 we consider the recovery of proper
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exponential sums. We separate two possible cases. In Section 4.1 we study the recovery
of proper exponential sums that contain only non-P -periodic terms, and Section 4.2 is
dedicated to the case when y ∈ Y0

N contains also P -periodic components. In Section 5
we consider the recovery of extended exponential sums. In Section 5.1 we show that the
Fourier coefficients of y ∈ YN can be represented by a rational function, and we show,
how the wanted parameters can be reconstructed from this rational representation. Again
we separate the consideration of the following two cases: In Section 5.2 we study the
reconstruction of extended exponential sums containing only non-P -periodic components.
In Section 5.3, we assume that extended exponential sums contain also P -periodic terms.
The proposed reconstruction algorithms in Sections 4 and 5 are illustrated by numerical
examples. The corresponding software can be found on our homepage http://na.math.uni-
goettingen.de We conclude the paper with some final remarks in Section 6.

Notation. As usual N, Z, R and C are reserved for natural, integer, real and complex
numbers and let N0 := N ∪ {0}.

2 Uniqueness of the Representation of Extended Exponential
Sums

In order to be able to reconstruct functions y(t) from YN uniquely, we need to ensure that
all parameters of

y(t) =
M∑
j=1

pnj (t) eλjt =
M∑
j=1

( nj∑
m=0

γj,m t
m

)
eλjt (2.1)

can be uniquely determined. For this purpose we assume the following restrictions on the
parameters:

(1) M ∈ N, M <∞;

(2) nj ∈ N0, nj <∞;

(3) γj,m ∈ C for j = 1, . . . ,M and m = 0, . . . , nj , and γj,nj 6= 0 for j = 1, . . . ,M ;

(4) λj ∈ C are pairwise distinct for j = 1, . . . ,M .

Conditions (3) and (4) do not restrict the set YN with N ≥
∑M
j=1(1 +nj). If γj,nj = 0,

then the corresponding term in (2.1) can be removed, and if λj1 = λj2 for two frequency
parameters in (2.1), the corresponding terms can be combined into one term. Note that the
third condition implies that the polynomial pnj (t) has exactly the degree nj . In the special
case y ∈ Y0

N , the restriction (2) simplifies to nj = 0 for j = 1, . . . ,M , and restriction (3)
reads γj = γj,0 6= 0 for j = 1, . . . ,M . We show now that with the restrictions above, all
parameters of y(t) are uniquely determined.

Theorem 2.1. Let two extended exponential sums be of the form

y1(t) =
M1∑
j=1

 n′j∑
m=0

γ′j,m t
m

 eλ
′
jt and y2(t) =

M2∑
j=1

 n′′j∑
m=0

γ′′j,m t
m

 eλ
′′
j t,

and assume that the parameters for y1(t) and y2(t) satisfy the restrictions (1)− (4) given
above. If y1(t) = y2(t) pointwise on a finite interval with positive length, then M1 =
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M2 =: M and (after suitable permutation of summands) n′j = n′′j =: nj, λ′j = λ′′j for
j = 1, . . . ,M , and γ′j,m = γ′′j,m for j = 1, . . . ,M , m = 0, . . . , nj.

Proof. We consider the function

y(t) = y1(t)− y2(t) =
M1+M2∑
j=1

( nj∑
m=0

γj,m t
m

)
eλjt (2.2)

with

λj := λ′j , nj := n′j , γj,m := γ′j,m for m = 0, . . . , nj and j = 1, . . . ,M1;
λM1+j := λ′′j , nM1+j := n′′j , γM1+j,m := −γ′′j,m for m = 0, . . . , nM1+j and j = 1, . . . ,M2.

Let y1(t) = y2(t) for t ∈ I, where I ⊂ R is some interval with finite positive length. Then
y ≡ 0 on I.

Let M denote the number of pairwise distinct frequency parameters λj in the repre-
sentation (2.2) of the function y(t). According to the restriction (4) on the frequency
parameters we have M ≥ max{M1, M2}. Then we can rewrite

y(t) =
M∑
`=1

(
n∑̀
m=0

γ̃`,m t
m

)
eλ̃`t, (2.3)

where λ̃` ∈ Λ := {λj : j = 1, . . . ,M1 + M2} are pairwise distinct. The functions tmeλ̃`t,
m = 0, . . . , n`, ` = 1, . . . ,M , are linearly independent as the solutions of the equation
(1.3) with n =

∑M
`=1(1 + n`). Therefore, the condition

y(t) =
M∑
`=1

(
n∑̀
m=0

γ̃`,m t
m

)
eλ̃`t = 0, t ∈ I ⊂ R, (2.4)

yields γ̃`,m = 0 for all ` = 1, . . . ,M and m = 0, . . . , n`.

Each parameter λ̃` can occur once or twice in the set Λ. If it occurs once, for example
λ̃` = λ′j , then (2.4) implies that the corresponding polynomial coefficient in pn`(t) =∑n`
m=0 γ̃`,mt

m completely vanishes, i.e., γ̃`,m = 0 for m = 0, . . . , n`. But this contradicts
the assumption (3). Therefore, each λ̃` occurs twice in the set Λ and we can conclude that
M1 = M2 = M . Further, for each ` = 1, . . . ,M , we find j1, j2 ∈ {1, . . . ,M} such that
λ̃` = λ′j1 = λ′′j2 . Then the polynomial coefficient corresponding to eλ̃`t in (2.3) satisfies

pn`(t) =
n∑̀
m=0

γ̃`,m t
m =

n′j1∑
m=0

γ′j1,m t
m −

n′′j2∑
m=0

γ′′j2,m t
m = 0.

Since by restriction (3), γ′j1,n′j1
6= 0 and γ′′j2,n′′j2

6= 0, we conclude that n′j1 = n′′j2 =: nj and
γ′j1,m = γ′′j2,m for m = 0, . . . , nj .

Remark 2.2. If two proper exponential sums

y1(t) =
M1∑
j=1

γ′je
λ′jt and y2(t) =

M2∑
j=1

γ′′j eλ
′′
j t,

satisfy the restrictions (1) - (4) and are identical on an interval of finite positive length, then
Theorem 2.1 implies that M1 = M2 = M and (after suitable permutation of summands)
λ′j = λ′′j and γ′j = γ′′j for j = 1, . . . ,M .
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3 The modified AAA Algorithm for Rational Approximation

Our reconstruction algorithms for exponential sums in Sections 4 and 5 are essentially
based on the following slight modification of the AAA algorithm in [12]. For the conve-
nience of the reader we shortly summarize this algorithm with the needed slight modifica-
tion for rational functions of type (N − 1, N). For a similar modification for special point
sets we refer to [17].

For a given sufficiently large finite set of pairwise distinct points Γ ⊂ R and a corre-
sponding set of values {f(z) : z ∈ Γ}, the (modified) AAA algorithm iteratively computes
a rational function rN of type (N − 1, N) such that rN (z) = f(z) for z ∈ S, where S ⊂ Γ
is a subset of N + 1 given points, and such that the error |rN (z) − f(z)| is small for the
remaining points z ∈ Γ \ S.

At the iteration step J ≥ 1, we proceed as follows. Assume that we have the set
SJ+1 = {z1, . . . , zJ+1} ⊂ Γ, where we want to interpolate f(zj), and let ΓJ+1 := Γ \ SJ+1
be the point set where we will approximate. We introduce the corresponding vectors

fSJ+1 := (f(zj))J+1
j=1 ∈ CJ+1, fΓJ+1 := (f(z))z∈ΓJ+1

∈ CL−1−J .

The rational function rJ(z) is constructed in barycentric form rJ(z) := p̃J(z)/q̃J(z) with

p̃J(z) :=
J+1∑
j=1

wj f(zj)
z − zj

, q̃J(z) :=
J+1∑
j=1

wj
z − zj

, (3.1)

where wj ∈ C, j = 1, . . . , J + 1, are weights. This representation already implies that the
interpolation conditions rJ(zj) = f(zj) are satisfied for wj 6= 0, j ∈ {1, . . . , J + 1}. The
vector of weights w := (w1, . . . , wJ+1)T is now chosen such that r(z) approximates the
remaining data and additionally satisfies the side conditions

‖w‖22 =
J+1∑
j=1

w2
j = 1 and wT fSJ+1 =

J+1∑
j=1

wjf(zj) = 0. (3.2)

The first condition is a normalization condition. The second condition in (3.2) ensures
that rJ(z) is of a type (J − 1, J). To compute w, we consider the restricted least-squares
problem

min
w

∑
z∈ΓJ+1

|f(z) q̃J(z)− p̃J(z)|2 , s.t. ‖w‖22 = 1, wT fSJ+1 = 0. (3.3)

At the first iteration step J = 1, w ∈ C2 is already completely fixed by the two side
conditions. For J > 1, we define the matrices

AJ+1 :=
(
f(z)− f(zj)

z − zj

)
z∈ΓJ+1,zj∈SJ+1

, CJ+1 :=
(

1
z − zj

)
z∈ΓJ+1,zj∈SJ+1

,

and rewrite the term in (3.3) as

∑
z∈ΓJ+1

|f(z) q̃J(z)− p̃J(z)|2 =
∑

z∈ΓJ+1

∣∣∣∣∣∣wT

(
f(z)− f(zj)

z − zj

)J+1

j=1

∣∣∣∣∣∣
2

= ‖AJ+1w‖22.
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Now, the minimization problem in (3.3) takes the form

min
w
‖AJ+1w‖22 s.t. ‖w‖22 = 1, wT fSJ+1 = 0. (3.4)

To find the solution vector w = wJ+1 of (3.4) approximately, we compute the right
(normalized) singular vectors v1 and v2 of the matrix AJ+1 corresponding to the two
smallest singular values σ1 ≤ σ2 of AJ+1 and take

wJ+1 = 1√
(vT1 fSJ )2 + (vT2 fSJ )2

(
(vT2 fSJ )v1 − (vT1 fSJ )v2

)
,

such that ‖wJ+1‖22 = 1 and wT
J+1 fSJ+1 = 0. Having determined the weight vector wJ+1,

the rational function rJ is completely fixed by (3.1). Finally we consider the errors
|rJ(z)− f(z)| for all z ∈ ΓJ+1, where we do not interpolate. The algorithm terminates if
maxz∈ΓJ+1 |rJ(z)− f(z)| < ε for a predetermined bound ε or if J reaches a predetermined
maximal degree. Otherwise, we find the next point for interpolation as

zJ+2 := argmax
z∈ΓJ+1

|rJ(z)− f(z)|.

Algorithm 3.1 (Modified AAA algorithm).
Input:
Γ ∈ CL set of given support points zj , j = 1, . . . , L, with L large enough
f ∈ CL vector of given function values f(zj) corresponding to Γ
tol>0 tolerance for the approximation error
jmax ∈ N with jmax < bL−1

2 c maximal order of polynomials in the rational function

Main Loop:

for j = 1 : jmax

• If j = 1, choose S := (z1, z2)T , fS := (f(z1), f(z2))T , where f(z1) and f(z2) from f
have largest absolute values; update Γ and f by deleting z1, z2 in Γ and f(z1), f(z2)
in f .
If j > 1, compute zk := argmaxz∈Γ |r(z) − f(z)|; update S, fS, Γ and f by adding
zk to S and deleting zk in Γ, adding f(zk) to fS and deleting it in f .

• Build the (L−j−1)×(j+1) matrices Cj+1:=
(

1
z−k

)
z∈Γ,k∈S

, Aj+1:=
(
f(z)−f(k)

z−k

)
z∈Γ,k∈S

.

• Compute the singular vectors v1 and v2 corresponding to two smallest singular
values of Aj+1; compute w := (vT2 fS)v1 − (vT1 fS)v2 and normalize w := 1

‖w‖2
w.

• Compute p := Cj+1(w. ∗ fS), q := Cj+1w and r := (r(z))z∈Γ = p./q ∈ CL−1−j .

• If ‖r− f‖∞ < tol then stop.

end (for)
Output:
N = j the order of the rational function rN
S = (zj)N+1

j=1 ∈ CN+1 is the vector of points with the interpolation property
fS = (f(zj))N+1

j=1 ∈ CN+1 is the vector of the corresponding interpolation function values
w = (wj)N+1

j=1 ∈ CN+1 is the weight vector.
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Algorithm 3.1 provides the rational function rN (z) in barycentric form rN (z) = p̃N (z)
q̃N (z)

with

p̃N (z) :=
N+1∑
j=1

wj f(zj)
z − zj

, q̃N (z) :=
N+1∑
j=1

wj
z − zj

, (3.5)

which are determined by the output parameters of this algorithm.

Remark 3.2. Observe that the interpolation condition rN (zj) = f(zj) is only satisfied for
the component zj of S, if wj 6= 0. If wj = 0 occurs, then f(zj) is a “non-achievable” value
for this rational interpolation problem. We will use this property of the modified AAA
algorithm to detect and to reconstruct also P -periodic terms in exponential sums.

In order to rewrite rN (z) in (3.5) in the form of a partial fraction decomposition,

rN (z) =
N∑
j=1

gj
z − ρj

, (3.6)

we need to determine g1, . . . , gN and ρ1, . . . , ρN from the output of Algorithm 3.1.

The zeros of denominator q̃N (z) are the poles ρj of rN (z) and can be computed by
solving an (N + 2)× (N + 2) generalized eigenvalue problem (see [12] or [17]),

0 w1 w2 . . . wN+1
1 z1
1 z2
...

. . .

1 zN+1

 vρ = ρ


0

1
1

. . .

1

 vρ. (3.7)

Two eigenvalues of this generalized eigenvalue problem are infinite and the other N eigen-
values are the wanted zeros ρj of q̃N (z) (see [17] for more detailed explanation). We apply
the following Algorithm 3.3 to the output of Algorithm 3.1.

Algorithm 3.3 (Reconstruction of parameters gj and ρj of partial fraction representation).
Input: S ∈ ZN+1, fS ∈ CN+1, w ∈ CN+1 the output vectors of Algorithm 3.1.

• Build the matrices in (3.7) and solve this eigenvalue problem to find the vector
ρT = (ρ1, . . . , ρN )T of the N finite eigenvalues;

• Build the matrix V =
(

1
zk−ρj

)
zk∈S, j=1,...,N

∈ R(N+1)×N and solve the linear system

Vg = fS.

Output: Parameter vectors ρ = (ρj)Nj=1, g = (gj)Nj=1 determining rN in (3.6).
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4 Recovery of Proper Exponential Sums

In this section we study the recovery of proper exponential sums y ∈ Y0
N of the form

y(t) =
N∑
j=1

γje2πλjt, γj ∈ C \ {0}, λj ∈ C, (4.1)

where λj are assumed to be pairwise distinct. Note that we use frequencies 2πλj instead
of λj just for convenience. We want to recover this exponential sum from a small set of
Fourier coefficients of y obtained from the Fourier series expansion on a finite interval
[0, P ] ⊂ R of length P > 0. First we study the special structure of the Fourier coefficients
of y(t).

Lemma 4.1. The function φ(t) = γe2πλt with γ ∈ C \ {0} and λ ∈ C can be expanded into
a Fourier series of the form φ(t) =

∑
k∈Z

ck(φ)e2πi kt/P on the finite interval [0, P ] ⊂ R, and

the Fourier coefficients ck(φ) for k ∈ Z are given by

ck(φ) = 1
P

∫ P

0
φ(t) e−2πikt/P dt =


γ (1−e2πλP )
2πi(k+iλP ) , k 6= −iλP,
γ, k = −iλP.

(4.2)

In particular, ck(φ) 6= 0 for all k ∈ Z if −iλ 6∈ 1
P Z, and ck(φ) = γ δk,` for all k ∈ Z if

−iλ = `
P for some ` ∈ Z, where δk,` denotes the usual Kronecker symbol.

Proof. Since the function φ(t) is differentiable on R, the Fourier coefficients of φ and the
Fourier series expansion are well-defined (see, for example, [18, Chapter 1]). A simple
computation yields for k 6= −iλP

ck(φ) = 1
P

∫ P

0
φ(t) e−2πi kt/P dt = γ

P

∫ P

0
e2π(λ−i k/P )t dt

= γ

P

(
e2π(λ−ik/P )P − 1

2π(λ− ik/P )

)
= γ (1− e2πλP )

2πi(k + iλP ) .

For k = −iλP we simply have ck(φ) = γ
P

∫ P
0 1 dt = γ.

4.1 Functions Containing only Non-P -periodic Terms

Let us assume first that −iλj 6∈ 1
P Z for j = 1, . . . , N in (4.1). We introduce

Cj := −iλjP, Aj := γj (1− e2πλjP )
2πi , j = 1, . . . , N.

Then, the Fourier coefficients of y(t) in (4.1) can by Lemma 4.1 be written as

ck(y) =
N∑
j=1

Aj
k − Cj

. (4.3)

9



In other words, the sequence of Fourier coefficients ck(y) is already determined by a rational
function

rN (z) := pN−1(z)
qN (z) =

N∑
j=1

Aj
N∏
s=1
s 6=j

(z − Cs)

N∏
j=1

(z − Cj)
(4.4)

of type (N−1, N) satisfying rN (k) = ck(y), and moreover, there is a bijection between the
parameters sets γj , λj , j = 1, . . . , N , determining y(t) in (4.1) and Aj , Cj , j = 1, . . . , N ,
determining rN (z) in (4.4), where

λj = iCj
P
, γj = 2πiAj

(1− e2πλjP )
= 2πiAj

(1− e2πiCj )
. (4.5)

We obtain

Theorem 4.2. Let y be of the form (4.1) with N ∈ N and λj ∈ C \ i
P Z and γj ∈ C \ {0},

where we assume that λj are pairwise distinct. Let {ck(y) : k ∈ Γ} with Γ ⊂ Z be
a set of L ≥ 2N + 1 Fourier coefficients of the Fourier expansion of y on the finite
interval [0, P ] ⊂ R. Then y is uniquely determined by 2N of these Fourier coefficients
and Algorithm 3.1 (with Γ = (k)k∈Γ and f := (ck(y))k∈Γ with ck(y) in (4.3)) terminates
after N steps taking N+1 interpolation points and provides a rational function rN (z) that
satisfies ck(y) = rN (k) for all k ∈ Z.

Proof. A rational function rN (z) = pN−1(z)/qN (z) with polynomials pN−1(z) of degree
at most N − 1 and qN (z) of degree exactly N , is already completely determined by 2N
(independent) interpolations conditions rN (k) = ck(y), if we can assume that the rational
interpolation problem is solvable at all. But solvability can be assumed since we know
that the coefficients ck(y) possess the structure given in (4.4). Linear independence of the
conditions follows also from (4.4), since the coefficients ck(y) cannot be presented by a
rational function of smaller type than (N − 1, N).

Algorithm 3.1 chooses at the Nth step a set SN+1 ⊂ Γ of N+1 indices for interpolation
such that f(k) := ck(y) for k ∈ SN+1 (i.e. S = (k)k∈SN+1 and fS = (ck(y))k∈SN+1 in Algo-
rithm 3.1), and builds the matrix AN+1 =

(
cn(y)−ck(y)

n−k

)
n∈Γ\SN+1,k∈SN+1

∈ CL−N−1×N+1.
Using the known structure of ck(y) in (4.3) we find the factorization

AN+1 =


∑N
j=1Aj

(
1

n−Cj −
1

k−Cj

)
n− k


n∈Γ\SN+1,k∈SN+1

=
( 1
n− C`

)
n∈Γ\SN+1,`=1,...,N

diag
(
(−A`)N`=1

) ( 1
k − C`

)
`=1,...,N,k∈SN+1

.

The matrix AN+1 has exactly the rank N , since all three matrix factors have full rank N .
Thus, there is a right (normalized) singular vector v1 of AN+1 to the singular value σ1 = 0,
i.e., AN+1v1 = 0, and the factorization above implies that also

(
1

k−C`

)
`=1,...,N,k∈SN+1

v1 =

0. Since any N columns of
(

1
k−C`

)
`=1,...,N,k∈SN+1

are linearly independent, it follows
that all components of v1 are nonzero. We conclude that the choice of a weight vector

10



w̃ = v1 ensures that the rational function rN (z) in barycentric form (3.5) constructed
by Algorithm 3.1 satisfies all interpolation conditions rN (k) = ck(y) for k ∈ SN+1 and
moreover rN (n) = cn(y) for n ∈ Γ \ SN+1 by AN+1w̃ = 0. Since this rational function
rN (z) satisfies 2N+1 interpolation conditions, it follows that it coincides with the rational
function rN (z) in (4.4). But rN (z) in (4.4) is of type (N − 1, N), it follows that w̃ also
satisfies the second side condition of minimization problem (3.4). Thus, Algorithm 3.1
will provide the weight vector w = w̃ = v1 at the Nth iteration step.

The proof of Theorem 4.2 implies that in the considered case the kernel vector w =
v1 of the Loewner matrix AN+1 already satisfies the two side conditions. Therefore,
the modification of the original AAA-algorithm that ensures that the resulting rational
approximant is of type (N − 1, N) is not needed in this case. The reconstruction of y(t)
in (4.1) can now be summarized as follows.

Algorithm 4.3 (Reconstruction of the parameters λj , γj in (4.1)).
Input: Γ = (k)k∈Γ ⊂ Z, f := (ck(y))k∈Γ with ck(y) in (4.3)),

1) Apply Algorithm 3.1 with Γ = (k)k∈Γ and f := (ck(y))k∈Γ with ck(y), tol = 10−13 in
(4.3). We obtain S ∈ ZN+1, fS = (ck(y))k∈S and w ∈ CN+1.

2) Apply Algorithm 3.3 to obtain Aj = gj and Cj = ρj , j = 1, . . . , N .

3) Apply (4.5) to compute λj , γj , j = 1, . . . , N .

Output: λj , γj , j = 1, . . . , N , determining y(t) in (4.1).

4.2 Functions Containing also P -periodic Terms

Now, we assume that the exponential sum (4.1) contains beside non-P -periodic terms
yj(t) = γj e2πλjt with −iλj 6∈ 1

P Z also P -periodic terms with −iλj ∈ 1
P Z. As seen in

Lemma 4.1, each P -periodic term provides only one non-zero Fourier coefficient, i.e.,
ck(γj e2πλjt) = γjδk,−iλjP . Therefore, we assume that the index set Γ of given Fourier
coefficients ck(y) contains all integers {−iλjP : j = 1, . . . , N}∩Z. If ck(y) with k = −iλjP
is not provided, then the term yj(t) = γje2πλjt cannot be identified from the given data.

Now the function y in (4.1) can be written as y = y(1) + y(2), where

y(1)(t) :=
N1∑
j=1

γj e2πλjt with − iλj 6∈
1
P
Z, y(2)(t) :=

N∑
j=N1+1

γj e2πλjt with − iλj ∈
1
P
Z,

(4.6)
and N1 < N . The part y(1)(t) is non-P -periodic with the Fourier coefficients

ck(y(1)) =
N1∑
j=1

Aj
k − Cj

= pN1−1(k)
qN1(k) = rN1(k), k ∈ Z,

and the part y(2)(t) is P -periodic. We denote Σ := {−iλjP : j = N1 + 1, . . . , N}. Then

ck(y(2)) =
{
γj , k ∈ Σ,
0, k 6∈ Σ.

11



The reconstruction of y(t) is now based on the observation that all but ck(y), k ∈ Σ, still
have the structure of a rational function rN1 , i.e., ck(y) = rN1(k) for k ∈ Z \Σ, and y(1)(t)
can be reconstructed by Algorithm 3.1 while the P -periodic part y(2)(t) can be determined
in a post-processing step.

Theorem 4.4. Let y in (4.1) be of the form y(t) = y(1)(t) + y(2)(t) as in (4.6), where we
assume that λj are pairwise distinct. Let {ck(y) : k ∈ Γ} with Γ ⊂ Z be a set of L ≥ 2N+2
Fourier coefficients of the Fourier expansion of y on the finite interval [0, P ] ⊂ R with
P > 0, and assume that the (unknown) index set Σ of non-zero Fourier coefficients of
y(2)(t) is a subset of Γ. Then y(1) and y(2) can be uniquely recovered from this set of
Fourier coefficients. Algorithm 3.1 (with Γ = (k)k∈Γ and f := (ck(y))k∈Γ ) terminates
after at most N + 1 steps and provides a rational function rN1(z) of type (N1− 1, N1) that
satisfies ck(y) = rN1(k) for all k ∈ Z \ Σ.

Proof. The proof employs similar ideas as the proof of Theorem 5.1 in [17] despite the
different context. We therefore only sketch the main ideas of the proof.

At the (N + 1)-th iteration step, Algorithm 3.1 has chosen a set S ⊂ Γ of N + 2 indices
used for interpolation. Let ΓS := Γ \ S. Then we obtain the matrix

AN+2 =
(
c`(y)− ck(y)

`− k

)
`∈ΓS ,k∈S

∈ CL−N−2×N+2.

We show that AN+2 has at most rank N . Let s be the number of indices of Σ being
contained in S. We consider the partial matrix A11 of AN+2 obtained by deleting the rows
and columns corresponding to indices in Σ. Then, A11 has at least N + 2 − s ≥ N1 + 2
columns and, similarly as in the proof of Theorem 4.8, it follows from a factorization
argument that A11 has rank N1. Therefore, the submatrix of AN+2 built with the columns
of AN+2 that correspond to the N + 2 − s columns of A11 has at most rank N1 + (N −
N1 − s) = N − s, since there are at most N −N1 − s rows of AN+2 which are deleted in
A11. We conclude that the full matrix AN+2 has at most rank N .

Thus, Algorithm 3.1 finds two vectors v1 and v2 with AN+2v1 = AN+2v2 = 0 and thus,
there is a weight vector w with AN+2w = 0 satisfying the side conditions (ck)Tk∈Sw = 0
and ‖w‖2 = 1. Observe that ck(y) = ck(y(1)) for all k ∈ Γ \ Σ. Since any N1 columns
out of the columns of A11 are linearly independent, w contains at least N1 + 1 nonzero
components corresponding to columns of A11 and therefore, the rational function rN1

obtained by Algorithm 3.1 indeed interpolates all Fourier coefficients of y(1). Therefore,
Algorithm 3.1 determines y(1). In a post processing step we find all nonzero Fourier
coefficients of y(2) by inspecting ck(y(2)) = ck(y) − rN1(k), k ∈ Γ, and can determine
y(2).

Remark 4.5. Comparing Theorems 4.2 and 4.4 we see that the reconstruction procedure
may require N + 1 instead of N steps if the exponential sum also contains P -periodic
components, where N is the order of the corresponding exponential sum. In practice,
Algorithm 3.1 often terminates after N steps, even if P -periodic terms appear. The
Fourier coefficients that are deteriorated by the P-periodic part can however also produce
a Froissart doublet. Actually, if Algorithm 3.1 stops, then all indices of Fourier coefficients
that corresponds to the P -periodic components, have been taken into the set S, i.e., Σ ⊂ S.
Otherwise, these Fourier coefficients would cause an error in the approximation step, since
they do not have the wanted rational structure.
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To reconstruct the function y(t) in (4.1), we can again just apply Algorithm 4.3 to
reconstruct all parameters of the non-periodic part y(1)(t). The set Σ can be found by
determining all integer poles Cj that are found in the second step of Algorithm 4.3. The
coefficients γj for j = N1 + 1, ..., N can be now reconstructed via

γj = ckj (y)− ckj (y(1)). (4.7)

Example 4.6. We consider the following proper exponential sum, see Figure 1,

y1(t) :=(3.2 + 4.5i) e2π·(−1.095+
√

0.0101 i)t − 0.55 e−2π·2.647it + (−3.4 + 0.1i) e2π·1.3711it

− 0.88 e−2π·
√

1.89t + (0.542 + 7.1i) e2π·(−
√

0.47+3.217i)t + (−0.96 + 1.06i) e−2π·2i,
(4.8)

i.e., y1(t) is of the form (4.1) with N = 6 and the parameter vectors

λ = (−1.095 +
√

0.0101 i, −2.647 i, 1.3711 i, −
√

1.89, −
√

0.47 + 3.217 i, −2 i),
γ = (3.2 + 4.5i, −0.55, −3.4 + 0.1i, −0.88, 0.542 + 7.1i, −0.96 + 1.06i).

Figure 1: Graph of Re y1(t) (left) and of |y1(t)| (right) for y1(t) in (4.8) on [0, 6].

We use P = 6, and employ the 59 Fourier coefficients ck(y1), k = −29, . . . , 29, to recover
y1(t). The function y1(t) = y

(1)
1 (t) + y

(2)
1 (t) contains one 6-periodic term and 5 non-6-

periodic terms,

y
(2)
1 (t) = (−0.96 + 1.06i) e−2π·2i,

y
(1)
1 (t) = y1(t)− y(2)

1 (t).

Algorithm 3.1 iteratively employs the 7 Fourier coefficients c8(y1), c−12(y1), c9(y1), c−13(y1),
c−16(y1), c20(y1) and c0(y1) (in this order) for interpolation before it stops after 6 itera-
tion steps with error 3.6 · 10−16. Here, the Fourier coefficient c−12(y1), which contains
information about y(2)

1 , is already taken. The obtained rational function r(z) is al-
ready completely determined by the remaining 6 Fourier coefficients ck(y1) = ck(y

(1)
1 ),

k = 8, 9, −13, −16, 20, 0. Therefore, Algorithms 3.1 provides r(z) that interpolates
ck(y

(1)
1 ) for all k, while it does not interpolate ck(y1) 6= ck(y

(1)
1 ) for k = −12. Indeed

we observe that the second component of w ∈ C7 vanishes, indicating that c−12(y) is a
“non-achievable” point for this rational interpolation. After skipping this vanishing term
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in w and in S correspondingly, we obtain a rational function r5(z) in the barycentric form
of type (4, 5) that is determined by

S =



8
9
−13
−16
20
0


, w =



−0.096270855302241− 0.103263179235592i
−0.265355731611110− 0.389226329639419i
0.719319960483190− 0.000900124596615i
0.028635901429394− 0.005047069650253i
−0.228142957097121 + 0.028004149922005i
0.224577809992588− 0.369623728522123i


,

and the vector of Fourier coefficients with indices corresponding to the index vector S. To
reconstruct the non-periodic part y(1)

1 (t) of y(t), we apply Algorithm 4.3 as described in
the previous subsection. Finally, we reconstruct the periodic part y(2)

1 (t). Comparing the
Fourier coefficients with values of r5(z) we find the set Σ = {−12}. According to (4.7),
c−12(y) already completely covers y(2)

1 (t). The obtained reconstruction errors are

‖λ̃− λ‖∞ = 1.72 · 10−12, ‖γ̃− γ‖∞ = 1.69 · 10−11,

where λ̃ and γ̃ denote the reconstructed parameter vectors.

4.3 Recovery of Real Proper Exponential Sums with Real Frequencies

In this section, we consider the recovery of real proper exponential sums

y(t) =
N∑
j=1

γje2παjt, γj , αj ∈ R \ {0} (4.9)

from a small number of its Fourier coefficients obtained for the Fourier series expansion
of y on a given finite interval [0, P ]. In this case, we can derive a special algorithm in real
arithmetic. We start with studying the structure of the Fourier coefficients of y.

Lemma 4.7. The function φ(t) = γe2παt with γ, α ∈ R \ {0} can be expanded into
the Fourier series on the finite interval [0, P ] ⊂ R with P > 0 of the form φ(t) =∑
k∈Z

ck(φ)e2πi kt/P , and the Fourier coefficients ck(φ) for k ∈ Z are given by

ck(φ) = 1
P

∫ P

0
φ(t) e−2πikt/P dt = γ eπαP (Pα+ ik) sinh(παP )

π(α2P 2 + k2) .

Proof. The proof follows the same lines as the proof of Lemma 4.1.

Now, the function y in (4.9) can be rewritten as y(t) =
∑N
j=1 yj(t) with yj(t) := γje2παjt,

and, according to Lemma 4.7, its Fourier coefficients satisfy the representation

ck(y) =
N∑
j=1

Aj + ikBj
Cj + k2 (4.10)

with real parameters

Cj := α2
jP

2,
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Aj := γjPαj
π

eαjπP sinh(παjP )

Bj := γj
π

eαjπP sinh(παjP ),

for all j = 1, . . . , N . Conversely, the coefficients Aj and Bj , j = 1, . . . , N , uniquely
determine the parameters αj and γj of the exponential sum (4.9). We have

αj = Aj
BjP

(4.11)

and
γj = Bjπ

eαjπP sinh(παjP )
= Bjπ

eAjπ/Bj sinh(πAj/Bj)
. (4.12)

Obviously, we also have α2
j = Cj/P

2, and Cj can hence be written as Cj =
(
Aj
Bj

)2
.

We consider now the following modification of Fourier coefficients ck(y) in (4.10),

c̃k(y) := Re ck(y) + i
k

Im ck(y) =
N∑
j=1

Aj + iBj
k2 + Cj

, (4.13)

which can be seen as the sample values of a rational function

rN (z) = pN−1(z)
qN (z) =

N∑
j=1

Aj + iBj
z + Cj

of type (N − 1, N) at z = k2. The reconstruction algorithm is now based on this observa-
tion. We obtain

Theorem 4.8. Let y be of the form (4.9) with N ∈ N and αj , γj ∈ R\{0}, where we assume
that αj are pairwise distinct. Let {ck(y) : k ∈ Γ}, with Γ ⊂ N be a set of L ≥ 2N + 1
Fourier coefficients of the Fourier expansion of y on the finite interval [0, P ] ⊂ R. Then
y is uniquely determined by 2N of these Fourier coefficients and Algorithm 3.1 (with
Γ = (k2)k∈Γ and f := (c̃k(y))k∈Γ with c̃k(y) in (4.13) terminates after N steps taking N+1
interpolation points and provides a rational function rN (z) satisfying rN (k2) = c̃k(y) for
all k ∈ Z.

The proof of Theorem 4.8 can be derived analogously as for Theorem 4.2. In particular,
Algorithm 3.1 provides a reconstruction algorithm for the rational function rN (z) that
determines the modified Fourier coefficients of y. For reconstruction of the parameters of
y(t) in (4.9), we thus need again to proceed with the following steps.

Algorithm 4.9 (Reconstruction of the parameters αj and γj from (4.9)).
Input: Γ = (k2)k∈Γ ⊂ Z, f := (c̃k(y))k∈Γ with c̃k(y) in (4.13)),

1) Apply Algorithm 3.1 to compute a rational function rN (z) of type (N − 1, N) from a
set of L ≥ 2N + 1 Fourier coefficients with nonnegative index. Use the input data
Γ = (k2)k∈Γ and f := (c̃k(y))k∈Γ with c̃k(y) in (4.13). Algorithm 3.1 then provides
the vector of used (squared) indices S = (zj)N+1

j=1 with zj = k2
j , kj ∈ Γ ⊂ N, the

vector of used modified Fourier coefficients fS = (c̃kj (y))N+1
j=1 and the weight vector

w = (wj)N+1
j=1 to determine rN (z) of the form (3.5).
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2) Rewrite rN in the form

rN (z) = p̃N (z)
q̃N (z) =

∑N+1
j=1

wj c̃kj (y)
z−k2

j∑N+1
j=1

wj
z−k2

j

=
N∑
j=1

Aj + iBj
z + Cj

,

i.e., extract Aj , Bj , Cj from S, fS, and w. This is done by employing Algorithm 3.3
with the output gj = Aj + iBj and ρj = Cj .

3) Compute the parameters αj , γj from Aj and Bj , j = 1, . . . , N , via (4.11) and (4.12).

Output: αj , γj , j = 1, . . . , N , determining y(t) in (4.9).

Example 4.10. We consider the following exponential sum, see Fig. 2,

y2(t) :=− 0.00572 e−6.74·2πt + 0.1074 e−3.187·2πt − 0.685 e−1.312·2πt − 0.4264 e−1.212·2πt

+ 0.4605 e0.223·2πt,

i.e., y2(t) is of the form (4.9) with N = 5 and parameter vectors

α = (−6.74, −3.187, −1.312, −1.212, 0.223),
γ = (−0.00572, 0.1074, −0.685, −0.4264, 0.4605).

Figure 2: Graph of the proper exponential sum y2 on [0, 3].

For the recovery of y2 we choose P = 3, and employ 40 Fourier coefficients c̃k(y2),
k = 1, . . . , 40. Algorithm 3.1 iteratively employs the N + 1 coefficients c̃1(y2), c̃2(y2),
c̃4(y2), c̃40(y2), c̃15(y2), and c̃27(y2) for interpolation (in this order), before it terminates
with the error 1.6 ·10−16. We get a rational function r5(z) of type (4, 5) that is determined
by

S =



12

22

42

402

152

272


, w =



0.000107694973344− 0.000273615982469i
−0.000627784609123 + 0.001594985329941i
0.001597607891293− 0.004058973590996i
−0.287695273175763 + 0.730934994893030i
−0.035505720375047 + 0.090207855189328i
0.223846148680396− 0.568716273077864i


and fS = (c̃k(y2))k2∈S. We reconstruct parameters α̃j and γ̃j , j = 1, . . . , 5, by Algorithm
4.9 with the errors

‖α− α̃‖∞ = 5.52 · 10−11, ‖γ− γ̃‖∞ = 2.16 · 10−10.
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5 Recovery of Extended Exponential Sums

In this section we study the recovery of extended exponential sums y ∈ YN ,

y(t) =
M∑
j=1

( nj∑
m=0

γj,m t
m

)
e2πλjt, γj,m ∈ C, γj,nj 6= 0, λj ∈ C, (5.1)

of full order N :=
M∑
j=1

(1 + nj) from a small set of given Fourier coefficients obtained for

the Fourier series expansion of y on [0, P ]. Note that for convenience we consider again
frequencies 2πλj instead of λj for j = 1, . . . ,M .

5.1 Representation of Fourier Coefficients via Rational Functions

First we study the structure of Fourier coefficients of functions y(t) in (5.1). We start
with the following result regarding the expansion of one component in (5.1) into a Fourier
series on [0, P ] with some given P > 0.

Theorem 5.1. The function φ(t) = γ tm e2πλt with m ∈ N, λ ∈ C, and γ ∈ C \ {0} can
be expanded on [0, P ] into the Fourier series φ(t) =

∑
k∈Z

ck(φ) e2πikt/P . If −iλ 6∈ 1
P Z, the

Fourier coefficients ck(φ), k ∈ Z, are given by

ck(φ) = γ Pmm!
(2πi)m+1 (k + iλP )m+1

(
1− e2πλP

m∑
`=0

1
`! (2πi)` (k + iλP )`

)
. (5.2)

If −iλ ∈ 1
P Z, i.e., if there exists an n ∈ Z with −iλP = n, then

ck(φ) =


γPm

m+1 , k = n,

− γ Pmm!
(2πi)m+1 (k−n)m+1

(
m∑
`=1

1
`! (2πi)` (k − n)`

)
, k ∈ Z \ {n}.

(5.3)

Proof. Since y(t) in (5.1) is differentiable on [0, P ], the Fourier series and all Fourier
coefficients are well defined, and we have pointwise convergence in (0, P ), see [18]. Let
first −iλP 6∈ Z. Applying [8, 2.321], for a 6= 0 the general antiderivative of tmeat reads∫

tmeat dt = eat
(

m∑
`=0

(−1)` `!
(m
`

)
a`+1 tm−`

)
.

Thus, for k ∈ Z,

ck(φ) = γ

P

∫ P

0
tme2π(λ−ik/P )t dt

= γ

P
e2π(λ−ik/P )P

m∑
`=0

(−1)``!
(m
`

)
(2π (λ− ik/P ))`+1P

m−` − γ

P
· (−1)mm!

(2π (λ− ik/P ))m+1

= γ Pmm!
(2πi)m+1 (k + iλP )m+1

(
1− e2πλP

m∑
`=0

1
`! (2πi)` (k + iλP )`

)
.
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Let now −iλP ∈ Z. Then there is an n ∈ Z such that −iλP = n, and we obtain

cn(φ) = γ
P

P∫
0
tm dt = γPm

m+1 . For k ∈ Z \ {n} we have

ck(φ) = γ

P

∫ P

0
tme2πi(n−k)t/P dt = γPm

m−1∑
`=0

(−1)` `!
(m
`

)
(2πi(n− k))`+1

= −γPm
m−1∑
`=0

i`+1 `!
(m
`

)
(2π)`+1(n− k)`+1 = − γ Pmm!

(2πi)m+1 (k − n)m+1

(
m∑
`=1

1
`! (2πi)` (k − n)`

)
.

Thus we also obtain

Corollary 5.2. Let y(t) =
M∑
j=1

yj(t) be of the form (5.1), where yj(t) =
( nj∑
m=0

γj,m t
m

)
e2πλjt

with nj ∈ N0, λj ∈ C, and γj,m ∈ C with γj,nj 6= 0. Then the Fourier coefficients of yj(t)
with respect to the Fourier series expansion on [0, P ] are of the following form:
1) For −iλjP 6∈ Z, we have

ck(yj) =
nj∑
`=0

Aj,`
(k − Cj)`+1 , k ∈ Z,

where for j = 1, . . . ,M , and ` = 0, . . . , nj,

Cj := −iλj P, Aj,` := `!
(2πi)`+1

γj,` P `(1− e2πλjP )− e2πλjP
nj∑

m=`+1
Pm

(
m

`

)
γj,m

 .
(5.4)

2) For −iλjP = kj ∈ Z we have

ck(yj) =


nj∑
`=0

γj,`
`+1P

`, k = kj ,

nj−1∑
`=0

A∗j,`
(k−Cj)`+1 , k ∈ Z \ {kj},

(5.5)

where for j = 1, . . . ,M , and ` = 0, . . . , nj − 1,

Cj := −iλj P = kj , A∗j,` := − `!
(2πi)`+1

nj∑
m=`+1

Pm
(
m

`

)
γj,m. (5.6)

Proof. Using the formula (5.2) in Theorem 5.1, it follows for −iλjP 6∈ Z that

ck(yj) =
nj∑
m=0

γj,mP
mm!

(2πi)m+1(k + iλjP )m+1

(
1− e2πλjP

m∑
`=0

1
`! (2πi)`(k + iλjP )`

)

=
nj∑
`=0

γj,`P
` `!

(2πi)`+1(k + iλjP )`+1 − e2πλjP
nj∑
m=0

m∑
`=0

γj,mP
mm!

`! (2πi)m+1−` (k + iλjP )m+1−`

=
nj∑
`=0

`!
(2πi)`+1(k + iλjP )`+1

(
γj,`P

` − e2πλjP
nj∑
m=`

γj,m P
m

(
m

`

))
.

For the case −iλjP = kj ∈ Z the proof is similar to the one above where we use (5.3)
instead of (5.2).
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5.2 Recovery of Extended Exponential Sums with Non-P -periodic Terms

We consider first the simpler case where y(t) possesses only non-P-periodic terms.

Lemma 5.3. Assume that y(t) =
M∑
j=1

( nj∑
m=0

γj,mt
m
)
e2πλjt in (5.1) possesses only non-P-

periodic terms, i.e., −iλjP 6∈ Z for j = 1, . . . ,M . Further, let rN (z) be a rational function
of the form

rN (z) := pN−1(z)
qN (z) =

M∑
j=1

nj∑
`=0

Aj,`
(z − Cj)`+1 , (5.7)

where Cj and Aj,`, j = 1, . . . ,M , ` = 0, . . . , nj, are given as in (5.4). Then we have
rN (k) = ck(y) for k ∈ Z. Moreover, the parameters λj and γj,m, j = 1, . . . ,M , m =
0, . . . , nj, of y(t) are given by

λj = iCj
P
, (5.8)

and recursively by

γj,m = (1− e2πiCj )−1

Pm

(2πi)m+1

m! Aj,m + e2πiCj
nj∑

`=m+1

(
`

m

)
P `γj,`

 m = nj , nj−1, . . . , 0.

(5.9)

Proof. Using Corollary 5.2, we obtain

ck(y) =
M∑
j=1

ck(yj) =
M∑
j=1

nj∑
`=0

Aj,`
(k − Cj)`+1 (5.10)

for all k ∈ Z. Thus, the Fourier coefficients of y(t) in (5.1) can be represented by rN (z) in
(5.7) such that rN (k) = ck(y) for k ∈ Z. Note that the polynomials qN (z) and pN−1(z) de-
termining rN (z) are coprime. In particular, y(t) is completely determined by rN (z). From
(5.4) we obtain λj = iCj

P for j = 1, . . . ,M , and, taking the vectors Aj := (Aj,0, . . . , Aj,nj )T
and γj := (γj,0, . . . , γj,nj )T for j = 1, . . . ,M , we conclude from (5.4) for Cj = −iPλj 6∈ Z

Aj =diag
(
−e2πiCj `!
(2πi)`+1

)nj
`=0



(1− e−2πiCj )
(1
0
)
P

(2
0
)
P 2 . . .

(nj
0
)
Pnj

0 (1− e−2πiCj )P
(2
1
)
P 2 . . .

(nj
1
)
Pnj

...
...

...
. . .

( nj
nj−1

)
Pnj

0 0 . . . 0 (1− e−2πiCj )Pnj


γj .

(5.11)
The assumption Cj = −iPλj 6∈ Z yields invertibility of the upper triangular matrix in the
formula above, and moreover, we can compute γj recursively by backward substitution to
get (5.9).

Therefore, it suffices to determine the parameters of rN (z) to reconstruct y(t). We
obtain the following generalization of Theorem 4.2.
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Theorem 5.4. Let y be of the form (5.1) with N =
∑M
j=1(1 + nj) ∈ N, pairwise distinct

λj ∈ C \ i
P Z and γj,m ∈ C for j = 1, . . . ,M , m = 0, . . . , nj, with γj,nj 6= 0. Let {ck(y) :

k ∈ Γ} with Γ ⊂ Z be a set of L ≥ 2N+1 Fourier coefficients of the Fourier expansion of y
on the finite interval [0, P ] ⊂ R with P > 0. Then y is uniquely determined by 2N of these
Fourier coefficients and Algorithm 3.1 (with Γ = (k)k∈Γ and f := (ck(y))k∈Γ) terminates
after N steps taking N+1 interpolation points and provides a rational function rN (z) that
satisfies ck(y) = rN (k) for all k ∈ Z.

Proof. As shown in Lemma 5.3, the Fourier coefficients of y(t) in (5.1) admit a represen-
tation of the form (5.10), i.e., there exists a rational function rN (z) of type (N − 1, N)
such that we have rN (k) = ck(y). This rational function is already determined by 2N
interpolation conditions. To show that Algorithm 3.1 provides this rational function (in
barycentric form) after N iteration steps, we again have to inspect the generalized Cauchy
matrix AN+1 =

(
cn(y)−ck(y)

n−k

)
n∈Γ\S,k∈S

, where S ⊂ Γ denotes the index set for interpola-
tion. Using similar arguments as in the proof of Theorem 4.2, we can show that AN+1
possesses exactly rank N and that the vector w ∈ CN+1 satisfying AN+1 w = 0 is the
weight vector determining the rational function rN (z) in the barycentric form (3.5).

To reconstruct y(t) in (5.1) we now can proceed as follows.

Step 1. First, we apply Algorithm 3.1 with P > 0, the period for the computation
of Fourier coefficients, Γ ∈ ZL, the vector of indices of given Fourier coefficients, and
f = c = (ck(y))k∈Γ ∈ CL, the vector of given Fourier coefficients. After N iteration
steps, we obtain rN (z) in barycentric form (3.5) that is determined by the vector of
interpolation indices S = (k1, . . . , kN+1)T , the vector of corresponding Fourier coefficients
fS = (ck`(y))N+1

`=1 , and the weight vector w = (wj)N+1
j=1 .

Step 2. The rational function rN (z) can be rewritten as a partial fraction decomposition

rN (z) =
M∑
j=1

nj∑
`=0

Aj,`
(z − Cj)`+1 .

To recover the parameters Cj and Aj,`, we need to apply a modified version of Algorithm
3.3. As before, the parameters Cj are the poles of rN (z), i.e., the zeros of q̃N (z). This
time, the zeros Cj may come with multiplicity nj + 1 ≥ 1. Afterwards, the parameters
Aj,` are computed using the interpolation conditions ck`(y) = rN (k`), ` = 1, . . . , N + 1.

We summarize the modified Algorithm 5.5.

Algorithm 5.5 (Reconstruction of a partial fraction representation).
Input: S ∈ ZN+1, cS ∈ CN+1, w ∈ CN+1 the output vectors of Algorithm 3.1.

• Build the matrices in (3.7) with S = (zj)N+1
j=1 = (kj)N+1

j=1 and w = (wj)N+1
j=1 and

solve this eigenvalue problem to find the parameter vector C := ρ = (C1, . . . , CN )T
of finite eigenvalues. Extract the number M of different poles ρj = Cj and the
corresponding multiplicities n1, . . . , nM .

• Solve the linear system with cS = (ckν )N+1
ν=1 ,

M∑
j=1

nj∑
`=0

Aj,`
(kν − Cj)`+1 = ckν (y), ν = 1, . . . , N + 1.
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Output: M the number of different poles Cj ,
parameter vectors (Cj)Mj=1, (nj)Mj=1, and (Aj,`)j=1,...,M, `=0,...,nj .

Step 3. Finally, we extract the wanted parameters λj , γj,m via (5.8) and (5.11).

Example 5.6. We consider the extended exponential sum

y3(t) :=
(
3.1 + 0.5 i + 0.5t− 0.002t2 + 1.6t3 + (0.55− 4.23 i)t4

)
e2π (−0.1236+2.2371i)t

− 15.02e2π (0.011−
√

2.2i)t, (5.12)

see Figure 3, i.e, y3 is of the form (5.1) with N = 6, and with parameters

n = (n1, n2) = (4, 0), λ = (λ1, λ2) = (−0.1236 + 2.2371i, 0.011−
√

2.2i),

and γ = (γT1 ,γT2 ) with

γ1 = (γ1,0, . . . , γ1,4) = (3.1 + 0.5 i, 0.5,−0.002, 1.6, 0.55− 4.23 i), γ2 = γ2,0 = −15.02.

Figure 3: Graph of Re y3 (left) and of |y3| (right) for y3(t) in (5.12) on [0, 8].

We take P = 8 and use 59 Fourier coefficients ck(y3), k = −29, . . . , 29, for the recovery
of y3. Algorithm 3.1 iteratively uses the values c18(y3), c−12(y3), c17(y3), c−8(y3), c19(y3),
c15(y3) and c21(y3) for interpolation (in this order) before it terminates with the error
1.01 · 10−14 after 6 iteration steps. We get a rational function r6(z) of type (5, 6) in
barycentric form (3.5) determined by

S =



18
−12
17
−8
19
15
21


, w =



0.002282995536669 + 0.003576768606091i
−0.002637047964009 + 0.040954493823534i
0.010814031928894− 0.000636557543413i
−0.633666296891693 + 0.762517726922522i
0.000499981716439 + 0.016884004429586i
0.070370845980150 + 0.043823205664822i
0.078294211622157 + 0.043889969381308i


,

and the corresponding vector of Fourier coefficients cS. We reconstruct the parameter
vectors ñ, λ̃ and γ̃ using Algorithms 5.5 and via (5.8) and (5.11). Algorithm 5.5 yields
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the poles Cj = −8iλj , j = 1, . . . , 7, of the rational function r6(z),

C =



−11.865917579353065− 0.088000000000003i
17.895308407373371 + 0.984361807596397i
17.892106783572142 + 0.988839706980242i
17.900555173098393 + 0.985997347696078i
17.895392315518535 + 0.993288509746222i
17.900637320434701 + 0.991512627981242i


.

We assume that two computed poles Cj1 and Cj2 , j1 6= j2, are equal, if |Cj1−Cj2 | < 0.01.
We obtain the pole C1 = 17.896799999999427 + 0.988800000000036i with multiplicity 5
and the pole C2 = −11.865917579353065− 0.088000000000003i with multiplicity 1. Note
that C1 is taken as the average of the last 5 values in C, i.e., n = (4, 0). The reconstruction
procedure provides the errors

‖λ̃− λ‖∞ = 7.16 · 10−14, ‖γ̃− γ‖∞ = 2.34 · 10−10,

where λ̃ and γ̃ denote the computed parameter vectors.

5.3 Recovery of Extended Exponential Sums Containing also P -periodic
Terms

Now let us assume that the function (5.1) contains also P -periodic components. In this
case it can be represented as y = y(1) + y(2), where

y(1)(t) :=
M1∑
j=1

( nj∑
m=0

γj,m t
m

)
e2πλjt, −iλjP 6∈ Z, (5.13)

and

y(2)(t) :=
M∑

j=M1+1

( nj∑
m=0

γj,m t
m

)
e2πλjt, −iλjP ∈ Z. (5.14)

Let M1 and N1 :=
M1∑
j=1

(1 + nj) be the length and the order of y(1) and let M2 := M −M1

and N2 :=
M∑

j=M1+1
(1 +nj) = N −N1 denote the length and the order of y(2)(t). We define

the set Σ := {−iλjP : j = M1 + 1, . . . ,M} corresponding to the M2 periodic terms in
y(2).

Lemma 5.7. Let y = y(1) + y(2) with y(1) in (5.13) and y(2) in (5.14). Define

r†N−M2
(z) := rN1(z)+r∗N2−M2(z) =

M1∑
j=1

nj∑
`=0

Aj,`
(z − Cj)`+1 +

M∑
j=M1+1

nj−1∑
`=0

A∗j,`
(z − Cj)`+1 , (5.15)

where Cj and Aj,`, j = 1, . . . ,M1, ` = 0, . . . , nj, are given as in (5.4), and Cj and A∗j,`,
j = M1 + 1, . . . ,M , ` = 0, . . . , nj−1, as in (5.6) (where the range for j has to be adjusted).
Then we have

ck(y) = r†N−M2
(k) for k ∈ Z \ Σ,
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and in particular, ck(y(1)) = rN1(k), k ∈ Z. Moreover, the parameters λj, j = 1, . . . ,M ,
are determined by (5.8). Further, γj,m, j = 1, . . . ,M1, m = 0, . . . , nj, of y(1) are given as
in (5.9), and γj,m, j = M1 + 1, . . . ,M , m = 1, . . . , nj, of y(2) are recursively given by

γj,m+1 = − 1
Pm+1(m+ 1)

(2πi)m+1A∗j,m
m! +

nj∑
`=m+2

(
`

m

)
P ` γj,`

 , m = nj − 1, , . . . , 0.

(5.16)
The parameters γj,0, j = M1 + 1, . . . ,M , are determined with kj := −iλjP by

γj,0 = ckj (y(2))−
M∑

j1=M1+1
j1 6=j

nj1−1∑
`=0

A∗j1,`
(kj1 − Cj)`+1 −

nj∑
`=1

P `

`+ 1γj,`.

Proof. 1. The Fourier coefficients of the non-P -periodic part y(1)(t) can be determined by

the rational function rN1(z) as in (5.7) with N1 :=
M1∑
j=1

(1 + nj) such that

ck(y(1)) = rN1(k) for k ∈ Z. (5.17)

In particular, by Lemma 5.3 there is a bijective map between the parameters {nj , λj , γj,m :
j = 1, . . . ,M1, m = 0, . . . , nj} determining y(1) in (5.13) and the parameters {nj , Cj , Aj,` :
j = 1, . . . ,M1, ` = 0, . . . , nj} determining rN1(z). Therefore the non-P -periodic part
y(1)(t) is uniquely determined by the rational function rN1(z).

2. We consider now the representation for the Fourier coefficients of the P -periodic
part y(2)(t). We denote Cj := −iλjP = kj ∈ Z for j = M1 + 1, . . . ,M , then we have
Σ = {kM1+1, . . . , kM}. According to (5.5),

ck(y(2)) =



M∑
j=M1+1
j 6=j0

nj−1∑̀
=0

A∗j,`
(k−Cj)`+1 +

nj0∑̀
=0

γj0,`
`+1 P

`, k = kj0 ∈ Σ,

M∑
j=M1+1

nj−1∑̀
=0

A∗j,`
(k−Cj)`+1 , k ∈ Z \ Σ

(5.18)

with A∗j,` as in (5.6). Thus all Fourier coefficients ck(y(2)), k ∈ Z \ Σ, still have a rational
structure. We consider the rational function

r∗N2−M2(z) :=
p∗N2−M2−1(z)
q∗N2−M2

(z) =
M∑

j=M1+1

nj−1∑
`=0

A∗j,`
(z − Cj)`+1 . (5.19)

Note that the polynomials p∗N2−M2−1 and q∗N2−M2
do not have common zeros and r∗N2−M2

is of type (N2−M2−1, N2−M2). Taking into account (5.18) and (5.19) we conclude that

ck(y(2)) = r∗N2−M2(k), k ∈ Z \ Σ, (5.20)

and thus also ck(y) = r†N−M2
(k) for k ∈ Z \ Σ.

3. We show now that the P-periodic function y(2)(t) is uniquely determined by the
rational function r∗N2−M2

and the Fourier coefficients ckj (y(2)), kj ∈ Σ, or equivalently,
by Cj , A∗j,`, and ckj (y(2)), j = M1, . . . ,M , ` = 0, . . . , nj − 1. The frequency parameters
λj of y(2)(t) in (5.14) are given by λj = iCjP as in (5.8), and kj = Cj . Observe that the
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definition of A∗j,`, ` = 0, . . . , nj − 1, in (5.6) involves γj,m for m = 1, . . . , nj , and all γj,m,
m = 1, . . . , nj , can be recovered from the A∗j,`, ` = 0, . . . , nj − 1, recursively. To determine
also γj,0, j = M1 + 1, . . . ,M , we have to employ ckj (y(2)) and obtain from the first line of
(5.18)

γj,0 = ckj (y(2))−
M∑

j1=M1+1
j1 6=j

nj1−1∑
`=0

A∗j1,`
(kj1 − Cj)`+1 −

nj∑
`=1

P `

`+ 1γj,`.

More precisely, to recover all parameters γj,` of y(2)(t) let

c̆kj (y) := ckj (y(2))−
M∑

j1=M1+1
j1 6=j

nj1−1∑
`=0

A∗j1,`
(kj1 − Cj)`+1

= ckj (y)− ckj (y(1))−
M∑

j1=M1+1
j1 6=j

nj1−1∑
`=0

A∗j1,`
(kj1 − Cj)`+1 . (5.21)

We define the vectors A∗j := (c̆kj (y), A∗j,0, . . . , A∗j,nj−1)T and γj := (γj,0, . . . , γj,nj )T . Then
we obtain the linear relation

A∗j =



1 P
2

P 2

3 . . . Pnj

nj+1
0 −

(1
0
)
P −

(2
0
)
P 2 . . . −

(nj
0
)
Pnj

0 0 − 1
2πi
(2
1
)
P 2 . . . − 1

2πi
(nj

1
)
Pnj

...
. . .

0 0 . . . 0 − 1
(2πi)nj nj !P

nj


γj . (5.22)

Note also that the matrix in (5.22) is invertible, therefore this system has a unique solution
γj . For the case when some nj = 1, i.e., when the extended exponential sum (5.1) has a
proper component, we get that γj = γj,0 and (5.22) simply gives (4.7).

Finally, we study the recovery of extended exponential sums y in (5.1) that can be
written as y = y(1) + y(2), where y(1) is the non-P -periodic part defined by (5.13) and y(2)

is the P -periodic part defined by (5.14). If y(2) is not just a proper exponential sum then
this recovery problem essentially differs from the recovery of proper exponential sums in
Section 4.2, since y(2) also possesses infinitely many nonzero Fourier coefficients if we have
some nj > 0 for j ∈ {M1 + 1, . . . ,M}, see (5.18). But by Lemma 5.7, all but M2 Fourier
coefficients still have the structure of a rational function. Using this information, we can
now reconstruct the function y = y(1) + y(2) as follows.

Theorem 5.8. Let y in (5.1) be of the form y = y(1) + y(2) as in (5.13) and (5.14), with
γj,m ∈ C, γj,nj 6= 0, and where λj ∈ C are pairwise distinct. Further, let M1 < M ,
and let M2 := M − M1 be the number of P -periodic components in y(2). Denote by
Σ := {−iλjP : j = M1 + 1, . . . ,M} ⊂ Z the index set corresponding to the frequencies of
the P -periodic part y(2). Let {ck(y) : k ∈ Γ}, with Γ ⊂ Z be a set of L ≥ 2N + 2 Fourier
coefficients of the Fourier expansion of y on the finite interval [0, P ] ⊂ R with P > 0.
Assume that Σ ⊂ Γ. Then y can be uniquely recovered from this set of Fourier coefficients.
Algorithm 3.1 (with Γ = (k)k∈Γ and f := (ck(y))k∈Γ) terminates after at most N + 1 steps
and provides a rational function r†N−M2

(z) of type (N −M2 − 1, N −M2) that satisfies
ck(y) = r†N−M2

(k) for all k ∈ Z \ Σ.
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Theorem 5.8 can be proved along the lines of Theorem 4.4. To recover y, we can now
proceed as follows.

Step 1. We apply Algorithm 3.1 to Γ = (k)k∈Γ and f := (ck(y))k∈Γ and find after at
most N + 1 iteration steps the (sub)vectors S = (zj)N+1

j=1 = (k`)N+1
`=1 , cS = (ck`(y))N+1

`=0 ∈
CN+1 and w = (wj)N+1

j=1 ∈ CN+1. If S contains integer indices kj ∈ Z of the form
kj = −iλjP , j ∈ {M1 + 1, . . . ,M}, then the corresponding components of w vanish, since
these interpolation points do not possess a rational function structure. Therefore, we
simply remove the zero components of w and the corresponding components of S and cS
to obtain the parameter vectors that determine the rational function r†N−M2

(z) of type
(N −M2 − 1, N −M2) in barycentric form (3.5).

Step 2. We apply now a modification of Algorithms 5.5 as follows. From the definition of
r†N−M2

(z) in Lemma 5.7 it follows that we find N−M2 poles (counting also multiplicities):
each Cj 6∈ Z is a pole with multiplicity nj + 1 and belongs to rational function rN1(z) that
corresponds to the non-P -periodic part y(1). Each Cj ∈ Z is a pole with multiplicity
nj and belongs to the rational function r∗N2−M2

(z) which corresponds to the P -periodic
part y(2). Taking into account this information we find M pairwise distinct Cj that are
the poles of the r†N−M2

(z) with multiplicities nj + 1 for non-P -periodic components and
nj for P -periodic components. The set Σ can be easily determined by Σ = {Cj : j =
1, . . . ,M} ∩ Z. Then we compute the parameters Aj,`, j = 1, . . . ,M1, ` = 0, . . . , nj , and
A∗j,`, j = M1 +1, . . . ,M , ` = 0, . . . , nj−1, using the N+1−M2 interpolation conditions

r†N−M2
(ks) = cks(y), s = 1, . . . , N + 1−M2, ks 6∈ Σ.

The values Aj,`, j = 1, . . . ,M1, ` = 0, . . . , nj , and A∗j,`, j = M1+1, . . . ,M , ` = 0, . . . , nj−1,
are solutions of this system. In general we have N −M2 values Aj,`, A∗j,`.

Step 3. We recover the frequencies λj via (5.8) for all j = 1, . . . ,M . For the non-P -
periodic function y(1), we find coefficients γj,m, j = 1, . . . ,M1, m = 0, . . . , nj , by using
formula (5.11) with values Aj,`, j = 1, . . . ,M1, ` = 0, . . . , nj .

Step 4. We compute the coefficients γj,m, j = M1 + 1, . . . ,M , m = 0, . . . , nj , by solving
the linear system (5.22) by using values A∗j,`, j = M1 + 1, . . . ,M , ` = 0, . . . , nj − 1,
and the vector c̆Σ = (c̆k(y))k∈Σ, with c̆k(y) in (5.21), which can be determined using

ck(y(1)) =
M1∑
j=1

nj∑̀
=0

Aj,`
(k−Cj)`+1 for k ∈ Σ.

When the exponential sum contains a proper P -periodic part, the corresponding com-
ponent −iλjP does not appear as a pole because in this case nj = 0. Therefore, we apply
a technique similar to the one that we used in Section 4.2 in order to detect the corre-
sponding frequency λj , namely we compere the Fourier coefficients and the values of the
rational function constructed by Algorithm 3.1. The coefficient γj can be found then via
(4.7).

Example 5.9. We consider the extended exponential sum

y4(t) :=
(
3.46− 0.5i + (−1.6 + 7.3i)t− 2.4t2

)
e2π·(−0.1−0.73i)t

+ (−3.8− 1.999i + (−0.2− 0.4i)t) e2π·(0.05−
√

10.11i)t

+
(
−7.33 + 7.033i + 3.89t+ (2.48− 0.45i)t2 + (−5.3 + 0.01i)t3

)
e2π·1.5it, (5.23)
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see Figure 4, i.e., y4 is of the form (5.1) with N = 9 and with parameters

n = (n1, n2, n3) = (2, 1, 3), λ = (λ1, λ2, λ3) = (−0.1− 0.73i, 0.05−
√

10.11i, 1.5i),
γ1 = (γ1,0, γ1,1, γ1,2) = (3.46− 0.5i,−1.6 + 7.3i,−2.4),
γ2 = (γ2,0, γ2,1) = (−3.8− 1.999i,−0.2− 0.4i),
γ3 = (γ3,0, γ3,1, γ3,2, γ3,3) = (−7.33 + 7.033i, 3.89, 2.48− 0.45i,−5.3 + 0.01i).

To reconstruct y4, we take P = 8 and employ 95 Fourier coefficients ck(y4), k =

Figure 4: Graph of Re y4 (left) and of |y4| (right) for y4(t) in (5.23) on [0, 8].

−47, . . . , 47. For P = 8, the function y4 contains two extended non-P -periodic terms,

y
(1)
4 (t) =

(
3.46− 0.5i + (−1.6 + 7.3i)t− 2.4t2

)
e2π·(−0.1−0.73i)t

+ (−3.8− 1.999i + (−0.2− 0.4i)t) e2π·(0.05−
√

10.11i)t,

and one extended P -periodic term with n3 = 3,

y
(2)
4 (t) =

(
−7.33 + 7.033i + 3.89t+ (2.48− 0.45i)t2 + (−5.3 + 0.01i)t3

)
e2π·1.5it.

Algorithm 3.1 iteratively uses the values c12(y4), c11(y4), c13(y4), c−25(y4), c−26(y4),
c−6(y4), c−5(y4), c−7(y4), c15(y4) and c27(y4) for interpolation (in this order) before it
stops with the error 3.35 · 10−13 after 9 iteration steps. The first component of w ∈ C10

vanishes showing that c12(y4) is not interpolated by the obtained rational function. Indeed
for the frequency λ3 = 1.5i we have −iλ3P = 12. Therefore the coefficient c12(y4) contains
information about the P -periodic part y(2)

4 of y4. After omitting this first term in w and
in the corresponding index in the vector S, we obtain the rational function r9(z) of type
(8, 9) in the barycentric form (3.5) with

S =



11
13
−25
−26
−6
−5
−7
15
27


, w =



−0.001735068914586− 0.005755006114429i
−0.003788627020742− 0.013231843260615i
−0.005033054805759 + 0.000686121267669i
−0.006507095079179− 0.001885228349247i
0.008318151814712− 0.007345769247111i
0.010826619319887− 0.012212232030143i
0.027770232215522 + 0.003108429826714i
0.057427797470378 + 0.209382506645587i
−0.222536073428981− 0.949668937525004i


.
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We compute the vector C of poles, the number M of pairwise distinct poles, the vector n
of multiplicities of poles and the parameters Aj,` for ` = 0, . . . , nj , j = 1, . . . ,M1, A∗j,` for
` = 0, . . . , nj − 1, j = M1 + 1, . . . ,M , as it is explained in Steps 2 and 3 above. We obtain
the poles of r9(z)

C =



−25.436980930912810− 0.400000242723915i
−25.436980974957748− 0.399999757275449i
12.000005193419646− 0.000047024733537i
11.999956677814936 + 0.000019014605692i
12.000038128765494 + 0.000028010127754i
−5.840164248641018 + 0.799937410836133i
−5.839863721435004 + 0.799889033201780i
−5.839972029901213 + 0.800173555965108i


.

We assume that two poles Cj1 and Cj2 , j1 6= j2 are equal if |Cj1 − Cj2 | < 0.001 holds,
and find M = 3 different poles: C1 = −5.839999999992412 + 0.800000000001007i with
multiplicity n1 = 3, C2 = −25.436980952935279 − 0.399999999999682i with multiplicity
n2 = 2, and C3 = 12.000000000000027 − 0.000000000000030ii with multiplicity n3 = 4.
The poles C1 and C2 corresponds to the non-8-periodic part of the exponential sum y4,
therefore they appear in C with multiplicities n1 + 1 and n2 + 1 respectively. The pole
C3 corresponds to the 8-periodic part of y4 therefore it comes with multiplicity n3. To
determine the values for the poles C1, C2 and C3 we have taken the average values. Finally,
we reconstruct λj , j = 1, 2, 3, and γj,`, j = 1, 2, ` = 0, . . . , nj , as described in Step 3 and
γ3,`, ` = 0, . . . , n3, via Step 4 above. The reconstructed parameter vectors ñ and λ̃ read,
ñ = (2, 1, 3) and

λ̃
T =

−0.100000000000126− 0.729999999999052i
0.049999999999960− 3.179622619116910i
0.000000000000004 + 1.500000000000003i

 .
The recovery errors are

‖λ̃− λ‖∞ = 9.56 · 10−13, ‖γ̃− γ‖∞ = 3.11 · 10−10.

6 Conclusions

In Sections 4 and 5 we have considered the recovery of proper and extended exponential
sums. We have shown that sums of the form

y(t) =
M∑
j=1

( nj∑
m=0

γj,m t
m

)
eλjt, γj,nj 6= 0,

with
M∑
j=1

(1+nj) = N , γj,m ∈ C and pairwise distinct λj ∈ C can always be recovered from

at most 2N + 2 Fourier coefficients of a Fourier expansion on a finite interval. Numerical
stability of this procedure essentially depends on the numerical stability of the underlying
AAA algorithm for rational approximation of these Fourier coefficients. Observe that the
considered model also covers sums of the form

y0(t) =
n0∑
m=0

δm t
m +

M∑
j=1

( nj∑
m=0

γj,m t
m

)
eλjt,
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with δm ∈ C, where the polynomial term occurs for λ = 0. Obviously, λ0 = 0 ∈ i
P Z for

any P > 0, and we need to apply the procedure described in Section 5.3 for its recovery.
Our models also cover real signals of the form

y(t) =
M∑
j=1

γj cos(2παjt+ bj) (6.1)

with γj ∈ R \ {0}, αj ∈ R and bj ∈ [0, 2π) considered in [17]. The algorithms in [17] for
recovery of y(t) in (6.1) are also based on rational approximation of the Fourier coefficients,
but have essentially used the additional information that all parameters are real, and are
therefore different from the algorithms for the complex case considered here. Moreover,
because of a different representation of the rational function in form of partial fraction
decomposition the algorithm in [17] requires to use modified coefficients c̃k(f) = Re ck(f)+
i
k Im ck(f) instead of ck(f). Our approach can now be also applied to the recovery of

y(t) =
M∑
j=1

γj(t) cos(2παjt+ bj),

where γj(t) are polynomial of finite degree.
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