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Abstract

In this paper, we provide new approach to estimating the error of
reconstruction from Σ∆ quantized measurements for compressed sensing.
Our method is based on the restricted isometry property (RIP) of a certain
projection of the measurement matrix. The main application of our result
is the error analysis for partial random circulant matrices. This is the first
time such bounds are provided for a structured measurement matrix with
the fast multiplication property. Our results also recover the best-known
reconstruction error bounds for Gaussian and subgaussian measurement
matrix.

1 Introduction

1.1 Compressed sensing

Compressed sensing has drawn significant attention since the seminal works
by Candés, Romberg, Tao [6], and Donoho [10]. The theory of compressed
sensing is based on the observation that various cases of natural signals are
approximately sparse with respect to certain bases or frames. The basic idea is
to recover such signals from a small number of linear measurements. Hence the
problem turns into an undetermined linear system. Various criteria have been
proposed to determine whether such a system has a unique sparse solution. In
this paper we will work with the restricted isometry property (RIP), which has
been shown by Candés et al. [8] to guarantee uniqueness.

Definition 1. A matrix A ∈ Rm×N has the restricted isometry property (RIP)
of order s if there exists 0 < δ < 1 such that for all s-sparse vectors x ∈ CN ,
i.e., vectors that have at most s non-zero components,

(1− δ)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δ)∥x∥22.

The smallest such δ is called the RIP-constant of order s denoted by δs.

Finding the RIP-constant of a measurement matrix is in general an NP hard
problem [23]. That is why most papers work with random matrices.

Examples of random matrices known to have the RIP include subgaussian,
partial random circulant, and partial Fourier matrices. A subgaussian ma-
trix has independent random entries whose tail is dominated by a Gaussian
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(cf. Definition 3). Such matrices have been shown to have the RIP provided
m = Ω(s log(eN/s)) [18]. This order of the embedding dimension m is known to
be optimal. Examples of subgaussian matrices include Gaussian and Bernoulli
matrices. A partial random circulant matrix is the matrix representation of a de-
terministically subsampled random convolution. Such a matrix has been shown
to have the RIP provided m = Ω(s(log s)2(logN)2) [11]. A partial random
Fourier matrix consists of m rows of a discrete Fourier matrix drawn at random.
The RIP for such a matrix has been shown provided m = Ω(s log3 s logN)) [21].
These embedding dimensions are slightly worse than for subgaussian matrices,
but such structured matrices are preferred in many applications, e.g., because
of their reduced randomness and their fast multiplication properties.

1.2 Quantized compressed sensing

While the measurements in compressed sensing are usually not representable by
finite bits, we need to quantize these measurements such that the system can be
operated on computers. To quantize the measurements we seek to represent our
measurements by finite many symbols from a finite alphabet consisting of real
numbers. The extreme case of considering the set of only two elements {−1, 1}
is also called 1-bit quantization. The most intuitive method to quantize the
measurements is to map each of the measurements to the closest element from
the alphabet set. Since this method processes the quantization independently
for each measurement, it is also called memoryless scalar quantization (MSQ).

Most of the literature on MSQ quantization compressed sensing up to date
consider 1-bit quantization [5, 17, 19, 1], which bias down to considering only
the measurement signs. Jacques et al. [17] show for Gaussian measurements
or measurements drawn uniformly from the unit sphere, the worst case error
is bounded by O( s

m log mN
s ). Later, for Gaussian measurements, Gupta et al.

[14] demonstrate that one may tractably recover the support of the signal from
O(s log n) measurements. Plan et al. [19] show that one can again for Gaussian
measurements, reconstruct the direction of an s-sparse signal via convex opti-
mization, with accuracy O( s

m )
1
5 up to logarithmic factors with high probability.

Later Ai et al. [1] derive similar results for subgaussian measurements under
additional assumptions on the size of the signal entries.

However in [17] it is shown that the reconstruction ℓ2-error can never be
better than Ω( s

m ). To break this bottleneck of MSQ, Σ∆ quantization for
compressed sensing has drawn attention recently. Σ∆ quantizes a vector as a
whole rather than the components individually, i.e., the quantized values depend
on previous quantization steps. Güntürk et al. [13] show that for rth order Σ∆
quantization in Gaussian compressed sensing case, the ℓ2-error is bounded by
O(( s

m )α(r−
1
2 )) for any 0 < α < 1 with high probability. More recently, in [18],

this result has been generalized to subgaussian measurements. Indeed for r large
enough this breaks the MSQ bottleneck.

1.3 Contributions

The primary contribution of this paper is that the restricted isometry prop-
erty (RIP) is applied to estimate the error bound for Σ∆ quantized compressed
sensing. That is, once we know the RIP-constant of a modification of the mea-
surement matrix, we can estimate the reconstruction error.
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In the following results, we assume that the Σ∆ quantized measurements
with quantization alphabet Z = ∆Z are given to us. We refer the readers to
Section 2.2 for details on the quantization scheme employed. A special role is
played by the rth power finite difference matrix D; denoting the singular value
decomposition of D−r by D−r = UD−rSD−rV ∗

D−r , we obtain our main theorem
below.

Theorem 1. Given an s-sparse signal x ∈ RN , denoted by Φ ∈ Rm×N a
measurement matrix, and q the rth order Σ∆-quantized measurements of Φx
with step size ∆. Suppose Φ has the RIP such that the support set T can be
determined. Choose L as the Sobolev dual matrix of ΦT and reconstruct the

signal by x̂ = Lq (see Section 2.2.2 for details), if
√

1
ℓPℓV

∗
D−rΦ, ℓ ≤ m, has

RIP-constant δs ≤ δ, where Pℓ maps a vector to its first ℓ components. then the
reconstruction error is bounded above by

∥x− x̂∥2 ≤ ∆

2c2(r)
√
(1− δ)

(
m

ℓ
)−r+ 1

2 ,

where c2(r) > 0 is a constant depending only on r.

Note from Theorem 1, the smaller ℓ is the better the bound. However, ℓ has
to be large enough such that 1√

m
(PℓV

∗
D−rΦ) has the RIP-constant δs ≤ δ.

This result can be applied to obtain recovery guarantees for various com-
pressed sensing setting such as Gaussian, subgaussian and partial random cir-
culant measurements. We will show in later section that our result covers which
in [13] and [18]. Since the result of reconstruction bound on random circulant
matrix has not been proposed so far, we state it as the following.

Theorem 2. Given an s-sparse signal x ∈ RN , let Φx = PΩ(ξ ∗ x) ∈ Rm×N

be a partial random circulant matrix, where the ξi’s are independent mean-zero,
ρ-subgaussian random variables (see Definition 3) of variance one and q the rth
order Σ∆-quantization of Φx with step size ∆. If

m ≥ C1s log
2

1−2α s log
2

1−2α N,

where 0 ≤ α ≤ 1
2 , C1 depends only on ρ, and m large enough such that the

support set T is determined, choosing L as the Sobolev dual matrix of ΦT ,
reconstructing the signal by x̂ = Lq, then, with probability at least 0.99, the
reconstructed error is bounded by

∥x− x̂∥2 .ρ ∆(
m

s
)−α(r− 1

2 ),

the notation .ρ means less than or equal to up to a constant depending on ρ.

1.4 Organization

The following paper is organized as the following. We first introduce the back-
ground and previous results on Σ∆ quantization, suprema of chaos process, and
the restricted isometry property for partial random circulant matrices. Fur-
ther we present our main result in Section 3, where we show how the RIP is
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used to estimate reconstruction error for quantized compressed sensing. In Sec-
tion 4, we show that our result can cover the best-known bounds for Gausssian
and subgaussian measurement matrices. In the last section, we apply our re-
sult on partial random circulant measurement matrices. This is the first time
such bounds are provided for a structured measurement matrix with the fast
multiplication property.

2 Background and previous results

2.1 Notations

Through out this paper we use the following notations. The set Ds,N = {x ∈
C|∥x∥2 ≤ 1, ∥x∥0 ≤ s} is the set of unit norm s-sparse vectors. ℓ0-norm ∥ · ∥0
counts the number of non-zero components of a vector. Denote the Frobenius
norm by ∥A∥F =

√
trA∗A, and ℓ2-operation norm ∥A∥2→2 = sup∥x∥2=1 ∥Ax∥2.

Based on last two norms dF (B) = supA∈B ∥A∥F , and d2→2(B) = supA∈B ∥A∥2→2.
We also assign orders to singular value of a matrix as σi(·) and σmin(·) indicat-
ing the ith largest and the smallest singular value of a matrix respectively. Also
denoted by &, ≥ up to a positive constant, while . means ≤ up to a positive
constant. Denoted by † the Moore-Penrose inversion operator.

2.2 Σ∆ Quantization

Σ∆ quantization is originally introduced as an efficient quantizer for redundant
representations of oversampled band-limited functions [16]. Later on the math-
ematical analysis is provided by [9, 12] and many follow-up papers, and further
the scheme has been extended to frame expansions [3].

Given an alphabet Z such that Z = ∆Z, the idea of rth order Σ∆ quantiza-
tion is to quantize each component of a vector taking the previous r quantization
steps into account. More explicitly, a greedy rth order Σ∆ quantization maps
a sequence of inputs (yj) to elements qi ∈ Z via an internal state variable ui,
explicitly

(∆ru)i =

r∑
j=0

( r
j

)
(−1)jui−j = yi − qi, (1)

where qi is chosen such that |ui| is minimized.
Setting initial conditions (ui)

−∞
i=0 = 0, then equation (1) can be expressed as

Dru = y − q,

where the finite difference matrix is given by

Dij ≡

 1 , if i = j,
−1 , if i = j + 1,
0 , otherwise.

(2)

2.2.1 Coarse recovery

Given an s-sparse signal x, and anm×N measurement matrix Φ, wherem ≪ N ,
we acquire measurements y = Φx. Applying rth order Σ∆ quantization to y,
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we have q. If treat q as perturbed measurements, i.e., q = y + e = Φx+ e, then
by [13], we can determine the support set. This is proved by a modified version
of Proposition 4.1 in [13] and Theorem 1 in [7], which says

Proposition 1. Given x ∈ RN an s-sparse signal, denote e a noise vector with
∥e∥2 ≤ ϵ, and let Φ ∈ RN×m be a measurement matrix. Reconstruct x from
q = Φx+ e via ℓ1 minimization we obtain x′, i.e.,

x̂ = argmin ∥z∥1 subject to ∥Φz − q∥2 ≤ ϵ.

If 1√
m
Φ has RIP-constants such that δ3s + 3δ4s < 2, then ∥x − x̂∥2 ≤ K 1√

m
η,

and denote T the support set of x and s = |T |, and if minj∈T |xj | ≥ K2r−
1
2∆,

j ∈ T , for some positive constant K, then the largest s components of x′ is T .

Note the factor 1√
m

which makes 1√
m
Φ a unit-norm-columned matrix, while

in the compressed sensing literature, this is common to normalize the measure-
ment matrix such that it has unit-norm columns. However for quantization
compressed sensing, if the measurement size varies depending on the scale 1√

m
,

then to analysis the reconstruction error it is not justified to use a fix step size
∆. To fairly compare the error while we let m grow, we should leave our mea-
surement entries independent of m, therefore, in this paper the measurement
matrices are not normalized, and instead, for convenience we set each entry of
the measurement matrices to have variance one.

2.2.2 Σ∆ error estimate and Sobolev dual

According to the previous section, denote the support set of x by T , we solve x
by multiplying a left inverse of ΦT , say L. Then the reconstruction ℓ2-error is
given by

∥x− x̂∥2 = ∥Ly − Lq∥ = ∥L(y − q)∥2 = ∥L(Dru)∥2 ≤ ∥LDr∥2→2∥u∥2.

The Sobolev dual matrix Lsob,r, first introduced in [4], is a left inverse of ΦT

defined to minimize ∥LDr∥2→2, i.e.,

minL ∥LDr∥2→2 subject to LΦT = I.

The geometric intuition is that the frame is smoothly varying.
Using the explicit formula Lsob,rD

r = (D−rΦT )
†, we obtain the error bound

∥x− x̂∥2 ≤ ∥(D−rΦT )
†∥2→2∥u∥2 =

1

σmin(D−rΦT )
∥u∥2. (3)

Recall that ∥u∥2 ≤ 2−1∆
√
m, once we find a bound for σmin(D

−rΦT ) from
below we can bound ∥x− x̂∥2 from above.

A key ingredient to bound this singular value is the following result from
the study of Toeplitz matrices , which depends highly on Weyl’s inequality [15]
(see also for example in [13]).

Proposition 2. Let r be any positive integer and D be as in (2). There are
positive constants cs1(r) and cs2(r), independent of m, such that

cs1(r)(
m

j
)r ≤ σj(D

−r) ≤ cs2(r)(
m

j
)r, j = 1, . . . ,m. (4)
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2.3 Suprema of chaos process

Based on [11], in this section we will see one of the most important tools for our
main result, which is Theorem 3.

Definition 2. For a metric space (T, d), an admissible sequence of T is a col-
lection of subsets of T , {Tr : r ≥ 1}, |Tr| ≤ 22

r

and |T0| = 1, define γ2 function
introduced by Talagrand [22] as

γ2(T, d) = inf
Tr

sup
t∈T

∞∑
r=0

2r/2d(t, Tr),

γ2 function can be bounded by a Dudley integral [22]. More specificaly, the
γ2 function used in the following theorem is bounded by

γ2(B, ∥ · ∥2→2) .
∫ d2→2(B)

0

log1/2 N(B, ∥ · ∥2→2, u)du,

where N(B, ∥ · ∥2→2, u) is the covering number of B with respect to the norm
∥ · ∥2→2 and the radius u.

A key ingredient for out main result will be the following theorem.

Theorem 3. [11] Let B be a set of matrices, and let ξ be a random vector whose
entries are independent, mean zero, variance one, and ρ-subgaussian random
variables (see Definition 3). Then

P(CB ≥ c1E + t) ≤ 2 exp(−c2 min{ t2

V 2
,
t

U
}), (5)

where c1, c2 > 0 are constants depending on ρ,

CB := sup
A∈B

|∥Aξ∥22 − E∥Aξ∥22|,

E = γ2(B, ∥ · ∥2→2)(γ2(B, ∥ · ∥2→2) + dF (B)) + dF (B)d2→2(B),

where
V = d2→2(B)(γ2(B, ∥ · ∥2→2) + dF (B)),

and
U = d22→2(B).

2.4 The restricted isometry property for partial random
circulant matrices

In this section we will show the RIP for partial random matrices, which is
selected from [11].

The main ingredient to define a partial random circulant matrix is an ρ-
subgaussian random variable as below.

Definition 3. A random variable X is called ρ-subgaussian if P(|X| ≥ t) ≤
2 exp(−t2/2ρ2)
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Based on this definition we can define a partial random circulant matrix cor-
responding to the matrix representation of a subsampled random convolution.
Then the definition of a partial random circulant matrix is

Definition 4. Given a random vector ξ = (ξi)
N
i=1, where the ξi’s are inde-

pendent mean-zero, ρ-subgaussian random variables of variance one. A partial
random circulant matrix Φm,N , generated by ξ is defined via

Φm,Nx = PΩ(ξ ∗ x),

where PΩ is a deterministic projection to m components of a vector.

[11] states the RIP for partial random circulant matrix 1√
m
Φ as below.

Theorem 4. Let ξ = (ξj)
N
j=1 be a random vector with independent mean-zero,

variance one, ρ-subgaussian entries. If for s ≤ N and η, δ ∈ (0, 1),

m ≥ cδ−2smax{(log s)2(logN)2, log(η−1)}, (6)

then with probability at least 1 − η, the RIP-constant of the partial random
circulant matrix Φ ∈ Rm×N generated by ξ satisfies δs ≤ δ. The constant c
depends only on ρ.

3 RIP-based error analysis

In this section we will give the quantized compressed sensing problem a math-
ematical model, and explain how we approach the reconstruction error via the
restricted isometry property. In the next two sections we show its applications.
From Section 2.2.2, the main issue to estimate the reconstruction error is to esti-
mate σmin(D

−rΦT ). Comparing to σmin(D
−rΦ), since the domain is restricted,

σmin(D
−rΦT ) ≥ σmin(D

−rΦ). The intuition is to find a suprema of the effec-
tive smallest singular value of σmin(D

−rΦ) while the domain is restricted on
Ds,N . This restriction motivates the concept of RIP. In the following proof we
show how RIP can be applied to find this effective smallest singular value.

Proof of Theorem 1. Recall that D−r = UD−rSD−rV ∗
D−r . Then, as s is a diag-

onal matrix,

σmin(D
−rΦT ) = σmin(SD−rV ∗

D−rΦT )

≥ σmin(PℓSD−rV ∗
D−rΦT )

= σmin((PℓSD−rP ∗
ℓ )(PℓV

∗
D−rΦT )ℓ×s)

≥ sℓσmin(PℓV
∗
D−rΦT )ℓ×s,

Next we need to bound σmin(PℓV
∗
D−rΦT ) uniformly over all support set T .

If 1√
ℓ
PℓV

∗
D−rΦ RIP-constant δs ≤ δ then σmin(PℓV

∗
D−rΦT )ℓ×s is uniformly

bounded from below by √
ℓ
√
1− δ. (7)

The theorem follows by applying (3), (4), (7) as

1

σmin(D−rΦT )
∥u∥2 ≤ ∆

2c2(r)
√
(1− δ)

(
m

ℓ
)−r+ 1

2 (8)
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4 Gaussian and subgaussian matrices

Given Φ a standard Gaussian random matrix. Since (PℓV
∗
D−rΦ) is also a stan-

dard Gaussian random matrix due to rotation invariance, with ℓ = Ω(s logN),
1√
ℓ
(PℓV

∗
D−rΦ) has the RIP-constant δs < δ with high probability [20]. Since

s ≤ ℓ ≤ m,
m

ℓ
≤ (

m

s
)α, α ∈ (0, 1).

Provided that ℓ = Ω(s logN),

m

ℓ
. (

m

s
)α

⇒ m

s logN
. (

m

s
)α

⇒m & s(logN)
1

α−1 .

Apply Theorem 1 directly, we obtain

∥x− x̂∥2 . ∆(
m

s
)−α(r− 1

2 ),

with high probability. This therefore recovers the result in [13].
By similar steps, this can also be generalized to subgaussian measurement

matrices, which recovering the result in [2]. As this argument involves some
additional technical steps, we refrain from presenting the details here.

5 Partial random circulant matrices

In this section we apply our main theorem, Theorem 1, on partial random
circulant matrices to obtain Theorem 2. To prove Theorem 2 we need the
following lemma.

Lemma 1. Let ξ ∈ RN be a random vector with independent mean-zero, vari-
ance one, ρ-subgaussian entries, and denote by Φ ∈ Rm×n a partial random
circulant matrix generated by ξ. If ℓ ≤ m satisfies

ℓ ≥ C
√
sm(log s)(logN),

where C is a constant depending only on ρ, then, with probability at least 0.99,√
1
ℓPℓV

∗
D−1Φ has the restricted isometry property with constant δs ≤ 0.1.

Proof. The proof of this lemma is based on Theorem 3

Define B = {
√

1
ℓPℓV

∗
D−rVx : x ∈ Ds,N}, then

δs(

√
1

ℓ
PℓV

∗
D−1Φ) = sup

x∈Ds,N

|∥
√

1

ℓ
PℓV

∗
D−rVxξ∥22 − E∥

√
1

ℓ
PℓV

∗
D−rVxξ∥22|

= sup
x∈Ds,N

|∥
√

1

ℓ
PℓV

∗
D−rVxξ∥22 − E∥x∥22|

= sup
A∈B

|∥Aξ∥22 − E∥Aξ∥22|

= CB,
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since for A ∈ B

E∥Aξ∥22 = Eξ∗A∗Aξ = ∥A∥2F = ∥
√

1

ℓ
PℓV

∗
D−rVx∥2F = ∥

√
1

ℓ
PℓVx∥2F = ∥x∥22.

Estimating the terms in Theorem 3 using the definition of B and the corre-
sponding bounds for A = { 1√

m
Vx : x ∈ Ds,N} derived in [11], we obtain

dF (B) =
√

1

ℓ

√
mdF (A) ≤

√
m

ℓ
,

and

d2→2(B) =
√

m

ℓ
d2→2(A) ≤

√
s

ℓ
.

To estimate γ2(B, ∥ · ∥2→2), we need to estimate the covering numbers of
the set B with respect to the norm ℓ−1/2∥ · ∥∞̂, while the norm used in the
estimation of γ2(A, ∥ ·∥2→2) in [11] is m−1/2∥ ·∥∞̂. Paralleling to the arguments
to

γ2(A, ∥ · ∥2→2) .
√

s

m
(log s)(logN),

we obtain

γ2(B, ∥ · ∥2→2) .
√

s

ℓ
(log s)(logN).

Suppose ℓ ≥ 3c1
√
sm(log s)(logN), where c1 is the same as in Theorem 3,

and assume t = δ
2 then by definition of E

c1E+
δ

2
≤ c1{

√
s

ℓ
(log s)(logN)[

√
s

ℓ
(log s)(logN)+

√
m

ℓ
] +

√
m

ℓ

√
s

ℓ
}+ δ

2
≤ δ,

(9)
Further by definition of V and U , one has for C large enough

2 exp(−c2
t2

V 2
) ≤ 2 exp(−c2(

δ
2√

s
ℓ [
√

s
ℓ (log s)(logN) +

√
m
ℓ ]

)2) ≤ 0.01 (10)

and

2 exp(−c2
t

U
) ≤ 2 exp(−c2(

δ/2

s/ℓ
)) ≤ 0.01. (11)

Combining equation (10) and (11), we obtain

2 exp(−c2 min{ t2

V 2
,
t

U
}) ≤ 0, 01. (12)

Setting δ = 0.1, we obtain from equation (5) that

P (δs ≥ 0.1) ≤ 0.01.

This proves the lemma.
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Proof of Theorem 2. To determine the support set of s-sparse signal x, we need
from Theorem 4 that

m & s log2 s log2 N. (13)

Now choose δ = 0.1, and ℓ & C
√
sm(log s)(logN), where C is as in Lemma

1, combining Lemma 1 and Theorem 1. We obtain that the reconstruction error
is bounded by

∥x− x̂∥2 . ∆(
m

ℓ
)−r+ 1

2

≈ ∆(
m√

sm(log s)(logN)
)−r+ 1

2

. ∆((
m

s
))−α(r− 1

2 ),

This follows from the fact that (m/s)
1−2α

2 & log s logN . This inequality only
holds for 1−2α

2 ≥ 0, and thus α ≤ 1
2 . Together with equation (13), we obtain

that 0 ≤ α ≤ 1
2 This concludes the proof.
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[12] C Sinan Güntürk. One-bit sigma-delta quantization with exponential ac-
curacy. Communications on Pure and Applied Mathematics, 56(11):1608–
1630, 2003.
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