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Ambiguities in one-dimensional phase retrieval of structured functions
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Phase retrieval means that we wish to recover a complex-valued signal (discrete or continuous) from the magnitudes of
its Fourier transform. Here we restrict ourselves to the recovery of structured functions, e.g. linear spline functions with
equidistant knots. First, a complete characterization of the occurring ambiguities is presented. Moreover, we investigate
additionally given moduli of the signal itself regarding their ability to reduce the set of ambiguities.
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1 Introduction

The phase retrieval problem appears in a wide range of applications in physics, e.g. in crystallography, electron microscopy,
astronomy, and optics. Here we wish to recover an unknown structured function f of the form

f(t) :=
∑
n∈Z

c[n]φ(t− n) (1)

from its Fourier intensities | f̂ | given by∣∣∣ f̂(ω) ∣∣∣ = ∣∣∣∣∫ ∞
−∞

f(t) eiωt dt

∣∣∣∣, (2)

where φ is an a priori given generator function in C0 ∩ L1 not equal to zero, and where (c[n])n∈Z is the complex-valued
sequence with finite support. If we choose the centred linear B-spline φ(t) := (1− |t |)χ[−1,1](t) as generator function, then
the unknown function f is a linear spline function. This specific phase retrieval problem was introduced in [1, 2]. Obviously,
the considered phase retrieval problem is not uniquely solvable. For example, we can construct further solutions simply by
rotating (multiplying a unimodular constant), shifting, or reflecting and conjugating a given solution. Moreover, besides these
trivial ambiguities, there exist further non-trivial ambiguities.

2 Phase retrieval of discrete-time signals

In order to characterize all ambiguities – trivial and non-trivial – of the phase retrieval problem to recover a structured
function, we can use our findings in [3], where we consider the problem to reconstruct an unknown complex-valued sig-
nal x := (x[n])n∈Z with finite support from its discrete-time Fourier intensities | x̂ | given by | x̂(ω) | = |

∑
n∈Z x[n] e

−iωn |.
Denoting the support length of the signal x by N , we introduce the autocorrelation signal and the corresponding autocorrela-
tion polynomial defined by

a[n] :=
∑
k∈Z

x[k]x[k + n] and P (z) := zN−1
N−1∑

n=−N+1

a[n] zn (3)

respectively, where (a[n])n∈Z is known from | x̂(ω) |2 =
∑
n∈Z a[n] e

−iωn. Now, we can characterize all ambiguities in the
following manner, cf. [3, Theorem 2.4].

Theorem 2.1 Let x be a discrete-time signal with finite support lengthN . Then the Fourier transform of each discrete-time
signal y satisfying | ŷ | = | x̂ | can be written in the form

ŷ(ω) = ei(α+ωn0)

√√√√|a[N − 1] |
N−1∏
j=1

|βj |−1 ·
N−1∏
j=1

(
e−iω − βj

)
where α ∈ [−π, π), n0 ∈ Z, and βj is chosen from the zero pairs (γj , γ

−1
j ) of the autocorrelation polynomial P .
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654 Section 21: Mathematical image processing

There have been many different approaches, such as additional interference measurements [4, 5], to enforce uniqueness of
the solution or to reduce the set of non-trivial solutions of the one-dimensional phase retrieval problem for real-valued discrete-
time signals. Using Theorem 2.1, we can now examine the quality of these approaches also for the recovery of complex-valued
discrete-time signals, see [3]. In some applications, besides the moduli of the Fourier transform, the moduli of the unknown
complex-valued signal itself are known. With these additional constraints, the set of non-trivial ambiguities is almost always
reduced to one unique solution up to trivial ambiguities caused by rotations, see [3, Section 3.4]. More precisely, we have the
following result.

Theorem 2.2 Almost every signal x can be uniquely recovered from its Fourier intensities | x̂ | and the moduli |x | of the
signal itself up to rotations.

3 Phase retrieval of structured functions

Now, we want to apply the result in Theorem 2.1 on discrete-time signals in order to characterize all ambiguities in the
recovery of a structured function f of the form (1) from its Fourier intensities.

Corollary 3.1 Let f be a structured function (1) with finite support length N of the corresponding coefficients sequence
(c[n])n∈Z. Then the Fourier transform of each structured function g satisfying | ĝ | = | f̂ | can be written in the form

ĝ(ω) = ei(α+ωn0) φ̂(ω)

√√√√|a[N − 1] |
N−1∏
j=1

|βj |−1 ·
N−1∏
j=1

(
e−iω − βj

)
where α ∈ [−π, π), n0 ∈ Z, and βj is chosen from the zero pairs (γj , γ

−1
j ) of the autocorrelation polynomial P in (3) with

the autocorrelation sequence (a[n])n∈Z determined by
∑
n∈Z a[n] e

−iωn = | f̂(ω)/φ̂(ω) |2 whenever φ̂(ω) 6= 0.

P r o o f. Let g defined by g(t) :=
∑
n∈Z b[n]φ(t − n) be a structured function with the same Fourier intensities as f .

Hence, the squared Fourier intensities of the structured function f and g have to fulfil the equation∣∣∣ f̂(ω) ∣∣∣2 =
∣∣∣ φ̂(ω)∣∣∣2 ∣∣∣∣∣∑

n∈Z

c[n] e−iωn

∣∣∣∣∣
2

=
∣∣∣ φ̂(ω) ∣∣∣2 ∣∣∣∣∣∑

n∈Z

b[n] e−iωn

∣∣∣∣∣
2

= | ĝ(ω) |2 .

Since the squared discrete-time Fourier intensities of the coefficients sequences c := (c[n])n∈Z and b := (b[n])n∈Z are
non-negative trigonometric polynomials (the sequences have only a finite support), and since φ̂ is continuous and not zero
everywhere, the squared Fourier intensities of the signals c and b can be completely determined by the intensities | f̂ | or | ĝ |.

Therefore, the phase retrieval problem for the structured function f can be reduced to the phase retrieval problem to recover
the coefficients sequence (c[n])n∈Z from the corresponding discrete-time Fourier intensities. Thus, the occurring ambiguities
in the recovery of the coefficients sequence with finite support are characterized by Theorem 2.1.

Finally, we are interested in reducing the ambiguities of the phase retrieval problem for structured functions. Because of
the close relation to the phase retrieval problem for discrete-time signals, the ideas in [3] to employ additional interference
measurements for ambiguity reduction can be simply transferred. For Theorem 2.2, however, we need further appropriate side
conditions. More precisely, we assume that the generator function φ is a Lagrange function, i.e. φ(n) = δ(n) for all n ∈ Z,
cf. [6].

Corollary 3.2 Let φ be a Lagrange function. Then almost every structured function f can be uniquely recovered from its
Fourier intensities | f̂ | and the moduli |f(n) | for n ∈ Z up to rotations.

P r o o f. With the identity |f(n) | = |c[n] |, the considered problem can be reduced to the recovery of the coefficients
sequence c = (c[n])n∈Z from the Fourier intensities | ĉ | and the moduli |c |. Now, the application of Theorem 2.2 yields the
assumption.
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