APPROXIMATION OF THE CLASSES H 3 OF PERIODIC FUNCTIONS
OF MANY VARIABLES IN THE SPACE L,
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UDC 517.5

We establish upper estimates for the approximation of the classes H;? of periodic functions of many
variables by polynomials constructed by using the system obtained as the tensor product of the systems
of functions of one variable. These results are then used to establish the exact-order estimates of the or-
thoprojective widths for the classes H. ;,7 in the space L, with p € {1, 00}.

1. Introduction

In the present paper, we study the problems of approximation of periodic functions of many variables from
the classes HZ? by polynomials constructed by using the system of functions obtained as the tensor product of

i(k,x

systems of functions of one variable. The trigonometric system {e )}kezd is a classical example of a system

of this kind:
d
et — H kit x = (x1,...,1q),
Jj=1

where Z? is an integer-valued d-dimensional lattice.
The Haar system {H;(x)}:

d
Hi(x)=[[Hy(zj), T=TLx..xI; x=(x1,...,34),
j=1

where I; stands for the double integral, which is the support of the Haar function Hj, (t), t € R, is another
important example.

For a more detailed statement of the problem, we present necessary notation and definitions.

Let RY, d > 1, be a d-dimensional Euclidean space with elements x = (z1,...,24), ¥ = (y1,--.,%d),
(x,y) = 21y1 + ... + xqyq, and let L,(7q), 7q = Hil[O, 27], be a space of functions f(x) = f(x1,...,2q)
2m-periodic in each variable and summable to the powg:r p, 1 < p < oo (and essentially bounded for p = o0)
in the cube 74 whose norm is defined as follows:

1/p
1l = Il = [ 2m) / FePax| . 1<p<o,
T

[ oo may = Iflloo = esssup [ f(x)].
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In the present paper, we consider only functions f € L,(mq) satisfying the condition
2

/f(x)d:z:j =0, j7=1,d

0

For simplicity, instead of L,(mq), we write L.
For f € L, and h R?, we define a mixed difference of order [ by the formula

ALF(x) = AL, (- (A, F()) ),

where

l
AL F) =Y (=D CP f(w, w1, g+ nhy T, Ta)

n=0

For fe Lyand t = (t1,...,t4), t; >0, j = 1, d, we define a mixed modulus of smoothness of order I € N by
the formula

U= s ALl
|hjl<t;.j=1.d
Let Q(t) = Q(¢1,...,tq) be a function of the type of mixed modulus of smoothness of order /, i.e., a function

defined on R% = {t e R%: t; >0, j = 1,d} and satisfying the following conditions:
. . P d
(i) Qt)>0,t>0,j=1,d,and Qt) =0, szl ti=0;

(i) Q(t) does not decrease in each variable ¢t; > 0, j = 1, d, for all values of the other variables t;, i # j;

l
d
(iii) Q(maty,... ,mdtd) < (Hjl mj> Q(t), m; €N, j=1,d;

(iv) €Q(t) is continuous for ¢; > 0, j = 1,d.
The set of these functions 2 is denoted by ¥;.

For a given function 2 € ¥;, we define a class of functions (see, e.g., [1])

HY ={f €Ly U(f,t), <Qt)}.

d .
Note that, in the case where r = (r,...,7¢), 0 <7; <[, j =1,d, and Q(t) = H . t;], the classes Hé}
]:
coincide with the well-known Nikol’skii classes H,, [2]. We also assume that {2 belongs to the sets S and S;.
We say that a function of one variable ¢ belongs to S%, « > 0, if the function p(7)/7% almost increases,
i.e., there exists a constant C; > 0 independent of 7; and 72 such that

0<m <mo.

A function ¢ belongs to S; if there exists -y, 0 < v < [, such that the function ¢(7)/77 is almost decreasing,
i.e., there exists a constant Co > 0 independent of 7, and 7o such that

o(71) C ©o(12)
T 7o



The conditions under which a function belongs to the sets S“ and S; are called the Bari—Stechkin condi-
tions [3].

Assume that {2 belongs to S* (respectively, €2 belongs to S;) if Q(t1,...,tq), as a function of the variable ¢,
j = 1,d, for all values of the other variables ¢;, i # j, belongs to the set S (respectively, to the set ).

Denote ®,; = ¥; N S*N 5.

Further, assume that, for two nonnegative quantities A and B, the relation A =< B means that there are
constants C3, C4 > 0 such that C34 < B < C4A. The relations A < B or A > B mean that C5A < B
and B < CgA, C5,Cg > 0, respectively. The constants C;, ¢ = 1,2, ..., used in the present paper may depend
only on the parameters from the definitions of a class and of a metric in which the accuracy of approximation is
estimated, as well as on the dimension of the space R¢.

By Vio(z), m € N, x € R, we denote the de-la-Vallée-Poussin kernel

m 2m—1 o — k
Vm(:n):1+2Zcosk:x+2 ( )cosk‘z.
m
k=1 k=m+1

For a function f € L, and a vector s € 7%, we consider the polynomial

d
As(f) = £ [[(Vsyor = Visy2).
j=1

The following theorem on functions belonging to the class ;,) was proved in [1]:

Theorem A. Let a function ) belong to ®.;, o > 0. Then [ belongs to Hg, 1 < p < o0, if and only if
the following order inequality is true:

[As ()l < 2(27%), (1

where 275 = (2751, ..., 27%4),

For the construction of approximate aggregates, we now introduce some sets. For any NV € N, we denote

K(N)=k(2,N) = {s =(s1,...,8q4): 5 € N,Q(27°) > Zif}’ 2)
kEH(N) = {s: (51,---,54): 85 € N,Q(27%) Jb} (3)
O(N) = kH(N) \ kT (2'N). 4)

It follows from (3) and (4) that ©(N) C k- (N) and O(N) Nk (2!N) = g, ie.,

1 1
< —-S R
iy ST <y
or
Q@) = ~, seO(N) (5)
=< .



In [4], it is shown that the following relation is true:
[©(N)] = (logy ), (©)
where | M| is the number of elements in the set M.
To prove our main results, we need the following lemma:

Lemma A [4]. Let a function ) belong to ;N S%, « > 0. Then, for 0 < p < oo,

Yoo@eETyr< Yo (@)

s€xkL(N) SEO(N)

We define the operator F,, as an operator of convolution with the Bernoulli kernel,

o0
Fp(x):1+22kz—pcos<kx—p§>, zreR, p>0.
k=1

By F,(L,), we denote a set of functions defined in the form of the convolution of the Bernoulli kernel with some

function ¢ € Ly, ie.,
Fo(Lp) ={f € Lp: f=pxF, p €Ly}

Further, we define the classes of Sobolev functions W} considered in what follows,

Wy = 1 £@) = 5 [ Fole = yelw)dy. o € Lyl < 1

1

Consider a set of operators {Y;,}°° defined on F,(L,) with the properties:

A) [[(I = Yo)Fyllpsp < 27P7, n € Zy, where [ is the identity operator and |||, = [|T||z, L, is
the norm of the operator 1" from L,, into L,;

(B) for an arbitrary trigonometric polynomial ¢ of degree 2* and for some 3 > 0,

1Yatlly < 226 ell,, > .

We give several examples of the sets of operators satisfying the conditions (A) and (B).

I. Y, = Son is an operator that associates each function f € L; with a partial sum of the Fourier series
of degree 2". Then property (A) for 1 < p < oo follows from the known results of approximation
of functions from Sobolev classes by trigonometric polynomials of the corresponding degree (see, e.g.,

[5, p. 48]). By Theorem 1.1 in [5, p. 26], we can write
|S2n [[p—p < Cr(p), C7(p) >0, 1<p<oo.

Hence, for an arbitrary p € (1, 00), property (B) with 8 = 0 is true.



II. Y, = Ion is the operator of interpolation by trigonometric polynomials of degree 2" at the nodes
27l

2n+1 + 1’
1 1
true for 1 < p < oo for p > — and relation (B) is true for 1 < p < oo with § = —.
p D

1 =0,...,2"" It is known (see, e.g., [5, p. 86]) that, for these operators, relation (A) is

In examples I and II, the case 1 < p < oo is considered. We give one more example for cases p € {1, 00}.

II. Y, = Van is a de la Vallée-Poussin operator of order 2™. Property (A) for 1 < p < oo follows from

estimates for the best approximation of Sobolev classes (see, e.g., [5, p. 47]). Relation (B) is true for
1 <p<oofor B=0 (see,e.g.,[5, p. 28]).

We define the operator Ty, N € N, acting on a function of d variables as follows:

d
= J[0:-Yi )

s€r(N)i=1

where Yni is the operator Y,, acting on a function of the variable x;. Assume that Y_; = 0.

For the first time, operators of the form (7) were considered in [6]. For subsequent results concerning the inves-
tigation and use of operators of this type, see, e.g., [7-10]. In the case Y;, = San, the corresponding operators Ty
were studied in [5, 11, 12] (see also the references in these works).

2. Approximation of Functions from the Classes H z?

We formulate and prove the following statement:

Theorem 1. Let the operators Y,, n € Z,, satisfy conditions (A) and (B). Then, for any function f € Hgl7
1 < p < oo, where the function Q) € @, o > 3, and | < p, the error of its approximation by the operator Ty
given by relation (7) is estimated as follows:

1 _
If = Tnfllp < -5 (loga ).

N
Proof. For a fixed vector s = (s1,...,5sq), we define the operator A, acting from L,, into L), 1 < p < oo,
as follows:
d
Ac=[]Aw A =Y, -V, neN, Aj=Y
i=1
Further, we define the Bernoulli kernel F),(x), x = (z1,...,x4), by the relation
Fy(x) = H Fo(x;)
j=1
and
d
AF, =[] A.F,. )



Then properties (A) and (B) lead to the following relations for the operators {Ag}s>o [9]:
(A JAGF,|[posp < 277l

(B’) for an arbitrary trigonometric polynomial ¢ of degree 2¥¢ in the variable z;, i = 1, d, for some 3 > 0
we have

| Agt]l, < 25(|IVH1—|ISH1)||t||p, v >s.
Here and below, the inequalities a > b, where a = (aj,...,a4) and b = (by,...,by), mean that a; > b;,

i=1,d.
We show that, for each function f € HI?, 1 < p < o0, the following representation is true:

[= Z As(f)ﬂ ©

d
SEZY

where convergence is understood in the metric of the space L,,.
For d = 1, property (A) implies that H - Zn Agf
s=0

‘ — 0, n — oo, and, hence,
P

F=Y A (10)
s=0

We now show that this decomposition holds for d > 1. To this end, we estimate the quantity ||Af||, from
above. Since an arbitrary function f € L,, 1 < p < oo, can be represented in the form [13, p. 304]

F=Y_Adf), (11)

v>1

where, for f € Hz?’
[AV(H)ll, < Q(27Y),

according to the Minkowski inequality, we get

1Al <D IAAS)llp- (12)

v>1

We estimate || AsAv(f)]| p» 1 < p < oo. Let D, denote an operator defined on a set of trigonometric polyno-
mials that is inverse to the operator F),. It is clear that this is a generalization of the operator of differentiation to
the case of nonnatural p. Thus, we can write

HAsAv(f)”p - ”AstDpAv(f)Hp < HASFp”p—mHDpAv(f)Hp = .

By using property (A’) and the Bernstein inequality for trigonometric polynomials that, in terms of this notation,
has the form

1Dy Av(N)llp < 22 AL,



we extend the estimate for the quantity 77 :

Ty < 27 Plsligelvih 1AV ()l = 2—p(HSII1—HVH1)”Av(f)Hp (13)
On the other hand, by the property (B’), for v > s and some 3 > 0, we obtain

18AL(f)lp < 220 D=0 A, (£, (19

Thus, according to (13) and (14), in view of relation (1), we find
1864y (f)]], < min (Q—P(”S|1—||V||1)Q(2—V)7 2/6(||v||1—s||1>9<2—v>>.

Returning to (13), we can write

1As(H)]lp < Z 1AA ()< ZQ Pllisih=IVIn g 2-v) 4 Zzﬁ MI=lsIDQ2v) = 7.

v>1 v<s v>s

d
Since the function 2 belongs to S, « > 0, the function (27)/ H 27 almost increases in each variable.
],

Similarly, since the function 2 belongs to S;, the function Q(27V)/ H 277 0 < v < I, almost decreases

in each variable. Hence,

d

2—Oé’l)j

Q( Y)

_ =p(lIslli=IIvll1) Yo Blvlla—lisll) 2=/

Fo =320l WH2a+Zz 1=l ]
v<s H] 1 2 = v>s H] n 2 j=1

< %Q—pnsul S ol Q< — Bllsl ZQ &)llvll

Jj=1 j=1

For 5 < « and p > [, we obtain

;2(3|| “)2 Pl g(p—) sl Q;f;s)g—ﬂnsnlz(ﬁ—a)s||1 < Q(2%). (15)

Jo K

It follows from (12)—(15) that, for an arbitrary vector s € Zi, the order inequality
1Asfll, < Q(27°), 1<p<oo, (16)

is true. In turn, it leads to representation (9).
Further, by using this representation, the notation 7y f, and the Minkowski inequality, we obtain

< D 1AD - 17)

P sext(N)

If =Tnfllp =

S A - Y A

sEZi s€x(N)




By substituting (16) into (17), by Lemma A and relations (5) and (6), we obtain

If =Twfl, < Y Q2 < Z (2 Z 1= = log2N)d_1.

sekt(N) SEO(N se@
Thus, the theorem is proved.

Now let

d
t=w|]]t;] (18)
j=1

where w is a given function of one variable of the type of modulus of smoothness of order [ that belongs to the sets
S¢ and S;. It is clear that the function () thus defined belongs to the set @ ;.
Taking into account the special form of the function €2, we rewrite operators (7) in the form

= > H 1) (19)

[[sll1<m i=1

where m € N, according to (2)—(5), is determined from the relation

1
27 < —. 20
w2 < (20)
n [14], one more relationship between m and NV
logy N <m 2D

is established.
By using Theorem 1 and estimates (20) and (21), we arrive at the following statement:

Theorem 1. Let the conditions of Theorem 1 be satisfied and let the function Q) be defined by relation (18).
Then, for any function f € HZ?, 1 < p < o0, the error of its approximation by the operator T,, defined by
relation (19) is estimated as follows:

If = T flly < w(@™)ym L.

3. Estimates for the Orthoprojective Widths of the Classes H 1? in the Space L, for p € {1,000}

As a corollary of Theorem 1’ and known results, we establish the order of orthoprojective widths for the
classes H]?.
Recall that the orthoprojective width of a functional class ' C L, in the space L, is defined by the formula

dy(F, L) = inf sup

: (22)
{uwiizy fer

q

f- Z(f, w;)u;
=1




where infimum is taken over all orthonormal systems of functions {u;}3°; C Leo, i = 1, m. The width d;} (F, L)
was introduced by Temlyakov in [15].

Parallel with widths d;; (F, L,), we consider the quantities d2 (F, L,) also introduced by Temlyakov (see,
e.g., [16]) and defined by the formula

dB(F, L)) = inf sup [|f = Gfllq- *
( a) GeLm(B)qfeFﬂD(G)H I

Here, £,,,(B), denotes a set of linear operators GG satisfying the conditions:

(a) the domain of definition D(G) of these operators contains all trigonometric polynomials and their range
of values is contained in a subspace of dimension m of the space L ;

(b) there exists a number B > 1 such that, for all vectors k = (k1,. .., kq), the inequality
IGe' )], < B

is true.
Since the operators of orthogonal projection onto subspaces of dimension m belong to £,, (1), according to
the definition of the quantities d;;(F, L,) and dZ(F, L,), the following inequality is true:

dB(F, L)) < dL(F, L,). (24)

The results of investigation of the quantities (22) and (23) for various functional classes can be found, e.g.,
in [12, 17, 18] and in the monographs [5, 16].
The following statement is true:

Theorem 2. Let

where w is a function of one variable that belongs to the set ®o;, o > 0. Then, for p € {1, oo}, the following
order estimate is true:

o (Hy), Lp) < w(27H1971, (25)
1d-1,

where m = 2!

Proof. First, we find the upper bound for (25). To this end, we take an arbitrary basis {Pk}m:l with
the following properties:

(i) forany |k| > 1, Py(x) is a trigonometric polynomial of degree of at most |k

[}

(ii) forany k # 1 € Z\{0}, (Px,F;) =0 and (Py, P;) = 1;

2T
(i) Ly = max}/ dt < Cs, Cg >0, forany N € N;
0

z€[0,27

S hi POPL@)
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(iv) for any function f € L,, 1 < p < o0,

f_

< KEcy,n(f)p

p

N
> (£ Pu) Py

|k[=1

where K,Cy > 0 and Ej(f), is the best approximation of the function f by trigonometric polynomials

of degree of at most [ in the metric of

the space L.

For the examples of construction of these bases with the corresponding constants, see [19, 20].

We set

Y, f =

and show that this sequence of operators {Y;,}7°
First, we show that the operators Y,,, n €

> (f PP, n>0, (26)

k=1

2o satisfies the conditions (A) and (B).
7+, satisty the condition (B) with 8 = 0. Consider the case p = 1

(for p = oo, the proof is similar). Let ¢ be an arbitrary trigonometric polynomial. Then

2 gn
Yty = r) ! [ 3 (6 POP()] do
o |lkl=1
2 gn 2
— (2m)"! / S (2n) ! / H(y) Puly)dy Po(x) | do
o |lIkl=1 0
2 2 on
— (2m)"! / (2r) ! / 1) S Pely) Pula)dy| de
0 0 |k|=1
21 2
—1
<[] max S PP | 2 [ 1ty o
0 [k|=1 0
2
1 [ s, 5% oo - 5
0

k=1

By using property (iii), we complete the estimation of J3:

2w on

Js < [|t|li max
ye[0,27

J

Further, we show that the operators Y,
the estimates of the best approximation of fu

> Pu(y)Pe(x)| da = Lon|tll < ||t -
|k|=1

, n € Z4, satisfy condition (A) with arbitrary p > 0. By using
nctions from the Sobolev classes by trigonometric polynomials with



the corresponding spectrum (see [5, p. 47] ) and property (iv), we obtain

1T = Yo)Fpllp—p = sup [I(I = Ya)Fppll, = sup [|f = Yufllp

lellp<1 FEWE
271
= sup [If — Y (£ PPy < sup Ean(f), < 277"
fEW;; ‘k‘:l fEW;

We take m € N and choose [ = I(m) € N such that m = 2!/%!. By Theorem 1’, for any f € HI?,
p € {1, oo}, the estimate

If = Tufllp < w(2Hie!

is true. It follows from (26) that T;f is an operator of taking partial sums of the Fourier series in the system
{Pc}xj>1, where

Pi(x) = P, (21) - .. Pry(xq).

According to the definition of orthoprojective width, we have

Ah(HE Ly) < sup |If = Tif |, < w@ O, pe {100},
feHS

where m = 211471,
The lower bound in (25) follows from inequality (24) and the results obtained in [21].
The theorem is proved.

d . _
Remark 1. For Q(t) = H t' r;j > 0, 7 = 1,d, the statements similar to Theorems 1 and 2 were

j=19"
established in [9].

Remark 2. Theorem 2 complements the results obtained in [21, 22].
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