
Computation of adaptive Fourier series by
sparse approximation of exponential sums

Gerlind Plonka∗ Vlada Pototskaia†

3rd January 2018

Abstract. In this paper, we study the convergence of adaptive Fourier sums for
real-valued 2π-periodic functions. For this purpose, we approximate the sequence of
classical Fourier coefficients by a short exponential sum with a pre-defined number
of N +1 terms. The obtained approximation can be interpreted as an adaptive N -th
Fourier sum with respect to the orthogonal Takenaka-Malmquist basis. Using the
theoretical results on rational approximation in Hardy spaces and on the decay of
singular values of special infinite Hankel matrices, we show that adaptive Fourier
sums can converge essentially faster than the classical Fourier sums for a large class
of functions. Further, we derive a method to compute almost optimal adaptive
Fourier sums. We also present a much simpler greedy algorithm that possesses
similar convergence behavior as the classical Fourier sums. Our numerical results
show, that the significantly better convergence behavior of adaptive Fourier sums for
optimally chosen basis elements can also be achieved in practice.
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1 Introduction

In this paper, we want to study adaptive Fourier expansions of real-valued functions
f in L2(0, 2π]) using a generalized Fourier basis. In different papers, see e.g. [7, 18,
24, 25], generalized Fourier bases have been considered with particular applications
in signal processing and system identification, see [7, 12].

Before we can state the problem and our results in detail, we need to introduce
some notations. Let T be the unit circle in the complex domain, T := {z ∈ C : |z| =
1}. We identify T with the interval [0, 2π) using the map z = eit. Let L2([0, 2π))
be the space of square integrable 2π-periodic functions. The Fourier expansion of
f ∈ L2([0, 2π)) reads

f(t) =
∞∑

k=−∞
ck(f) eikt,

∗Institute for Numerical and Applied Mathematics, Göttingen University, Lotzestr. 16-18, 37083 Göttingen,
Germany. Email: plonka@math.uni-goettingen.de

†Institute for Numerical and Applied Mathematics, Göttingen University, Lotzestr. 16-18, 37083 Göttingen,
Germany. Email: v.pototskaia@math.uni-goettingen.de



2

where ck(f) := 1
2π

∫ 2π
0 f(t)e−iktdt denote the Fourier coefficients of f . Further, let

〈f, g〉L2 :=
1

2π

∫ 2π

0
f(t) g(t)dt (1.1)

be the inner product in L2([0, 2π)), and ‖ · ‖L2 denotes the corresponding norm. We
assume that f is real-valued, then c−k(f) = ck(f), and hence

f(t) = c0(f) +
∞∑
k=1

(
ck(f) eikt + ck(f) e−ikt

)
,

i.e., f(t) = 2Re f+(t), where

f+(t) :=
c0(f)

2
+

∞∑
k=1

ck(f) eikt =

∞∑
k=0

ck(f
+) eikt. (1.2)

Let H2 ⊂ L2([0, 2π)) be the Hardy space of all functions f in L2([0, 2π)) for
which all negative Fourier coefficients vanish, i.e., c−k(f) = 0 for k ∈ N. Obviously,
f+ ∈ H2. We introduce the generalized Fourier system, the so-called Takenaka-
Malmquist system,

B0 =

√
1− |z0|2

1− z0 eit
, B`(t) =

√
1− |z`|2

1− z` eit

`−1∏
k=0

eit − zk
1− zk eit

, ` = 1, 2, . . . . (1.3)

The function system {B`}∞`=0 is completely determined by the sequence of “zeros”
{z`}∞`=0 where we assume that |z`| ≤ c < 1 for all ` ≥ 0, see e.g. [27]. This function
system is an orthonormal system with respect to the inner product in (1.1), i.e., we
have 〈B`, Bk〉L2 = δ`,k with δ`,k being the Kronecker symbol. Moreover, this system
is complete in H2 if and only if

∑
`≥0(1−|z`|) =∞. For a proof we refer to [2], p. 244.

Note that for z` = 0, ` ≥ 0, we obtain the classical Fourier basis B`(t) = ei`t. The
expansion of f+ ∈ H2 in this orthogonal system reads f+(t) =

∑∞
k=0〈f+, Bk〉L2 Bk

with adaptive Fourier coefficients 〈f+, Bk〉L2 . Further, let

f+
N :=

N∑
k=0

〈f+, Bk〉L2 Bk (1.4)

denote the N -th adaptive partial Fourier sum. Bultheel and Carrette [7] have shown
that similarly as for the classical Fourier basis, the generalized Fourier coefficients of
a 2π-periodic function with continuous q-th derivative with q > 2 in the Takenaka-
Malmquist basis decay with at least rate N−q. In this case the approximation error
eN (f+) = ‖f+−f+

N‖∞ decays with rate N2−q. This result involves only the assump-
tion that z0 = 0 and |z`| ≤ c < 1.

In this paper we want to study the question, how well a given function f+ ∈
H2 can be approximated by its generalized partial Fourier sum f+

N if the zeros z`
determining the Takenaka-Malmquist system are taken in an (almost) optimal way.
Our considerations are inspired by the study of adaptive Fourier series in [24] on the
one hand and by our own results on approximation by exponential sums on the other
hand, [20,21].

Our approach relies on the following idea. For a given classical Fourier expansion
(1.2) of f+ ∈ H2 we try to approximate the sequence of Fourier coefficients c(f+) =
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(ck(f
+))∞k=0 by a sequence c̃ = c̃(N) = (c̃k)

∞
k=0 being a finite linear combination of

non-increasing exponentials, i.e.,

c̃k = c̃
(N)
k =

N∑
`=0

a`z
k
` , k ∈ N0, (1.5)

with coefficients ã` ∈ C and z̃` ∈ D0, where D0 := {z ∈ C : |z| < 1} denotes the
open unit disk. The goal is now to choose a` and z` such that ‖c(f+) − c̃‖2`2 :=∑∞

k=0 |ck(f+)− c̃k|2 < ε with ε as small es possible. Then

f̃+(t) :=
∞∑
k=0

c̃k eikt

satisfies ‖f+ − f̃‖2L2 < ε by Parseval identity.

Using the special representation (1.5) for c̃k we will show that f̃+ can be written
as an N -th adaptive partial Fourier sum

f̃+(t) =
N∑
`=0

b`B`(t)

in the Takenaka-Malmquist basis, where the basis elements {B`}N`=0 are determined
by the zeros z` in (1.5) and the coefficients b` can be obtained from a` in (1.5) by
a bijective linear map. Therefore, the problem to find an appropriate sequence of
zeros {z`} to determine the adaptive Fourier basis {B`}N`=0 can be reformulated as a
problem of sparse approximation with exponential sums:

For a given decaying sequence c(f+) we want to find a new sequence c̃(N) :=
(c̃k)

∞
k=0 of the form (1.5) such that ‖c(f+)− c̃(N)‖2`2 ≤ ε.

Practically, we have to solve the following problems. For a given accuracy level
ε > 0, find the smallest N ∈ N such that c̃(N) in (1.5) satisfies ‖c(f+)− c̃(N)‖`2 ≤ ε,
and compute z` ∈ D and a` ∈ C, ` = 0, . . . , N , determining c̃(N). Vice versa, for a
given “storage budget”, i.e., a given N ∈ N, find the parameters in (1.5) in order to
achieve the smallest possible error ‖c(f+)− c̃(N)‖2`2 .

Our paper has two goals. First, we want to study the following question. What
is the asymptotic error behavior of ‖f+ − f+

N‖L2 for N →∞ compared to the decay
of the classical Fourier sums that can be achieved? Second, we want to present a
new computational method to explicitly compute the adaptive partial Fourier sum
f+
N with a presumed small error ε such that N is as small as possible by employing

a (suitably large) finite number of classical Fourier coefficients (ck(f
+))Lk=0. This

algorithm particularly includes the computation of the zeros {z`}N`=0 needed to de-
termine the Takenaka-Malmquist basis for the adaptive partial Fourier sum f+

N . We
will also observe that optimal zeros z` will depend on the considered length of the
sum N .

We will apply the theory of Adamjan, Arov and Krein (AAK theory) [1] to solve
the problem of sparse approximation of the sequence of classical Fourier coefficients
by exponential sums. This theory is strongly related to the problem of rational
approximation of functions in Hardy spaces and has been studied also with respect
to its applications in signal processing and system identification, see e.g. [1,8,14,15,
17, 19, 29]. For earlier approaches on the application of the AAK theory in order to
solve sparse approximation problems using exponential sums we refer to [6] and [3].
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The AAK theory gives us a tool to relate the approximation error ‖c(f+)− c̃(N)‖`2
to singular values of special infinite Hankel matrices that are generated by the se-
quence c(f+). Using this relation, we will be able to estimate the decay of the error
‖f+ − f+

N‖L2 by inspecting the decay of the singular values of these infinite Hankel
matrices. At this point, we can use recent results by Pushnitski and Yafaev [23], who
derived sharp estimates for singular values of Hankel operators. Roughly speaking,
we can conclude that the decay O(N−1 logN)−α of the sequence c(f+) of classical
Fourier coefficients can lead to the decay O(N−α) for the error ‖f+ − f+

N‖L2 of the
N -th adaptive partial Fourier sum. Thus, under certain side conditions, we will show
that one can even achieve exponential decay of the error for the adaptive Fourier sum
while the classical Fourier sum may not even possesses quadratic decay, see Theorem
3.6.

In the second part of the paper, we present a new algorithm for solving the sparse
approximation problem (1.5). The procedure consists of two steps. In the first step
we employ a stabilized Prony method, like APM [22], to approximate c(f+) by a
sequence c̆ = (c̆k)

∞
k=0 of the form

c̆k :=

M∑
`=0

ă` z̆
k
`

with possibly large M where ă` ∈ C \ {0} and with pairwise different z̆` ∈ D :=
{z ∈ C : 0 < |z| < 1}. In a second step, we present our new algorithm to explicitly
compute the non-zero singular values of the infinite Hankel matrix generated by c̆.
The decay of these singular values will give us a criteria, how to choose the number
N such that a sequence c̃(N) in (1.5) built by an exponential sum of length N + 1
provides an error ‖c̆ − c̃‖2`2 being smaller than a predefined ε. Furthermore, our

algorithm will provide the zeros z` and coefficients a` to compute c̃(N) in (1.5).
We emphasize that the sequences c̃(N) in (1.5) obtained by our algorithm lead to

adaptive partial Fourier sums that are optimal in the sense of the AAK theory if the
sequence c(f+) of classical Fourier coefficients of f+ coincides with c̆ for some M .
This is the case if f+ is a rational function.

For comparison, we also provide a greedy algorithm that searches for appropriate
zeros z` for the Takenaka-Malmquist basis step by step. Here we apply a simple
adaption of Prony’s method for exponential sums of length 1.

Our numerical experiments impressively support our theoretical result that the
appropriate choice of zeros z` in the adaptive Fourier basis leads to a significantly
faster decay of the adaptive partial Fourier sums. In contrast, the simple greedy
approach leads to an error that is comparable to the error of the classical partial
Fourier sums.

This paper is organized as follows. In Section 2 we present a further basis {P`}∞`=0

such that {B`}N`=0 and {P`}N`=0 span the same subspaces for each N , and we describe
the corresponding basis transform. We prefer the basis {P`}∞`=0 in the theoretical
observation since it simplifies our representations. Section 3 is devoted to the study
of the decay of adaptive partial Fourier series that can be achieved. In Section 4 we

derive a method to compute (almost) optimal zeros z` = z
(N)
` , ` = 0, . . . , N , such

that the corresponding N -th adaptive partial Fourier sum f+
N satisfies a small prede-

termined error bound. In Section 5 we also present a much simpler greedy algorithm
to compute the zeros z` determining the Takenaka-Malmquist basis consecutively.
Finally, in Section 6 we present numerical results for the decay of Fourier sums for
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two different examples. In the first example, we consider the Fourier expansion of a
rational function, where our algorithm gives the optimal results according to AAK
theory. The second example considers a non-rational function. Our numerical results
impressively show that a good choice of zeros in the adaptive Fourier basis leads to a
significantly faster decay of adaptive partial Fourier sums compared to the classical
Fourier sums.

2 Adaptive Fourier bases

Preliminary, we want to present a different basis that is closely related to the
Takenaka-Malmquist basis and simplifies our representations using approximations
with exponential sums.

For a given vector of pairwise different values (z0, z1, . . . , zN ) with 0 < |z`| < 1 let

P`(t) :=
1

(1− z`eit)
, ` = 0, . . . , N. (2.1)

More generally, if 0 or multiple values occur in the vector (z0, . . . , zN ), let M` + 1
be the number of different values in (z0, . . . , z`) that are denoted by z̃0, . . . , z̃M`

. Let
Kj,` be the multiplicity of z̃j in (z0, . . . , z`) such that K0,`+K1,`+ . . .+KM`,` = `+1.
Further, let µ` be the multiplicity of 0 in the vector (z0, . . . , z`−1). If z` = z̃j , we
define P` by

P`(t) :=
eitµ`

(1− z̃jeit)Kj,`
. (2.2)

Theorem 2.1. The set of functions {B` : ` = 0, . . . , N} determined by (1.3) with
the zeros z0, z1, . . . zN in D0 spans the same subspace as {P` : ` = 0, . . . , N} given in
(2.1) and (2.2), respectively.

Proof. Let us first assume that z0, . . . , zN are pairwise different and nonzero. Then
the functions B`(t) in (1.3) can be written in the form

B`(t) =
√

1− |z`|2
∑̀
j=0

p`,j
1− zjeit

, ` = 0, . . . , N, (2.3)

where the coefficients p`,j are uniquely determined by employing a partial fraction
decomposition. More exactly, determining the functions

Λ`,j(t) :=

∏`
k=0(1− zkeit)
(1− zjeit)

j = 0, . . . , `,

we find from (1.3) and (2.3) that

∑̀
j=0

p`,jΛ`,j(t) =

`−1∏
k=0

(eit − zk), ` = 0, . . . , N,

and p`,j are uniquely determined by comparing the coefficients of the trigonometric
polynomials of degree ` with respect to the powers eitk, k = 0, . . . , `. In particular,
it follows that p`,` 6= 0. Thus, comparison with (2.1) yields

B`(t) =
√

1− |z`|2
∑̀
j=0

p`,j Pj(t), ` = 0, . . . , N. (2.4)
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The system (2.4) implies
(1− |z0|2)−1/2B0(t)

(1− |z1|2)−1/2B1(t)
...

(1− |zN |2)−1/2BN (t)

 =


p0,0 0 . . . 0

p1,0 p1,1
...

...
. . . 0

pN,0 . . . pN,N−1 pN,N




P0(t)
P1(t)

...
PN (t)

 ,

showing that the transform is invertible.
If the vector (z0, . . . , zN ) contains the value zj = 0 or multiple values, then we find

with the same notations as for the general definition of P` in (2.2) the generalized
partial fraction decomposition of the form

B`(t) =
√

1− |z`|2 eµ`it
M∑̀
j=0

Kj,`∑
r=1

p`,j,r

(1− z̃j eit)Kj,`
.

Now, similarly as before we observe that B`(t) can be written as a linear combination
of the functions Pj , j = 0, . . . , ` obtained from these ` + 1 zeros, and in particular
the coefficients p`,j,Kj,`

do not vanish. Therefore we get again an invertible linear
system relating P`(t) and B`(t). �

3 Adaptive Fourier sums and its convergence

Let us assume that f(t) = 2Re f+(t) is a real-valued function in L2(R) with

f+(t) =
∞∑
k=0

ck(f
+) eikt.

Our main goal is to generate a new adaptive Fourier basis {B`} as given in (1.3)
such that the adaptive N -th Fourier sums f+

N of f+ in (1.4) have significantly faster

decay for N → ∞ than the classical Fourier sum SN (f) :=
∑N

k=0 ck(f
+)eik·. For

this purpose we need to choose the sequence of zeros {z`}N`=0 defining the adaptive
Fourier basis {B`}N`=0 in an appropriate way. In this section we will show that indeed
a strong decay of the adaptive Fourier sums can be achieved. The crucial idea to find
the adaptive basis is the approach to approximate the sequence of classical Fourier
coefficients by finite exponential sums.

For a given function f+ ∈ H2 we will approximate c(f+) = (ck(f
+))∞k=0 by a new

sequence c̃(N) = c̃ = (c̃k)
∞
k=0 with coefficients being given by an exponential sum of

length N + 1,

c̃k =
N∑
`=0

a`z
k
` , (3.1)

where the parameters a` ∈ C and z` ∈ D have to be suitably chosen such that
‖c̃(N) − c(f+)‖2`2 :=

∑∞
k=0 |c̃k − ck(f

+)|2 < ε for some small ε. Taking now the
approximation f+

N (t) :=
∑∞

k=0 c̃k eikt we immediately obtain the error estimate

‖f+ − f+
N‖L2 = ‖c(f+)− c̃(N)‖`2 < ε

by Parseval identity. Approximating the sequence of Fourier coefficients of f+ as
given in (3.1), we find

f+
N (t) =

∞∑
k=0

c̃k eikt =
∞∑
k=0

( N∑
`=0

a`z
k
`

)
eikt
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=

N∑
`=0

a`

∞∑
k=0

(z`e
it)k =

N∑
`=0

a`
1

(1− z`eit)
=

N∑
`=0

a` P`(t), (3.2)

i.e., f+
N can be written with only N + 1 terms in the basis {P`}N`=0. This observa-

tion justifies that we call this approximation f+
N . By Theorem 2.1, f+

N can also be
written as an expansion of N + 1 terms in the orthogonal Takenaka-Malmquist basis
determined by the zeros (z0, . . . , zN ) in (3.1).

Using this approach we can reformulate the problem of finding an (almost) op-
timal adaptive Fourier basis as the problem to find an optimal approximation of the
sequence of classical Fourier coefficients by a sequence obtained from a short expo-
nential sum. Therefore, we consider now the question how to obtain for a fixed N a
sequence c̃(N) = (c̃k)

∞
k=0 of the form (3.1) such that ‖c̃(N) − c(f+)‖`2 is as small as

possible. In this section we first consider the theoretic problem. Using the Theorem
of Adamjan, Arov and Krein and the properties of infinite Hankel matrices, we will
be able to show that one can achieve very fast convergence rates for adaptive Fourier
sums for a large class of functions.

3.1 Infinite Hankel matrices and the AAK theorem

In the following we denote by `p := `p(N0) the space of p-summable sequences v =

(vk)
∞
k=0 with the norm ‖v‖p := (

∑∞
k=0 |vk|p)

1/p, 1 ≤ p <∞. Let D be the open unit
disc without zero, D := {z ∈ C : 0 < |z| < 1}. For a sequence v = (vk)

∞
k=0 ∈ `2 and

z ∈ D we call

Pv(z) :=

∞∑
k=0

vkz
k

its corresponding Laurent polynomial and Pv(eit), t ∈ R, its Fourier series. Further,
for c ∈ `2 we define the infinite Hankel matrix

Γc :=


c0 c1 c2 · · ·
c1 c2 c3 · · ·
c2 c3 c4 · · ·
...

...
...

. . .

 = (ck+j)
∞
k,j=0 . (3.3)

If the sequence c can be obtained as the (sub)sequence of Fourier coefficients, i.e.,
c = (ck(f))∞k=0 for a function f ∈ L∞([0, 2π)), then Γc is a bounded operator on `2,
see the Theorem of Nehari [16] or [29], Theorem 15.18. Moreover, Γc is compact on
`2 if c = (ck(f))∞k=0 for a continuous function f ∈ C([0, 2π)), see [10].

We assume that c is contained in the weighted Hilbert space

`2w := {c ∈ `2 :

∞∑
k=0

(k + 1)|ck|2 <∞} ⊂ `2.

Then Γc maps a sequence v = (vj)
∞
j=0 ∈ `2 into `2, and with

Γc v =
( ∞∑
j=0

ck+j vj

)∞
k=0

for v := (vk)
∞
k=0
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it follows by Cauchy Schwarz inequality that

‖Γcv‖2`2 =

∞∑
k=0

∣∣ ∞∑
j=0

cj+k vj

∣∣∣2 ≤ ∞∑
k=0

‖(ck+j)
∞
j=0‖2`2 ‖v‖

2
`2

=
( ∞∑
k=0

(k + 1) |ck|2
)
‖v‖2`2 = ‖c‖2`2w ‖v‖

2
`2 .

Observe that `1 ⊂ `2w since c ∈ `1 implies that

∞∑
k=0

(k + 1)|ck|2 ≤ sup
k∈N0

|(k + 1)ck| ‖c‖`1 <∞.

We want to apply now the Theorem of Adamjan, Arov and Krein [1] together with
some new results on the decay of singular values of Hankel operators by Pushnitski
and Yafarev [23] in order to show the strong convergence properties of adaptive N -th
Fourier sums in (1.4) if we take appropriate zeros {z`}N`=0 to determine B`(t).

Theorem 3.1. (Adamjan, Arov and Krein). Let c ∈ `2w be a given sequence and let
Γc be the corresponding infinite Hankel matrix on `2. Further, let σ0(Γc) ≥ σ1(Γc) ≥
σ2(Γc) ≥ . . . denote the singular values of Γc in decreasing order. Then, for each
N ∈ N0 there exists an infinite Hankel matrix Γc̃ of rank N + 1 such that

‖Γc − Γc̃‖`2→`2 = σN+1(Γc).

For the proof of this theorem we refer to [1] or to [19].

We consider now Hankel operators with finite rank N + 1 in more detail. Let
c̃ = (c̃k)

∞
k=0 be a special sequence of the form

c̃k =

N∑
j=0

ajz
k
j , k ∈ N0 (3.4)

where N ∈ N0, aj ∈ C 6= {0} and with pairwise different values 0 < |zN | ≤ . . . ≤
|z0| < 1. Then c̃ ∈ `1 and thus in `2w since

‖c̃‖`1 =

∞∑
k=0

|c̃k| =
∞∑
k=0

∣∣∣∣∣∣
N∑
j=0

ajz
k
j

∣∣∣∣∣∣ ≤
N∑
j=0

( ∞∑
k=0

|ajzkj |

)
=

N∑
j=0

|aj |
1− |zj |

<∞.

We recall the following property of the corresponding infinite Hankel matrix Γc̃, see
e.g. [29], Theorem 16.13.

Theorem 3.2. (Kronecker). The Hankel operator Γc̃ : `2 → `2 generated by c̃ =
(c̃k)

∞
k=0 ∈ `1 of the form (3.4) has finite rank N + 1.

Proof. For reader’s convenience we provide a short proof that also gives some insight
into the connection to difference equations. If c̃ can be written in the form (3.4), we
define the characteristic polynomial P (z) by the values z0, . . . , zN ,

P (z) :=

N∏
j=0

(z − zj) =

N+1∑
`=0

b`z
`, (3.5)
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where the b` are the coefficients in the monomial representation of P (z). Then (3.4)
yields

N+1∑
`=0

b`c̃k+` =
N+1∑
`=0

b`

N∑
j=0

ajz
k+`
j =

N∑
j=0

ajz
k
j (

N∑
`=0

b` z
`
j) =

N∑
j=0

ajz
k
j P (zj) = 0 (3.6)

for all k ∈ N0, i.e., (c̃k)
∞
k=0 satisfies a difference equation of order N + 1. Thus, the

(N + 1 +k)-th column of Γc̃ is a linear combination of the N + 1 preceding columns,
and we conclude rank Γc̃ ≤ N +1. Since P (z) has exact degree N +1 it follows that
rank Γc̃ = N + 1. �

Remark 3.3. Conversely, if the infinite Hankel matrix Γc̃ possesses rank N + 1,
then c̃ satisfies a difference equation of order N + 1. Thus, there exist coefficients
b0, . . . , bN+1 such that

N+1∑
l=0

blc̃k+l = 0 ∀k ∈ N0,

and b0 6= 0, bN+1 6= 0. Assuming that the zeros zj , j = 0, . . . , N , of the characteristic

polynomial
∑N+1

l=0 blz
l are pairwise different, c̃ can be written in the form (3.4). The

zeros zj have modulus smaller than 1 since f has been assumed to be in `1.
In the general case, if the characteristic polynomial possesses m pairwise different

zeros z̃1, . . . , z̃m with multiplicities K1, . . . ,Km and K1 + . . . + Km = N + 1, then
the c̃k take the form

c̃k =

m∑
j=1

Kj∑
r=1

aj,rk
r−1zkj , k ∈ N0, (3.7)

see [4].

3.2 Decay of adaptive Fourier sums

Let us assume now that for a given decaying sequence c = c(f+) ∈ `2w of classical
Fourier coefficients of f+ ∈ H2 we have found the sequence c̃ of the form (3.4) (or
(3.7)) that generates an infinite Hankel matrix of rank N + 1 as given in Theorem
3.2 satisfying the relation ‖Γc−Γc̃‖`2→`2 = σN+1(Γc) in Theorem 3.1. Then we can
conclude that

‖c− c̃‖`2 ≤ σN+1(Γc). (3.8)

This follows easily from the observation

‖c− c̃‖`2 = ‖Γc−c̃ e0‖`2 ≤ sup
‖v‖`2=1

‖Γc−c̃ v‖`2 = ‖Γc − Γc̃‖`2→`2 ,

where e0 := (1, 0, 0, . . .) ∈ `2.
Now the question remains, how the singular values of the infinite Hankel matrix

Γc decay compared to the decay of the generating sequence c. Here, the following
recent theorem about the decay of singular values of Hankel operators comes to our
help, see [23].

Theorem 3.4. (Pushnitski and Yafaev). Let c = (ck)
∞
k=0 ∈ `2w satisfy the decay

condition
ck = O(k−1(log k)−α), k →∞ (3.9)
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for some α > 0.
1. If 0 < α < 1/2, then the singular values of Γc satisfy the estimate

σN (Γc) = O(N−α), N →∞,

and moreover,
σN (Γc) = CαN

−α + o(N−α)

with Cα = 2−απ1−α(B( 1
2α ,

1
2))α, where B(·, ·) denotes the Beta function.

2. Let ∆ denote the forward difference operator with ∆ck := ck+1 − ck, and let
recursively ∆mck := ∆m−1ck+1 − ∆m−1ck for m > 1. If α > 1/2 and c satisfies
(3.9) and

∆mck = O(k−1−m(log k)−α), k →∞ (3.10)

for m = 0, . . . , bαc+ 1, then

σN (Γc) = O(N−α).

For a proof we refer to [23].

Remark 3.5. The estimates in Theorem 3.4 on the decay of the singular values of
the operator Γc imply that Γc is in the Schatten class Sp,∞ with the norm

‖Γc‖Sp,∞ := sup
N∈N

N1/pσN (Γc) <∞

for p = 1/α. It has been already shown by Peller [19] that Γc ∈ Sp,p with

‖Γc‖pSp,p
:=

∞∑
n=1

σn(Γc)p <∞,

if and only if c is a sequence of Fourier coefficients for a function f in the Besov

space B
1/p
p . The above theorem also implies that we can even have a decay of

singular values of Γc being faster than any polynomial. In [28] it has been shown
that for ck = (1 + k)−γ , γ > 1, the singular values of Γc satisfy

σN (Γc) = exp
(
− π

√
2γN + o(

√
N)
)
, N →∞.

Using the considerations above, we arrive at the following result.

Theorem 3.6. Let f+(t) =
∑∞

k=0 ck(f
+) eikt be a function in H2. If c = (ck(f

+))∞k=0

satisfies the decay conditions (3.9) and (3.10) for α > 1/2 then for each N ∈ N,

there exists a vector of zeros z
(N)
0 , . . . , z

(N)
N determining a Takenaka-Malmquist sys-

tem {Bk}Nk=0 such that the N -th adaptive partial Fourier sum f+
N =

∑N
k=0〈f,Bk〉L2Bk

satisfies the asymptotic estimate

‖f+ − f+
N‖L2 ≤ CN−α

where C does not depend on N .

Proof. From Theorem 2.1 and (3.2) it follows that f+
N can be written in the basis

using {Pk : k = 0, . . . , N}, such that f+
N (t) =

∑∞
k=0 c̃ke

itk, where the coefficients c̃k
are of the form

c̃k =
N∑
j=0

a
(N)
j (z

(N)
j )k.
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Here we have for simplicity assumed that the zeros z
(N)
j are pairwise different. The

sequence c̃ = (c̃k)
∞
k=0 determines a Hankel operator of rank N + 1. Thus, if c̃, (i.e.,

the zeros z
(N)
j and the coefficients a

(N)
j ) are taken such that

‖Γc − Γc̃‖`2→`2 = σN+1(Γc),

then it follows from (3.8) that ‖c− c̃‖`2 ≤ σN+1(Γc). By Theorem 3.1, this sequence
c̃ can always be found, and by Theorem 3.4 we have σN+1(Γc) ≤ O(N−α). The
assertion finally follows from Parseval identity,

‖f+ − f+
N‖L2 = ‖c− c̃‖`2 ≤ ‖Γc − Γc̃‖`2→`2 = σN+1(Γc) ≤ C N−α

with some C being independent from N . �

4 Computation of adaptive Fourier sums

In this section we derive an algorithm to compute the partial adaptive Fourier
sums of f+ in H2. For this purpose , we suppose that we know the vector of Fourier
coefficients (ck(f

+))Lk=0 in the classical Fourier expansion for a sufficiently large L.
If f+ is a rational function in H2 of the form q(e−it)/p(e−it) with deg q ≤ deg p =

M and p possesses pairwise different zeros, then our algorithm provides optimal
adaptive partial sums for any length N + 1 < M + 1 to approximate f . Note that
for N = M we can represent f+ exactly, i.e., f+

M = f+. If f is not rational, then
the theoretical results in the last subsection imply that we still find a very good
approximations of f+ by adaptive Fourier sums.

First, let us assume that the sequence of Fourier coefficients c(f) = c = (ck)
∞
k=0

of some f+ ∈ H2 possesses the form

ck = ck(f
+) =

M∑
j=0

ăj z̆
k
j , k ∈ N0, (4.1)

with possibly large M and with pairwise different zeros z̆j ∈ D, and ăj ∈ C. However,
we assume that we are given only the classical Fourier coefficients ck = ck(f

+) for
k = 0, . . . , L with L ≥ 2M + 3 and will compute the parameters ăj z̆j , j = 0, . . . ,M
in a first step by Prony’s method. In this section, we present an algorithm to solve
the problem of finding an optimal sequence c̃ = c̃(N) = (c̃k)

∞
k=0 of the form

c̃k =

N∑
j=0

a
(N)
j (z

(N)
j )k (4.2)

for a pre-defined N < M such that

‖c− c̃‖`2 ≤ ‖Γc − Γc̃‖`2→`2 = σN+1(Γc)

holds, i.e., c̃ is the optimal sequence for approximation by Theorem 3.1.
Once we have computed the sequence c̃ in (4.2) by determining the appropriate

parameters a
(N)
j , z

(N)
j , j = 0, . . . , N , we can find according to (3.2) the adaptive

N -th Fourier sum

f+
N =

N∑
j=0

a
(N)
j Pj
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where the coefficients a
(N)
j , j = 0, . . . , N appear in (4.2) and where the Pj are defined

by the z
(N)
j in (4.2). If we are interested in representing the approximation f+

N of

f+ in terms of the Takenaka-Malmquist basis, then we need to use z
(N)
0 , . . . z

(N)
N

from (4.2) to define the basis {B`}N`=0 and the corresponding coefficients b
(N)
` in the

representation f+
N =

∑N
`=0 b

(N)
` B` can be obtained by employing the basis transform

as given in (2.4).

Our approach to find appropriate parameters z
(N)
j and a

(N)
j in (4.2) consists of

two steps. In the first step we reconstruct the parameters ăj and z̆j in (4.1) using a
Prony-like method, see e.g. [21,22,26].

Remark 4.1. If f+ is rational then the representation (4.1) of ck(f
+) is exact.

However, we emphasize that the idea can be applied in practice to all sequences
ck(f

+) with sufficient decay. In the general case we obtain in the first step a very
good approximation of the form (4.1) if M is taken large enough. In our practical
experiments it has been usually sufficient to take e.g. M between 10 and 20 to get
approximations with accuracy 10−8 or better.

Once the representation (4.1) of c is known we will proceed in the second step
with a new algorithm to compute the sequence c̃ and particularly the parameters

a
(N)
j and z

(N)
j , j = 0, . . . , N , in the shorter exponential sum (4.2) with N < M such

that ‖c− c̃‖`2 ≤ σN+1(Γc). Our method includes a numerical procedure to compute
all nonzero singular values of Γc. Knowing these singular values we will be able to
give an a priori estimate of the error ‖c − c̃‖`2 that can be achieved using the new
sequence c̃(N) built by the shorter exponential sum in (4.2) and thus of the L2-error
‖f+ − f+

N‖L2 achieved by the N -th adaptive Fourier sum f+
N .

Step 1: Computation of the representation (4.1) by Prony’s method. Let
us shortly summarize Prony’s method for the recovery of exponential sums. Assume,
we are given the coefficients ck = ck(f

+), k = 0, 1, . . . , L, with L ≥ 2M + 3, and we
want to compute ăj and z̆j in (4.1). First, we introduce the characteristic polynomial

P (z) :=
M∏
j=0

(z − z̆j) =
M∑
k=0

pkz
k + pM+1z

M+1

with the help of the (unknown) zeros z̆j , where it is clear that a monomial represen-
tation with coefficients pk of P (z) exists and pM+1 = 1. Using (4.1), we observe now
that

M+1∑
k=0

pkck+m =
M+1∑
k=0

pk

( M∑
j=0

ăj z̆
k+m
j

)
=

M∑
j=0

ăj z̆
m
j

(M+1∑
k=0

pkz̆
k
j

)

=
M∑
j=0

ăj z̆
m
j P (z̆j) = 0

is true for all m ≥ 0 and with the given coefficients ck we obtain the homogeneous
linear system

Hcp =


c0 c1 . . . cM+1

c1 c2 . . . cM+2
...

...
...

cL−M−1 cL−M . . . cL




p0

p1
...

pM+1

 =


0
0
...
0

 ,
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where the coefficient matrix of size (L −M) × (M + 2) has Hankel structure, and
p = (p0, . . . , pM+1)T contains the coefficients of the characteristic polynomial P (z).
Since the zeros z̆j are assumed to be pairwise different, the Hankel matrix Hc has
rank M+1 such that p is uniquely defined as the singular vector of Hc corresponding
to the singular value 0 with the normalization pM+1 = 1. The rank condition for
Hc follows from a factorization with Vandermonde matrices that can be directly
obtained from (4.1),

Hc = VL−M (z̆) diag(ă1, . . . , ăM ) VM+2(z̆)T

where

VK(z̆) :=


1 1 . . . 1
z̆0 z̆1 . . . z̆M
...

...
...

z̆K−1
0 z̆K−1

1 . . . z̆K−1
M

 ∈ CK×K .

These observations lead to the following algorithm to recover the parameters z̆j , ăj
in (4.1) from the coefficients ck, k = 0, . . . , L.

Algorithm 4.2. (Prony method)
Input: M , ck, k = 0, . . . , L with L ≥ 2M + 3.

1. Compute the right singular vector p = (p0, . . . , pM , 1)T of Hc corresponding to
its smallest singular value.

2. Determine the polynomial P (z) with coefficient vector p and compute its M+1
zeros z̆j , j = 0, . . . ,M .

3. Solve the overdetermined linear system

M∑
j=0

ăj z̆
k
j = ck, k = 0, . . . , L

using a least squares approach and determine ăj , j = 0, . . . ,M .

Output: Parameters ăj , z̆j , j = 0, . . . ,M .

Remarks 4.3. While theoretically, we are searching for the singular vector of Hc

to the singular value zero, in practice, we do not obtain the zero singular value
exactly. Usually, the considered sequence of Fourier coefficients will not exactly
be of the form (4.1), but we are interested in an approximation of the form (4.1).
Therefore we employ the singular vector corresponding to the smallest singular value
of Hc in the first step. The zeros of the Prony polynomial are numerically found
by solving a corresponding eigenvalue problem for the companion matrix of P (z).
Stable algorithms for Prony’s method usually employ more than 2M + 3 values and
use e.g. singular value decompositions of (rectangular) Hankel matrices as well as
matrix pencil methods for evaluating the zeros z̆j , j = 0, . . . ,M . In our numerical
tests, we particularly use the APM method for stable evaluation of the parameters,
see [22].

Step 2: New algorithm to compute the approximating sequence c̃ in (4.2).
In the second step we will derive a method to compute an optimal approximation c̃

of c using a shorter exponential sum. For that purpose, we want to apply the follow-
ing special theorem for infinite Hankel matrices with finite rank, see [1]. To formulate
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this result, we first recall the notation of con-eigenvalues and con-eigenvectors and
its correspondence to singular pairs of matrices.

Observe that Γc is symmetric. Generalizing the idea of unitary diagonalization of
Hermitian matrices resp. compact selfadjoint operators, we will apply the concept of
con-similarity and con-diagonalization, see e.g. [13] for the finite-dimensional case.

For an infinite Hankel matrix Γc we call λ ∈ C a con-eigenvalue with the corres-
ponding con-eigenvector v ∈ `2 if it satisfies

Γcv = λv.

Observe that for Γcv = λv also

Γc(eiαv) = e−iαΓcv = (e−iαλ)v = (e−2iαλ)(eiαv)

for all α ∈ R. Thus, for each con-eigenvalue λ of Γc we can find a corresponding real
non-negative con-eigenvalue σ = |λ| by this rotation trick. In the following, we will
restrict the con-eigenvalues to their unique nonnegative representatives.

The symmetric infinite Hankel matrix Γc with finite rank is compact and unitarily
con-diagonalizable, see [13]. Since Γcv = λv implies

(Γ∗cΓc)v = Γ∗cλv = λΓcv = λΓcv = |λ|2v,

we directly observe that the nonnegative con-eigenvalues and con-eigenvectors of
Γc are also singular values and corresponding singular vectors of Γc. Conversely, for
symmetric matrices a singular pair (σ,v) is also a con-eigenpair of Γf if the geometric
multiplicity of σ is 1.

Theorem 4.4. Let the Hankel matrix Γc of rank M+1 be generated by the sequence
c of the form (4.1) with 1 > |z̆0| ≥ · · · ≥ |z̆M | > 0. Let the M + 1 nonzero
singular values of Γc be ordered by size σ0 ≥ σ1 . . . ≥ σM > 0. Then, for each
N ∈ {0, . . . ,M − 1} satisfying σN+1 6= σk for N + 1 6= k the Laurent polynomial of

the con-eigenvector v(N+1) = (v
(N+1)
l )∞l=0 corresponding to σN+1,

Pv(N+1)(z) :=
∞∑
l=0

v
(N+1)
l zl,

has exactly N + 1 zeros z
(N)
0 , . . . , z

(N)
N in D, repeated according to their multipli-

city. Furthermore, if z
(N)
0 , . . . , z

(N)
N are pairwise different, then there exist coefficients

a
(N)
0 , . . . , a

(N)
N ∈ C such that for

c̃(N) =
(
c̃

(N)
l

)∞
l=0

=

 N∑
j=0

a
(N)
j (z

(N)
j )l

∞
l=0

(4.3)

we have
‖c− c̃(N)‖`2 ≤ σN+1.

For a proof of this theorem we refer to [1] and to [3].

We will present now a computational method for the explicit computation of the

parameters a
(N)
j and z

(N)
j , j = 0, . . . , N of c̃(N) in (4.3). In order to achieve this goal

we need to perform the following steps.
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Step i) We have to find a numerical procedure to compute the singular pairs
(σn,v

(n)) of the infinite Hankel matrix Γc for n = 0, . . . ,M .

Step ii) We have to find all zeros z
(N)
j of the expansion Pv(N+1)(z) lying inside D.

Step iii) In a final step we have to compute the optimal coefficients a
(N)
j in (4.3).

Step i) To derive the numerical procedure to compute the singular pairs of Γc, we
investigate the special structure of the con-eigenvectors of Γc corresponding to the
non-zero con-eigenvalues (resp. singular values). We can show the following result
that provides us with an algorithm to compute all non-zero singular values of Γc

and the corresponding con-eigenvectors exactly by solving a con-eigenvalue problem
of size M + 1.

Theorem 4.5. Let c be of the form (4.1). Then the con-eigenvector v(l) = (v
(l)
k )∞k=0

of Γc corresponding to a single nonzero singular value σl of Γc, l ∈ {0, 1, . . . ,M} is
given by

v
(l)
k =

1

σl

M∑
j=0

ăjb
(l)
j z̆

k
j , k ∈ N0, (4.4)

where the vector b(l) = (b
(l)
0 , . . . , b

(l)
M )T is the con-eigenvector of the finite con-eigenvalue

problem
AM+1ZM+1b = σlb (4.5)

with

AM+1 :=


ă0 0

ă1

. . .

0 ăM

 , ZM+1 :=


1

1−|z̆0|2
1

1−z̆0z̆1
· · · 1

1−z̆0z̆M
1

1−z̆0z̆1
1

1−|z̆1|2 · · · 1
1−z̆1z̆M

...
...

. . .
...

1
1−z̆0z̆M

1
1−z̆1z̆M

· · · 1
1−|z̆M |2

 .

Proof. Let (σl,v
(l)) with σl 6= 0 be a con-eigenpair of Γc, i.e., Γcv

(l) = σ v(l). We

determine b
(l)
j :=

∑∞
r=0 v

(l)
r z̆rj = Pv(l)(z̆j) for j = 0, . . . ,M . Then it follows by (4.1)

that

σlv
(l)
k = (Γcv

(l))k =

∞∑
r=0

ck+rv
(l)
r =

∞∑
r=0

M∑
j=0

ăj z̆
k+r
j v(l)

r

=

M∑
j=0

ăj(

∞∑
r=0

v(l)
r z̆

r
j )z̆

k
j =

M∑
j=0

ăj b
(l)
j z̆kj

for all k ∈ N0, and hence (4.4) is true. Relation (4.5) is now a consequence of (4.4)
observing that

σl b
(l)
k = σl

∞∑
r=0

v(l)
r (z̆k)

r =

∞∑
r=0

( M∑
j=0

ăj b
(l)
j z̆rj

)
(z̆k)

r =

M∑
j=0

ăj b
(l)
j

1− z̆j z̆k
(4.6)

for k = 1, . . . ,M . �

Step ii) In particular, it follows from Theorem 4.5 for all N = 0, . . . ,M that the
Laurent polynomial

Pv(N+1)(z) :=

∞∑
k=0

v
(N+1)
k zk =

1

σN+1

∞∑
k=0

( M∑
j=0

ăj b
(N+1)
j z̆

k
j

)
zk =

1

σN+1

M∑
j=0

ăj b
(N+1)
j

1− z̆jz
(4.7)
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is a rational function with numerator being a polynomial of degree at most M . Thus,
in order to find the zeros of Pv(N+1)(z) we only need to compute the M zeros of the
numerator in this rational representation. By Theorem 4.4 we will find exactly N+1

zeros z
(N)
0 , . . . , z

(N)
N in D.

Step iii) Once we have computed the zeros z
(N)
j , j = 0, . . . , N , we can find the

optimal coefficients a
(N)
j by solving a least squares problem.

We combine our observations with Theorem 4.4 and obtain the following algorithm
to compute all parameters of the desired approximation c̃(N).

Algorithm 4.6. Algorithm to compute the representation (4.2).

Input: Representation (or approximation) (4.1) of c with z̆j ∈ D and ăj ∈ C \ {0},
j = 0, . . . ,M ,
target approximation error ε.

1. Solve the con-eigenproblem for the matrix AM+1ZM+1, determine N such that
σN+1 is the largest singular value with σN+1 < ε and determine the correspond-
ing con-eigenvector v(N+1).

2. Compute the N + 1 zeros z
(N)
j ∈ D, j = 0, . . . , N , of the con-eigenpolynomial

Pv(N+1)(z) of Γc using its rational representation (4.7).

3. Compute the coefficients a
(N)
j by solving the minimization problem

min
ã0,...,ãN

‖c− c̃‖2`2 = min
ã0,...,ãN

∞∑
k=1

|ck −
N∑
j=1

ãj(z
(N)
j )k|2.

Output: parameters z
(N)
j , a

(N)
j , j = 0, . . . , N , to determine c̃ of the form (4.2) such

that ‖c− c̃‖`2 ≤ σN+1 < ε.

Remarks 4.7.
1. Note that a related idea of dimension reduction has been used by Beylkin and
Monzón in [6]. But in contrast to the above approach, they considered the rank
reduction of a finite Hankel matrix.
2. Since AM+1ZM+1 is con-diagonalizable by Theorem 4.5, it follows that

AM+1 ZM+1 B = B Σ, and AM+1 ZM+1 B = B Σ

with B = (b(0) . . .b(M)) containing the con-eigenvectors of AM+1ZM+1 and with
Σ = diag (σ0, . . . , σM ). Therefore

AM+1ZM+1AM+1ZM+1B = AM+1ZM+1 B B
−1

AM+1ZM+1B = BΣ2,

i.e., AM+1ZM+1AM+1ZM+1 has only real nonnegative eigenvalues λj = σ2
j .

Conversely, if (λj ,w
(j)) is an eigenpair of AM+1ZM+1AM+1ZM+1, then b(j) :=

AM+1ZM+1w
(j) + σjw

(j) is a con-eigenvector of AM+1ZM+1 to the con-eigenvalue
σj =

√
λj , since

AM+1ZM+1b
(j)

= AM+1ZM+1(AM+1ZM+1w
(j) + σjw

(j))

= AM+1ZM+1AM+1ZM+1w(j) + σjAM+1ZM+1w
(j)
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= σ2
jw

(j) + σjAM+1ZM+1w
(j) = σjb

(j).

Thus, to solve the con-eigenvalue problem in step 2 of Algorithm 4.6, we can employ
a usual eigenvalue-decomposition of AM+1ZM+1AM+1ZM+1.
3. Usually, the singular values of AM+1ZM+1 decay very fast. There are several
possibilities to improve the numerical stability of the necessary SVD for this matrix
product. Indeed, AM+1ZM+1 can be understood as a Cauchy matrix since

(AM+1ZM+1)jk =
ăj/z̆j

1/z̆j − z̆k
, j, k = 0, . . . ,M.

For accurate singular value decomposition we refer to the algorithm proposed by
Demmel [9] that is based on a rank revealing decomposition with complexity O(M3).
Further ideas to overcome instability issues can be found in [11] where the con-
eigenvalue problem is explicitly solved.
4. Observing that the components ck have the form (4.1) and the c̃k have the form
(4.2), the `2-minimization problem for infinite sequences in step 3 of Algorithm 4.6
can be reformulated as a finite-dimensional least squares problem,

min
ã0,...,ãN

‖c− c̃‖2`2 = min
ã0,...,ãN

(
− 2Re

∞∑
k=0

c̃kck +
∞∑
k=0

|c̃k|2
)

= min
ã0,...,ãN

(
− 2Re

N∑
j=0

M∑
i=0

ãj ăi

∞∑
k=0

(z
(N)
j z̆i)

k +
N∑
j=0

N∑
i=0

ãj ãi

∞∑
k=0

(z
(N)
j z

(N)
i )k

)

= min
ã0,...,ãN

(
− 2Re

N∑
j=0

M∑
i=0

ãj ăi

1− z(N)
j z̆i

+
N∑
j=0

N∑
i=0

ãj ãi

1− z(N)
j z

(N)
i

)
,

where the values z̆i, z
(N)
j and ăi are known. In practice, if only L+1 sequence values

ck, k = 0, . . . , L are given, then the minimization problem may be replaced by

min
ã0,...,ãN

L∑
k=0

|ck − c̃k|2 = min
ã0,...,ãK

L∑
k=0

|ck −
N∑
j=0

ãj(z
(N)
j )k|2.

5 Greedy approach for adaptive Fourier sums

We want to compare the algorithm proposed in the last section with a greedy ap-
proach. This method is very simple to implement but less efficient as we will show
in the numerical experiments in Section 6. Again, we assume that we know a vector
(ck(f))Lk=0 of Fourier coefficients of f with sufficiently large L.

The idea is now to approximate the vector c(0) := (ck(f))Lk=0 by a sequence of
the form (a0z

k
0 )Lk=0 where we try to choose a0 and z0 in an optimal way. Then we

consider the residual
c(1) := c(0) − (a0z

k
0 )Lk=0

and repeat this process. The iteration stops once we have achieved

‖c(N)‖2 < ε

for some N ≤ L and predefined tolerance ε.
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At each iteration step we do the following. For given data c(j) we apply Prony’s
method in Algorithm 4.2 for the special case M = 1. In this case, the characteristic
polynomial is given by

P (j)(z) = (z − zj) = p
(j)
1 z + p

(j)
0 ,

i.e., p
(j)
0 = −zj and p

(j)
1 = 1. The Hankel matrix Hc(j) is now of the form

Hc(j) =


c

(j)
0 c

(j)
1

c
(j)
1 c

(j)
2

...
...

c
(j)
L−1 c

(j)
L

 (5.1)

and we have to compute (p
(j)
0 , p

(j)
1 )T as the singular vector of Hc(j) to the smallest

singular value with the normalization p
(j)
1 = 1. Observe that (Hc(j))

∗Hc(j) is only of
size 2 × 2. Having fixed zj in this way, we compute the constant aj by solving the
overdetermined equation system

c(j) = aj (zkj )Lk=0

with the result

aj =
(c(j))T c(j)

(c(j))T (zkj )Lk=0

. (5.2)

Finally, we compute the residuum c(j+1) := c(j)−(ajz
k
j )Lk=0. The complete algorithm

is summarized as follows.

Algorithm 5.1. Greedy algorithm for adaptive Fourier sums.
Input: ck, k = 0, . . . , L for sufficiently large L.

1. Initialize c = c(0) := (ck)
L
k=0 and j := 0.

2. While ‖c‖2 > ε

a) Compute the right singular vector p = (−zj , 1)T of Hc in (5.1) correspond-
ing to its smallest singular value.

b) Compute the coefficient aj according to (5.2).

c) Update
c := c− (ajz

k
j )Lk=0

and j := j + 1.

3. Set N := j − 1.

Output: Parameters N , aj , zj , j = 0, . . . , N .

Alternatively, the update of the coefficients aj in iteration step 2b) can be done in
a global way to obtain the best approximation that can be achieved with an adaptive
basis with the zeros z0, . . . , zj found so far. In this case, we replace the step 2b) by
solving the least squares problem

min
a0,...,aj

L∑
k=0

|ck −
j∑
`=0

a` z
k
` |2.

In our numerical experiments, we will compare this simple approach with the results
of Algorithms 4.2 and 4.6 in Section 4.
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Figure 1 The original nodes z1, . . . , z10 (red stars) and the new nodes z
(N)
1 , . . . , z

(N)
N obtained by Al-

gorithm 4.6 (blue circles)

6 Numerical Examples

In this section we present two numerical examples demonstrating the performance

of our algorithms. In both examples we set a priori z
(N)
0 = 0 and take the Fourier

coefficient c0(f) independently. Then we approximate the Fourier coefficients ck(f)
as described in the previous subsections, but starting with k = 1.

Example 1. We approximate the rational function f(t) =
10∑̀
=1

ă`
(1−z̆`eit)

with the

classical Fourier expansion f(t) =
∑∞

k=0 ck(f)eikt where

ck(f) =
10∑
`=1

ă` z̆
k
` , k ∈ N0. (6.1)

In this example, we have ă0 = 0, z̆0 = 0, and the further parameters z̆j , ăj , j =
1, . . . , 10, in the representation (6.1) have been obtained by applying a generator of
random numbers in D and are given as follows:

z̆1

z̆2

z̆3

z̆4

z̆5

z̆6

z̆7

z̆8

z̆9

z̆10


=



−0.5609 + 0.1737i
0.0734− 0.1485i
0.4582− 0.3709i
0.2030− 0.0861i
−0.3715− 0.0216i
−0.1573− 0.4553i
−0.0471 + 0.1074i

0.5780− 0.3286i
−0.4123− 0.1385i

0.4266 + 0.0996i


,



ă1

ă2

ă3

ă4

ă5

ă6

ă7

ă8

ă9

ă10


=



−0.2978 + 0.4876i
−0.2515 + 0.4556i

0.1405 + 0.3813i
−0.2817− 0.2871i

0.3893 + 0.1132i
0.5792− 0.5730i
0.2763− 0.0897i
−0.1873− 0.2247i

0.1009− 0.4062i
−0.4707− 0.3855i


.

We denote by SN (f) the N -th classical Fourier sum

SN (f)(t) =
N∑
k=0

ck(f)eikt,

and by

fN := c0(f) +

N∑
j=1

a
(N)
j Pj



20

Figure 2 The real and imaginary parts of the original function f (blue solid line), the Fourier approxima-

tion SN (f) (green dotted line), the Greedy adaptive Fourier sum f
(G)
N (magenta dashed line) and adaptive

Fourier sum fN (red dash-dot line) for Example 1.

the N -th adaptive Fourier sum. Here we have taken z
(N)
0 = 0, a

(N)
0 = c0(f). The

parameters a
(N)
j and the zeros z

(N)
j , j = 1, . . . , N , determining the adaptive Fourier

basis {Pj}Nj=1 have been computed by Algorithm 4.6 for N = 1, . . . , 9. The obtained

nodes z
(N)
j are displayed for N = 1, N = 3 and N = 5 in Figure 1. Further, we

denote the sequence of adaptive Fourier sums obtained by the greedy Algorithm 5.1
by

f
(G)
N := c0(f) +

N∑
k=1

a
(G)
k Pk,

where again z0 = 0, a
(G)
0 = c0(f), and the consecutively obtained zeros zj , j =

1, . . . , N are taken to determine the adaptive Fourier basis {Pk}Nk=0. In Figures 2
and 3 we compare the function f with the N -th adaptive Fourier sum fN , the N -

th adaptive Fourier sum F
(G)
N and the classical Fourier sum SN (f). In Figure 3 the

corresponding error functions are displayed. Furthermore, in Table 1 we compare the

errors of the computed Fourier sums ‖f − fN‖L2 and ‖f − f (G)
N ‖L2 for N = 1, . . . , 9

and the singular values σN of the matrix A10Z10.

Example 2. We approximate the real function f(t) =
∑∞

k=1 ck(f) sin(kt) with
ck(f) = 1/k2, k ∈ N. First, using the samples ck(f) for k = 1, . . . , 101, we apply
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Figure 3 The error |f(t) − SN (f)(t)| (green dotted line), |f(t) − fGN (t)| (magenta dashed line) and
|f(t)−fN (t)| (red solid line) for the real and imaginary part of the functions for t ∈ [−π,π] on the x-axis
for Example 1.
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N σN ‖f − fN‖L2 ‖f − f (G)
N ‖L2

1 7.0672e-01 6.9094e-01 2.9125e+00

2 1.3593e-01 1.3484e-01 5.5597e-01

3 4.5874e-02 4.5843e-02 1.7501e-01

4 9.8703e-03 9.8537e-03 1.6970e-01

5 3.6531e-03 3.6526e-03 3.8253e-02

6 1.1020e-04 1.1020e-04 1.8900e-02

7 1.0701e-05 1.0701e-05 1.3875e-02

8 8.0077e-07 8.0077e-07 6.4196e-03

9 1.3831e-07 1.3831e-07 5.8672e-03

Table 1 Comparison of the errors of adaptive Fourier sums for Example 1.

the APM method in [22] and obtain beside the a priori fixed z̆0 = 0 and ă0 = 0 for
M = 11 the zeros z̆j and coefficients ăj , j = 1, . . . , 11,

z̆1

z̆2

z̆3

z̆4

z̆5

z̆6

z̆7

z̆8

z̆9

z̆10

z̆11



=



0.9890
0.9621
0.9166
0.8493
0.7577
0.6415
0.5042
0.3543
0.2078
0.0870
0.0148



,



ă1

ă2

ă3

ă4

ă5

ă6

ă7

ă8

ă9

ă10

ă11



=



0.0002
0.0014
0.0049
0.0129
0.0289
0.0567
0.0997
0.1571
0.2163
0.2438
0.1780



,

such that
1

k2
= ck(f) ≈ c̃k(f) =

11∑
j=1

ăj z̆
k
j . (6.2)

We compute the zeros z
(N)
j and the coefficients a

(N)
j , j = 1, . . . , N of the shorter

sums of the form (4.2) by applying Algorithm 4.6, again with z
(N)
0 = 0, a

(N)
0 =

c0(f) = 0. The obtained parameters are given in Tables 2 and 3.

The corresponding Fourier sums fN , f
(G)
N and SN (f) are given in Figure 4 for

N = 1, 3 and 5. The errors on the interval [0, 2π] are displayed in Figure 5. The

errors ‖f −fN‖L2 and ‖f −f (G)
N ‖L2 for the Fourier coefficients as well as the singular

values σN+1 of the matrix A11Z11 are given in Table 4.
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N 1 2 3 4 5 6 7 8 9 10

z
(N)
1 0.3535 0.2115 0.1501 0.1128 0.0855 0.0649 0.0494 0.0376 0.0286 0.0213

z
(N)
2 0.8110 0.6595 0.5395 0.4351 0.3458 0.2721 0.2124 0.1640 0.1239

z
(N)
3 0.9421 0.8601 0.7619 0.6557 0.5508 0.4532 0.3652 0.2856

z
(N)
4 0.9760 0.9272 0.8553 0.7666 0.6684 0.5667 0.4636

z
(N)
5 0.9853 0.9504 0.8943 0.8191 0.7284 0.6244

z
(N)
6 0.9881 0.9587 0.9102 0.8417 0.7528

z
(N)
7 0.9888 0.9614 0.9154 0.8484

z
(N)
8 0.9890 0.9620 0.9165

z
(N)
9 0.9890 0.9621

z
(N)
10 0.9890

Table 2 Adaptive zeros z
(N)
j obtained for N = 1, . . . , 10 to determine the optimal basis of the adaptive

Fourier sum fN in Example 2.

N 1 2 3 4 5 6 7 8 9 10

a
(N)
1 0.9677 0.9115 0.8043 0.7020 0.6029 0.5101 0.4272 0.3547 0.2914 0.2347

a
(N)
2 0.0865 0.1875 0.2662 0.3226 0.3538 0.3612 0.3498 0.3250 0.2904

a
(N)
3 0.0080 0.0304 0.0666 0.1109 0.1544 0.1895 0.2124 0.2216

a
(N)
4 0.0013 0.0074 0.0218 0.0451 0.0744 0.1053 0.1334

a
(N)
5 0.0004 0.0030 0.0101 0.0235 0.0434 0.0686

a
(N)
6 0.0003 0.0018 0.0064 0.0157 0.0316

a
(N)
7 0.0002 0.0015 0.0052 0.0133

a
(N)
8 0.0002 0.0014 0.0049

a
(N)
9 0.0002 0.0014

a
(N)
10 0.0002

Table 3 Coefficients a
(N)
j for adaptive Fourier sum fN obtained for N = 1, . . . , 10 in Example 2.

N σN ‖f − fN‖L2 ‖f − f (G)
N ‖L2

1 1.1078e-01 1.1057e-01 8.2932e-02

2 2.2710e-02 2.2693e-02 6.0175e-02

3 6.0753e-03 6.0538e-03 1.1511e-02

4 1.6706e-03 1.6635e-03 6.8640e-03

5 3.9237e-04 3.8919e-04 1.5419e-03

6 7.4187e-05 7.3599e-05 1.0114e-03

7 1.1081e-05 1.0949e-05 6.1344e-04

8 1.2559e-06 1.2382e-06 4.5046e-04

9 9.8620e-08 9.6716e-08 2.9683e-04

10 4.2914e-09 9.6368e-09 2.8196e-04

Table 4 Comparison of the errors of adaptive Fourier sums for Example 2.
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Figure 4 The original function f (blue solid line), the Fourier approximation SN (f) (green dotted line),

the greedy adaptive Fourier sum f
(G)
N (magenta dashed line) and the adaptive Fourier sum fN (red dash-

dot line).
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